ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

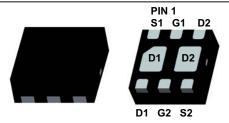
FDMA1032CZ

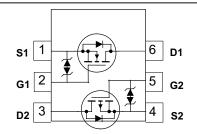
20V Complementary PowerTrench® MOSFET

General Description

This device is designed specifically as a single package solution for a DC/DC 'Switching' MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to switching applications.

Features


■ Q1: N-Channel


 $\begin{array}{ll} 3.7 \; A, \, 20V. & R_{DS(ON)} \; = 68 \; m\Omega \; @ \; V_{GS} = 4.5V \\ \\ R_{DS(ON)} \; = 86 \; m\Omega \; @ \; V_{GS} = 2.5V \\ \end{array}$

■ Q2: P-Channel

-3.1 A, -20V. R_{DS(ON)} = 95 m Ω @ V_{GS} = -4.5V R_{DS(ON)} = 141 m Ω @ V_{GS} = -2.5V

- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2 kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

MicroFET 2x2 Absolute Maximum Ratings

T_A=25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain-Source Voltage		20	-20	V
V _{GS}	Gate-Source Voltage		±12	±12	V
I _D	Drain Current - Continuous	(Note 1a)	3.7	-3.1	А
	– Pulsed		6	-6	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.4 0.7		W
		(Note 1b)			
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	°C	

Thermal Characteristics

_				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual Operation)] 'C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
032	FDMA1032CZ	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Cha	racteristics	•			•		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A} \\ V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	Q1 Q2	20 –20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	Q1 Q2		15 –12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, \qquad V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}, \qquad V_{GS} = 0 \text{ V}$	Q1 Q2			1 –1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$	All			±10	μА
On Chai	racteristics (Note 2)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_{D} = 250 \ \mu A \ V_{DS} = V_{GS}, \qquad I_{D} = -250 \ \mu A$	Q1 Q2	0.6 -0.6	1.0 –1.0	1.5 –1.5	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = –250 μA, Referenced to 25°C	Q1 Q2		-4 4		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 3.3 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		37 50 53	68 86 90	mΩ
		$V_{GS} = -4.5V$, $I_D = -3.1$ A $V_{GS} = -2.5$ V, $I_D = -2.5$ A $V_{GS} = -4.5$ V, $I_D = -3.1$ A, $T_J = 125^{\circ}$ C	Q2		60 88 87	95 141 140	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 3.7 \text{ A} $ $V_{DS} = -10 \text{ V}, \qquad I_{D} = -3.1 \text{ A}$	Q1 Q2		16 –11		S
Dynami	c Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		340 540		pF
C _{oss}	Output Capacitance	Q2	Q1 Q2		80 120		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	Q1 Q2		60 100		pF
Switchir	ng Characteristics (Note	; 2)					
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 10 V, I _D = 1 A,	Q1 Q2		8 13	16 24	ns
t _r	Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2		8 11	16 20	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time	$Q2$ $V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$	Q1 Q2		14 37	26 59	ns
t _f	Turn-Off Fall Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2		3 36	6 58	ns
Q_g	Total Gate Charge	Q1 $V_{DS} = 10 \text{ V}, I_{D} = 3.7 \text{ A}, V_{GS} = 4.5 \text{ V}$	Q1 Q2		4 7	6 10	nC
Q _{gs}	Gate-Source Charge	Q2	Q1 Q2		0.7 1.1		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -10 \text{ V}, I_{D} = -3.1 \text{ A},$ $V_{GS} = -4.5 \text{ V}$	Q1 Q2		1.1 2.4		nC

Electrical Characteristics

T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units	
Drain-Source Diode Characteristics and Maximum Ratings								
Is	Maximum Continuous Source-Drain Diode Forward Current		Q1			1.1	Α	
			Q2			-1.1		
V _{SD}	Source-Drain Diode Forward	$V_{GS} = 0 \text{ V}, I_S = 1.1 \text{ A}$ (Note 2)	Q1		0.7	1.2	V	
	Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.1 \text{ A}$ (Note 2)	Q2		-0.8	-1.2		
t _{rr}	Diode Reverse Recovery	Q1	Q1		11		ns	
	Time	$I_F = 3.7 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	Q2		25			
Q _{rr}	Diode Reverse Recovery	Q2	Q1		2		nC	
	Charge	$I_F = -3.1 \text{ A, } dI_F/dt = 100 \text{ A/}\mu\text{s}$	Q2		9			

- 1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design.

 (a) $R_{\theta,JA} = 86$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

 - (b) $\rm R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA}$ = 69 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta JA}$ = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.

- 2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics Q1 (N-Channel)

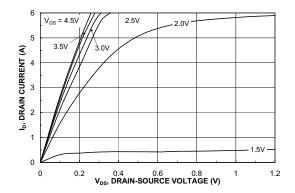


Figure 1. On-Region Characteristics.

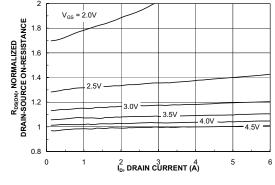


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

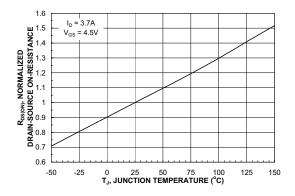


Figure 3. On-Resistance Variation with Temperature.

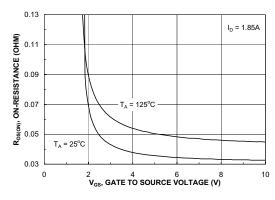


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

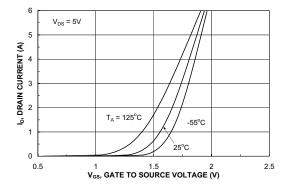


Figure 5. Transfer Characteristics.

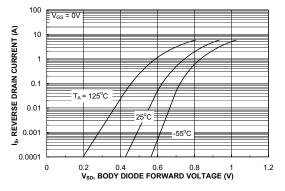
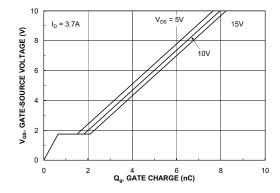
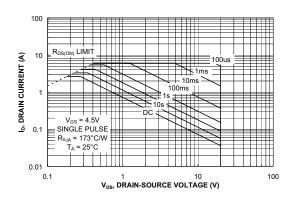



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1 (N-Channel)



f = 1MHz V_{GS} = 0 V 400 **CAPACITANCE (pF)**000
002 100 $^{5}_{\mathrm{DS}}$, DRAIN TO SOURCE VOLTAGE (V)

500

Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

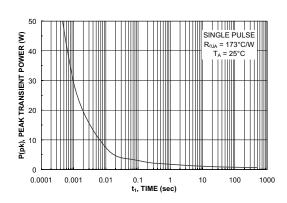


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

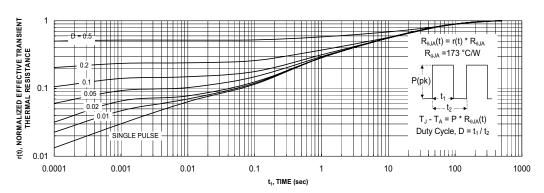


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Typical Characteristics: Q2 (P-Channel)

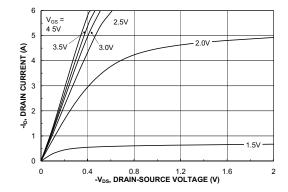


Figure 12. On-Region Characteristics.

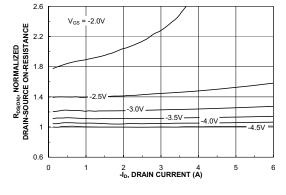


Figure 13. On-Resistance Variation with Drain Current and Gate Voltage.

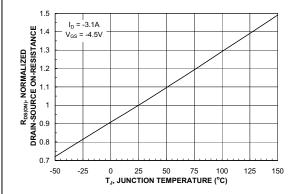


Figure 14. On-Resistance Variation with Temperature.

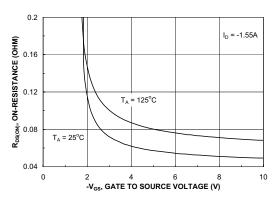


Figure 15. On-Resistance Variation with Gate-to-Source Voltage.

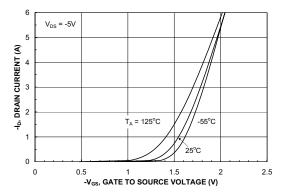


Figure 16. Transfer Characteristics.

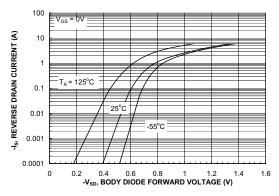
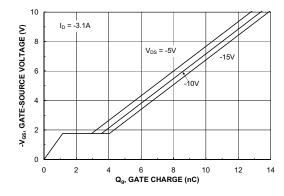



Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

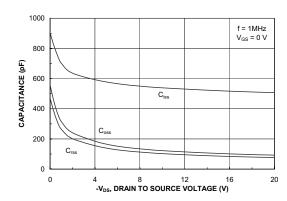
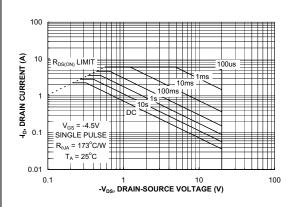



Figure 18. Gate Charge Characteristics.

Figure 19. Capacitance Characteristics.

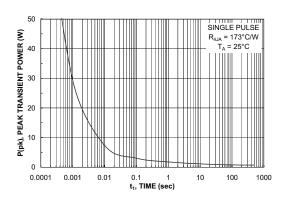
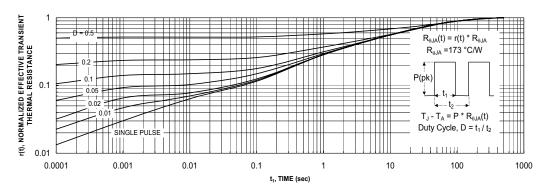
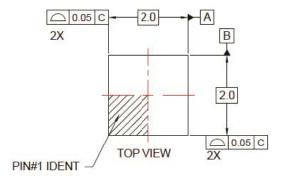
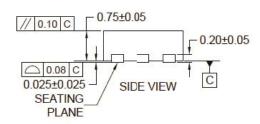
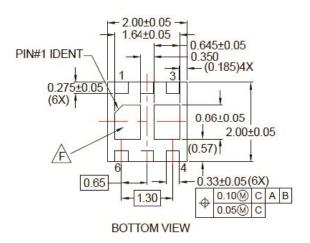
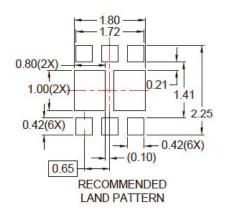


Figure 20. Maximum Safe Operating Area.

Figure 21. Single Pulse Maximum Power Dissipation.


Figure 22. Transient Thermal Response Curve.


Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout

NOTES:

- A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP16Erev4
- F. NON-JEDEC DUAL DAP

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative