ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$
FDY100PZ
Single P-Channel (- 2.5V) Specified PowerTrench ${ }^{\circledR}$ MOSFET

General Description

This Single P-Channel MOSFET has been designed using ON Semiconductor's advanced Power Trench process to optimize the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} @ \mathrm{~V}_{\mathrm{GS}}=$ -2.5 v .

Applications

- Li-Ion Battery Pack

Features

- $-350 \mathrm{~mA},-20 \mathrm{~V}_{\mathrm{DS}(\mathrm{ON})}=1.2 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=1.6 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$
- ESD protection diode (note 3)
- RoHS Compliant

Absolute Maximum Ratings $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless othemise noted

Symbol	Parameter		Ratings	Unit s
$\mathrm{V}_{\text {DSS }}$	Drain-Source Voltage		-20	V
$\mathrm{V}_{\text {GSS }}$	Gate-Source Voltage		± 8	V
I_{D}	Drain Current $\begin{aligned} & \text { - Continuous } \\ & \text { - Pulsed }\end{aligned}$ - Pulsed	(Note 1a)	-350	mA
			- 1000	
$P_{\text {D }}$	Power Dissipation (Steady State)	(Note 1a)	625	mW
		(Note 1b)	446	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {OJA }}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {OJA }}$	Thermal Resistance, Junction-to-Ambient (Note 1b)	280	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
A	FDY100PZ	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
$\mathrm{BV}_{\text {DSs }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-20			V
$\frac{\Delta \mathrm{B} V_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		15		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
loss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-3	$\mu \mathrm{A}$
lass	Gate-Body Leakage,	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \quad \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
On Characteristics (Note 2)						
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \quad \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.65	-1.0	-1.5	V
$\begin{gathered} \hline \Delta V_{G S(t h)} \\ \Delta T_{J} \\ \hline \end{gathered}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-Source On-Resistance			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \\ & 1.7 \\ & 1.7 \end{aligned}$	Ω
grs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-350 \mathrm{~mA}$		1		S
Dynamic Characteristics						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$		100		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			30		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			15		pF
Switching Characteristics (Note 2)						
${ }^{\text {d }}$ (on)	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$		6	12	ns
t_{r}	Turn-On Rise Time			13	23	ns
$\mathrm{t}_{\text {dofif) }}$	Turn-Off Delay Time			8	16	ns
t_{f}	Turn-Off Fall Time			1	2	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-350 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \end{array} \end{aligned}$		1.0	1.4	nC
Q_{gs}	Gate-Source Charge			0.2		nC
Q_{gd}	Gate-Drain Charge			0.3		nC

Drain-Source Diode Characteristics and Maximum Ratings

V_{SD}	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{S}}=-150 \mathrm{~m} \mathrm{A(Note} \mathrm{2)}$		-0.8	-1.2	V
t_{rr}	Diode Reverse Recovery Time	I F$=-350 \mathrm{~mA}$,		11		ns
Q_{rr}	Diode Reverse Recovery Charge	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		2		nC

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

a) $200^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad

b) $280^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper Scale 1:1 on letter size paper
2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty Cycle < 2.0\%
3. The diode connected between the gate and source serves only as protection againts ESD. No gate overvoltage rating is implied.

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO EIAJ SC89 PACKAGING STANDARD.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

