ON Semiconductor

Is Now

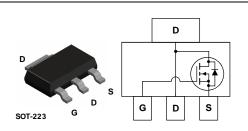
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

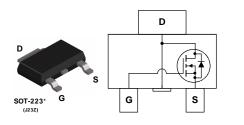
on semiconductor® FDT3612

100V N-Channel PowerTrench[®] MOSFET


General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{_{\text{DS}(ON)}}$ specifications. The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.


Applications

- DC/DC converter
- Motor driving

Features

- 3.7 A, 100 V. $R_{DS(ON)}$ = 120 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ = 130 m Ω @ V_{GS} = 6 V
- · Fast switching speed
- Low gate charge (14nC typ)
- High performance trench technology for extremely low R_{DS(ON)}
- High power and current handling capability in a widely used surface mount package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

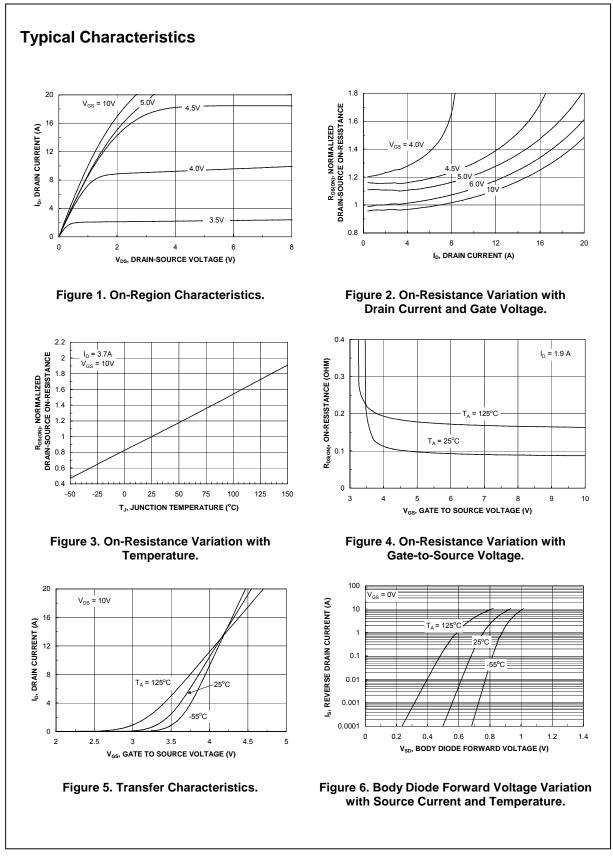
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		100	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current – Continuous	(Note 1a)	3.7	A
	- Pulsed		20	
P _D	Maximum Power Dissipation	(Note 1a)	3.0	W
		(Note 1b)	1.3	
		(Note 1c)	1.1	
T _J , T _{STG}	Operating and Storage Junction Tem	perature Range	–55 to +150	°C
Therma	I Characteristics			
R _{eja}	Thermal Resistance, Junction-to-Amb	vient (Note 1a)	42	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	e (Note 1)	12	°C/W
	e Marking and Ordering I		12	
	Mantan Davies	D 10	-	0

Device Marking	Device	Reel Size	Tape width	Quantity
3612	FDT3612	13"	12mm	2500 units

©2012 Semiconductor Components Industries, LLC. October-2017, Rev. 3 Publication Order Number: FDT3612/D

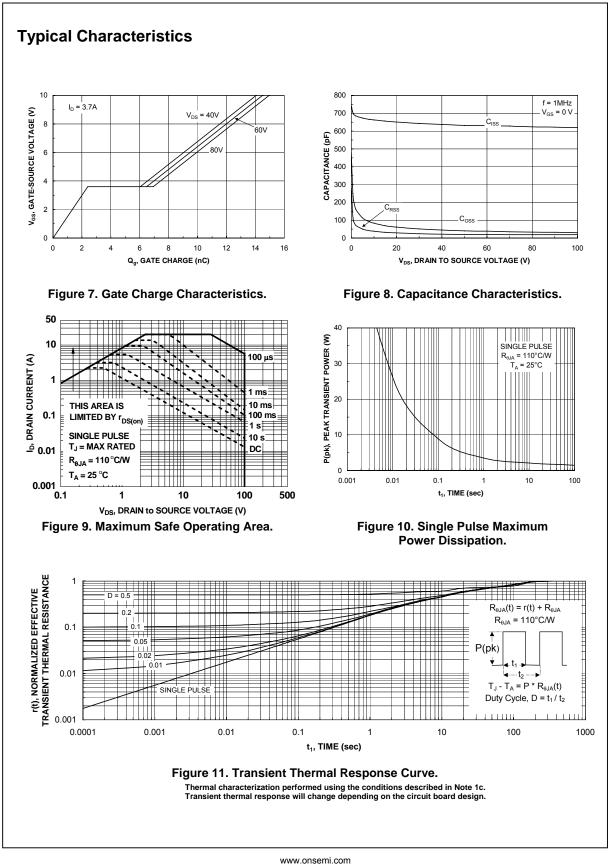
FDT3612

W _{DSS} I _{AR}	urce Avalanche Ratings (Note Drain-Source Avalanche Energy Drain-Source Avalanche Current acteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient	2) Single Pulse, V _{DD} = 50 V, I _D = 3.7 A V _{GS} = 0 V, I _D = 250 μA			90 3.7	mJ A
W _{DSS} I _{AR} Off Char BV _{DSS} ΔBV _{DSS} ΔT _J I _{DSS} I _{GSSF}	Drain-Source Avalanche Energy Drain-Source Avalanche Current acteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature	Single Pulse, V_{DD} = 50 V, I_D = 3.7 A				
Off Char BV _{DSS} ΔBV _{DSS} ΔTJ I _{DSS} I _{GSSF}	acteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature	V _{GS} = 0 V, I _D = 250 μA			3.7	Α
BV _{DSS} ΔBV _{DSS} ΔTJ I _{DSS} I _{GSSF}	Drain–Source Breakdown Voltage Breakdown Voltage Temperature	V _{GS} = 0 V, I _D = 250 μA				
BV _{DSS} ΔBV _{DSS} ΔTJ I _{DSS} I _{GSSF}	Drain–Source Breakdown Voltage Breakdown Voltage Temperature	V_{GS} = 0 V, I _D = 250 μ A				
ΔTJ I _{DSS} I _{GSSF}		•	100			V
I _{GSSF}		I_D = 250 μ A, Referenced to 25°C		106		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			10	μA
I _{GSSR}	Gate–Body Leakage, Forward	V_{GS} = 20 V, V_{DS} = 0 V			100	nA
	Gate–Body Leakage, Reverse	$V_{GS} = -20 V$, $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \ \mu A$	2	2.5	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-6		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \; V, & I_{D} = 3.7 \; A \\ V_{GS} = 6 \; V, & I_{D} = 3.5 \; A \\ V_{GS} = 10 \; V, \; I_{D} = 3.7 A, \; T_{J} = 125^{\circ} C \end{array} $		88 94 170	120 130 245	mΩ
I _{D(on)}	On-State Drain Current	V_{GS} = 10 V, V_{DS} = 10 V	10			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_D = 3.7 \text{ A}$		11		S
Dvnamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 50 V$, $V_{GS} = 0 V$,		632		pF
Coss	Output Capacitance	f = 1.0 MHz				
555				40		pF
Crss	Reverse Transfer Capacitance			40 20		pF pF
C _{rss}				-		•
C _{rss} Switchin	Reverse Transfer Capacitance g Characteristics (Note 2) Turn–On Delay Time			-	17	•
C _{rss}	g Characteristics (Note 2)	$V_{DD} = 50 V$, $I_D = 1 A$, $V_{GS} = 10 V$, $R_{GEN} = 6 Ω$		20	17	pF
C _{rss} Switchin t _{d(on)} t _r	g Characteristics (Note 2) Turn–On Delay Time	V _{DD} = 50 V, I _D = 1 A,		20 8.5		pF ns
C _{rss} Switchin t _{d(on)}	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time	V _{DD} = 50 V, I _D = 1 A,		20 8.5 2	4	pF ns ns
Crss Switchin t _{d(on)} t _r t _{d(off)}	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time	V _{DD} = 50 V, I _D = 1 A,		20 8.5 2 23	4 37	pF ns ns ns
$\frac{C_{rss}}{Switchin}$ $\frac{t_{d(on)}}{t_r}$ $t_{d(off)}$ t_f	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time	$V_{DD} = 50 V$, $I_D = 1 A$, $V_{GS} = 10 V$, $R_{GEN} = 6 Ω$		20 8.5 2 23 4.5	4 37 9	pF ns ns ns ns
Crss Switchin t _{d(on)} t _r t _{d(off)} t _r Q _g	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge	$V_{DD} = 50 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, I_D = 3.7 \text{ A},$		20 8.5 2 23 4.5 14	4 37 9	pF ns ns ns ns nC
Crss Switchin t _{d(on)} tr t _{d(off)} t _f Qg Qgs Qgd	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge Gate–Drain Charge	$V_{DD} = 50 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, I_D = 3.7 \text{ A}, \\ V_{GS} = 10 \text{ V}$		20 8.5 2 23 4.5 14 2.4	4 37 9	ns ns ns ns nC nC
Crss Switchin t _{d(on)} tr t _{d(off)} t _f Qg Qgs Qgd	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge	$V_{DD} = 50 V, I_{D} = 1 A, V_{GS} = 10 V, R_{GEN} = 6 \Omega$ $V_{DS} = 50 V, I_{D} = 3.7 A, V_{GS} = 10 V$ and Maximum Ratings		20 8.5 2 23 4.5 14 2.4	4 37 9	ns ns ns ns nC nC


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

a) 42°C/W when mounted on a 1in² pad of 2 oz copper

b) 95°C/W when mounted on a .0066 in² pad of 2 oz copper


ΪĪ

]]]

FDT3612

www.onsemi.com 3

FDT3612

⁴

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative