BC858CDXV6T1, BC858CDXV6T5

Dual General Purpose Transistor

PNP Dual

This transistor is designed for general purpose amplifier applications. It is housed in the SOT–563 which is designed for low power surface mount applications.

Features

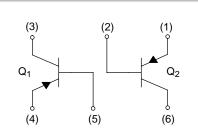
• These are Pb–Free Devices

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-30	V
Collector-Base Voltage	V _{CBO}	-30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	Ι _C	-100	mAdc

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic (One Junction Heated)	Symbol	Мах	Unit
Total Device Dissipation, (Note 1) $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	357 2.9	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	R_{\thetaJA}	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Мах	Unit
Total Device Dissipation, (Note 1) T _A = 25°C Derate above 25°C	P _D	500 4.0	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	250	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad

ON Semiconductor®

http://onsemi.com

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAMS

3L = Device Code

M = Date Code

.

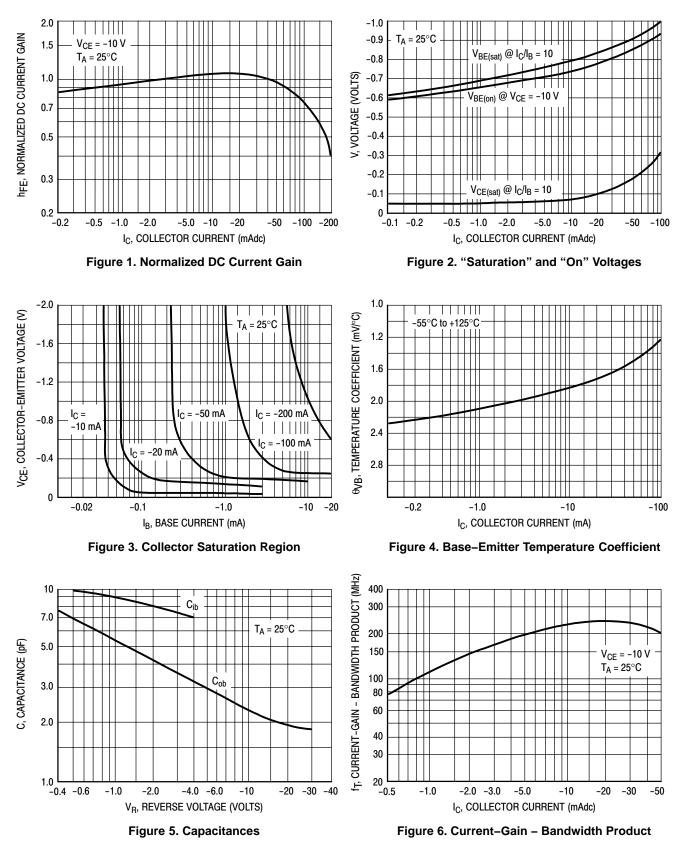
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]				
BC858CDXV6T1	SOT-563	4000/Tape & Reel				
BC858CDXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel				
BC858CDXV6T5	SOT-563	8000/Tape & Reel				
BC858CDXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel				

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

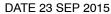

BC858CDXV6T1, BC858CDXV6T5

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = –10 mA)	V _{(BR)CEO}	-30	_	_	V
Collector – Emitter Breakdown Voltage ($I_C = -10 \ \mu A, \ V_{EB} = 0$)	V _{(BR)CES}	-30	_	_	V
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu A)$	V _(BR) CBO	-30	-	_	V
Emitter – Base Breakdown Voltage $(I_E = -1.0 \ \mu A)$	V _{(BR)EBO}	-5.0	-	_	V
Collector Cutoff Current (V _{CB} = -30 V) (V _{CB} = -30 V, T _A = 150° C)	I _{CBO}	-		-15 -4.0	nA μA
ON CHARACTERISTICS		1			
DC Current Gain $(I_C = -10 \ \mu\text{A}, \ V_{CE} = -5.0 \ \text{V})$ $(I_C = -2.0 \ \text{mA}, \ V_{CE} = -5.0 \ \text{V})$	h _{FE}	420	270 520	800	_
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)	V _{CE(sat)}			-0.3 -0.65	V
Base – Emitter Saturation Voltage $(I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA})$ $(I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA})$	V _{BE(sat)}		-0.7 -0.9		V
Base – Emitter On Voltage $(I_{C} = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ $(I_{C} = -10 \text{ mA}, V_{CE} = -5.0 \text{ V})$	V _{BE(on)}	-0.6 -		-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product ($I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	100	-	_	MHz
Output Capacitance ($V_{CB} = -10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$)	C _{ob}	-	-	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)	NF	-	-	10	dB

BC858CDXV6T1, BC858CDXV6T5

TYPICAL CHARACTERISTICS



SOT-563, 6 LEAD CASE 463A

ISSUE G

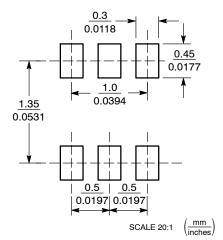
D -X-5 4 Ē H_{F} 01 2 3 > b 6 PL С е \oplus 0.08 (0.003) 🔘 X Y

STYLE 1:	STYLE 2:
PIN 1. EMITTER 1	PIN 1. EMITTER 1
2. BASE 1	2. EMITTER2
3. COLLECTOR 2	3. BASE 2
4. EMITTER 2	4. COLLECTOR 2
5. BASE 2	5. BASE 1
6. COLLECTOR 1	6. COLLECTOR 1
STYLE 4:	STYLE 5:
PIN 1. COLLECTOR	PIN 1. CATHODE
2. COLLECTOR	2. CATHODE
3. BASE	3. ANODE
4. EMITTER	4. ANODE
5. COLLECTOR	5. CATHODE
6. COLLECTOR	6. CATHODE
STYLE 7:	STYLE 8:

PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE

- STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C


 - 5 N/C 6. ANODE 1

STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE 1 STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE

5. CATHODE 6. CATHODE STYLE 9 PIN

	9.
N 1.	SOURCE 1
2.	GATE 1
З.	DRAIN 2
4.	SOURCE 2
5.	GATE 2
6.	DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 1	

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES

2.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS З. IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е		0.5 BSC)	0	0.02 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

- M = Month Code
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative