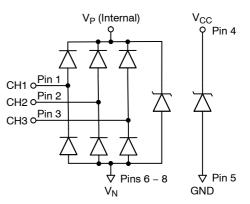
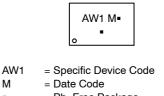

4-Channel Low Capacitance Dual-Voltage ESD Protection Array

Features

- 3 Channels of Low Voltage ESD Protection
- 1 Channel of High Voltage ESD Protection
- Provides ESD Protection to IEC61000-4-2 Level 4: ± 8 kV Contact Discharge (Pins 1–3) ± 15 kV Contact Discharge (Pin 4)
- Low Channel Input Capacitance
- Minimal Capacitance Change with Temperature and Voltage
- High Voltage Zener Diode Protects Supply Rail
- No Need for External Bypass Capacitors
- Each I/O Pin Can Withstand Over 1000 ESD Strikes*
- These Devices are Pb-Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com



D4 SUFFIX CASE 511BF

BLOCK DIAGRAM

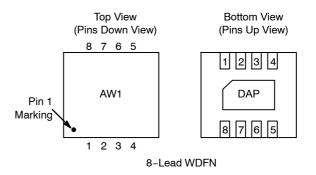
MARKING DIAGRAM

Μ

= Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
CM1241-04D4	WDFN-8 (Pb-Free)	3000/Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*Standard test condition is IEC61000-4-2 level 4 test circuit with each pin subjected to ±8 kV contact discharge for 1000 pulses. Discharges are timed at 1 second intervals and all 1000 strikes are completed in one continuous test run. The part is then subjected to standard production test to verify that all of the tested parameters are within spec after the 1000 strikes.

Table 1. PIN DESCRIPTIONS

	4–Channel, 8–Lead, WDFN–8 Package				
Pin	Name	Туре	Description		
1	CH1	I/O	LV Low-capacitance ESD Channel		
2	CH2	I/O	LV Low-capacitance ESD Channel		
3	СНЗ	I/O	LV Low-capacitance ESD Channel		
4	V _{CC}	$\rm HV V_{\rm DD}$	HV ESD Channel		
5	GND		Ground		
6	V _N		Negative Voltage Supply Rail		
7	V _N		Negative Voltage Supply Rail		
8	V _N		Negative Voltage Supply Rail		
DAP	GND		Die Attach Pad (Ground)		

SPECIFICATIONS

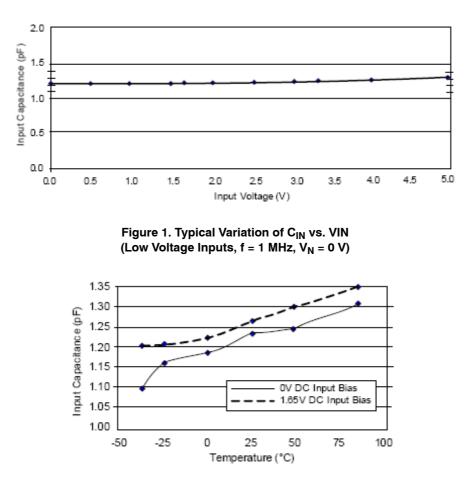
Table 2. ABSOLUTE MAXIMUM RATINGS

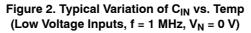
Parameter	Rating	Units
DC Voltage on Low-voltage Pins	6.0	V
DC Voltage on High-voltage Pins (V _{CC} pin)	14.5	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

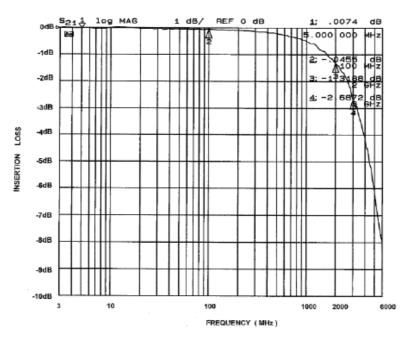
Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C


Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{F}	LV Diode Reverse Voltage (Positive Voltage)	I _F = 10 mA; T _A = 25°C	6.8	8.2	9.2	V
	LV Diode Forward Voltage (Negative Voltage)	I _F = 10 mA; T _A = 25°C	-1.05	-0.9	-0.6	V
I _{LEAK}	LV Channel Leakage Current (Pins 1 and 2)	$ \begin{array}{l} T_A = -30^\circ C \text{ to } 65^\circ C; \mbox{ VIN} = 3.3 \mbox{ V}, \\ V_N = 0 \mbox{ V} \end{array} $			100	nA
	LV Channel Leakage Current (Pin 3 only)	$ \begin{array}{l} T_A = -30^\circ C \text{ to } 65^\circ C; \mbox{ VIN} = 3.3 \mbox{ V}, \\ V_N = 0 \mbox{ V} \end{array} $			100	nA
C _{IN}	LV Channel Input Capacitance	At 1 MHz, V _N = 0 V, VIN = 1.65 V		1.2	1.5	pF
ΔC_{IN}	LV Channel Input Capacitance Matching	At 1 MHz, V _N = 0 V, VIN = 1.65 V		0.02		pF
I _{LEAK_HV}	HV Channel Leakage Current	$T_A = 25^{\circ}C; V_{CC} = 11 V, V_N = 0 V$		0.1	1.0	μΑ
C _{IN_HV}	HV Channel Input Capacitance	At 1 MHz, V _N = 0 V, VIN = 2.5 V		53		pF
V_{F_HV}	HV Diode Breakdown Voltage Positive Voltage	I _F = 10 mA; T _A = 25°C	14.6		17.7	V
V _{ESD}	ESD Protection Peak Discharge Voltage at any channel input, in system Contact discharge per IEC 61000-4-2 standard	T _A = 25°C	±8 (Pin 1–3) ±15 (Pin 4)			kV
V _{CL}	LV Channel Clamp Voltage (Pin 1–3) Positive Transients Negative Transients	$T_A = 25^{\circ}C$, $I_{PP} = 1$ A, $t_P = 8/20 \ \mu S$		+9.64 -1.75		V
R _{DYN}	Dynamic Resistance LV Channel Positive Transients LV Channel Negative Transients HV Channel Positive Transients HV Channel Negative Transients	I_{PP} = 1 A, t_P = 8/20 µS Any I/O pin to Ground		0.72 0.59 1.20 0.36		Ω


Table 4. ELECTRICAL	OPERATING CHARACTERISTICS (Note1)
---------------------	--

1. All parameters specified at $T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise noted.

PERFORMANCE INFORMATION



PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance for Low Voltage Pins

Nominal conditions unless specified; otherwise, 50 Ω environment.

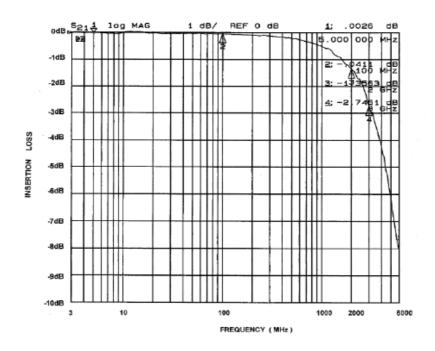
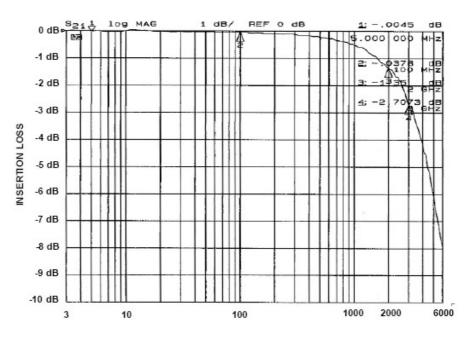
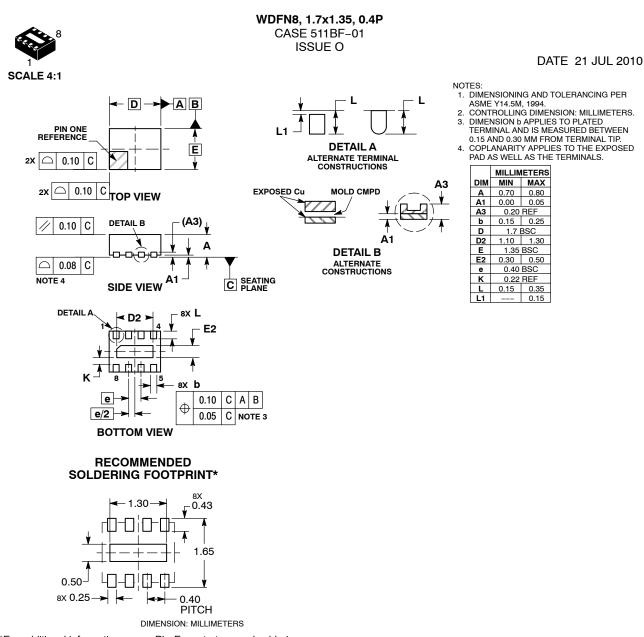



Figure 4. Channel 2 vs. All GND Pins (0 V DC Bias)

PERFORMANCE INFORMATION (Cont'd)


Typical Filter Performance for Low Voltage Pins

Nominal conditions unless specified; otherwise, 50 Ω environment.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON48937E	E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: WDFN8, 1.7X1.35, 0.4P		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative