2.5V / 3.3V Quad Differential Driver/Receiver

Description

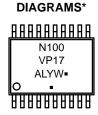
The NB100LVEP17 is a 4-bit differential line receiver. The design incorporates two stages of gain, internal to the device, making it an excellent choice for use in high bandwidth amplifier applications.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Inputs of unused gates can be left open and will not affect the operation of the rest of the device.

Features

- Maximum Input Clock Frequency > 2.5 GHz Typical
- Maximum Input Data Rate > 2.5 Gb/s Typical
- 250 ps Typical Propagation Delay
- Low Profile QFN Package
- PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Output
- These are Pb–Free Devices



ON Semiconductor®

http://onsemi.com

TSSOP-20 DT SUFFIX CASE 948E

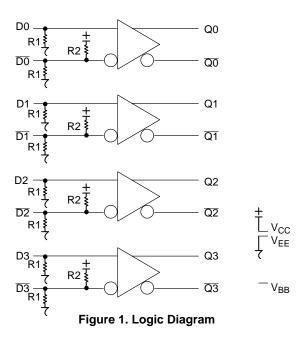
MARKING

24 PIN QFN MN SUFFIX CASE 485L

A = Assembly Location

L = Wafer Lot

Y = Year


W = Work Week

= Pb-Free Package
 (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

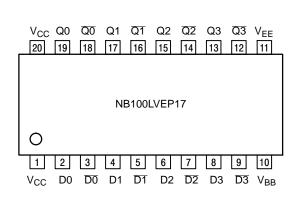

^{*}For additional marking information, refer to Application Note AND8002/D.

Table 1. PIN DESCRIPTION

Piı	n			Default	
TSSOP	QFN	Name	1/0	State	Description
1,20	13,18,21, 22,23	V _{CC}	-	-	Positive Supply Voltage. All $V_{\rm CC}$ Pins Must be Externally Connected to Power Supply to Guarantee Proper Operation.
11	10	V _{EE}	-	-	Negative Supply Voltage. All V _{EE} Pins Must be Externally Connected to Power Supply to Guarantee Proper Operation.
10	9	V_{BB}	-	_	ECL Reference Voltage Output.
2,4,6,8	1,3,5,7	D[0:3]	ECL Input	Low	Noninverted Differential Inputs [0:3]. Internal 75 k Ω to V _{EE} .
3,5,7,9	2,4,6,8	D[0:3]	ECL Input	High	Inverted Differential Inputs [0:3]. Internal 75 k Ω to V _{EE} and 37 k Ω to V _{CC} .
19,17,15,13	12,15,17,2 0	Q[0:3]	ECL Output	-	Noninverted Differential Outputs [0:3]. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2 V.
18,16,14,12	11,14,16,1 9	Q[0:3]	ECL Output	-	Inverted Differential Outputs [0:3]. Typically Terminated with 50 Ω to V _{TT} = V _{CC} – 2 V.
N/A	24	NC	-	-	No Connect. The NC Pin is Electrically Connected to the Die and "MUST BE" Left Open.
N/A	-	EP	-		Exposed Pad. (Note 1)

^{1.} All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally conductive expose pad on the package bottom (see case drawing) must be attached to a heat–sinking conduit.

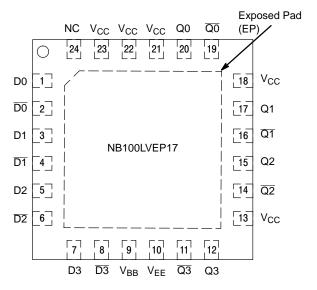


Figure 2. TSSOP-20 Lead Pinout (Top View)

Figure 3. QFN-24 Lead Pinout (Top View)

Table 2. ATTRIBUTES

Characterist	Characteristics					
Internal Input Pulldown Resistor	75 kΩ					
Internal Input Pullup Resistor	37	kΩ				
ESD Protection	> 2 kV > 150 V > 2 kV					
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg			
	TSSOP-20 QFN-24	Level 1 Level 1	Level 1 Level 1			
Flammability Rating	UL 94 V-0 @ 0.125 in					
Transistor Count	274 Devices					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	Negative Mode Power Supply	V _{CC} = 0 V		-6	V
VI	Positive Mode Input Voltage Negative Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ _{JA}	Thermal Resistance (Junction–to–Ambient) JEDEC 51–3 (1S – Single Layer Test Board)	0 lfpm 500 lfpm	20 TSSOP 20 TSSOP	140 50	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JEDEC 51-6 (2S2P Multilayer Test Board) with Filled Thermal Vias	0 lfpm 500 lfpm	24 QFN 24 QFN	37 32	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	Standard Board	20 TSSOP 24 QFN	23 to 41 11	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS, PECL $V_{CC} = 2.5 \text{ V}$; $V_{EE} = 0 \text{ V}$ (Note 2)

			-40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	30	40	50	30	40	50	30	40	55	mA
V _{OH}	Output HIGH Voltage (Note 3)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 3)	505	775	900	505	775	900	505	775	900	mV
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 4)	1335	5	1620	1335		1620	1275		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 4)	505		875	505		875	505		875	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}))		0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary -0.125 V to +1.3 V.
- 3. All loading with 50 Ω to $V_{EE} = V_{CC} 2.0 \text{ V}$.
- 4. Do not use V_{BB} at V_{CC} < 3.0 V.
 5. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 5. DC CHARACTERISTICS, PECL V_{CC} = 3.3 V; V_{EE} = 0 V (Note 6)

			-40°C		25°C			85°C				
Symbol	Characteristic	М	lin	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	3	80	40	50	30	40	50	30	40	55	mA
V _{OH}	Output HIGH Voltage (Note 7)	21	55	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 7)	13	805	1575	1700	1305	1575	1700	1305	1575	1700	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	21	35		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	13	805		1675	1305		1675	1305		1675	mV
V_{BB}	ECL Output Reference Voltage (Note 8)	17	75	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	1.	.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current (@ V _{IH})				150			150			150	μΑ
I _{IL}			.5 50			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary + 0.5 V to -0.3 V.
- 7. All loading with 50 Ω to V_{CC} 2.0 V.
- 8. Single ended input operation is limited $V_{CC} \ge 3.0 \text{ V}$ in PECL mode.
- 9. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V (Note 10)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	30	40	50	30	40	50	30	40	55	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1995	-1725	-1600	-1995	-1725	-1600	-1995	-1725	-1600	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1995		-1600	-1995		-1600	-1995		-1600	mV
V _{BB}	ECL Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V _{EE} ·	+ 1.2	0.0	V
I _{IH}	Input HIGH Current (@ V _{IH})			150			150			150	μΑ
I _{IL}	Input LOW Current (@ V _{IL}) DDD	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 10. Input and output parameters vary 1:1 with V_{CC}.
- 11. All loading with 50 Ω to V_{CC} 2.0 V. 12. Single ended input operation is limited V_{EE} \leq –3.0V in NECL mode.
- 13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}; V_{EE} = -2.375 \text{ V to } -3.8 \text{ V or } V_{CC} = 2.375 \text{ V to } 3.8 \text{ V}; V_{EE} = 0 \text{ V (Note 14)}$

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (See Figures 4, 5)	f_{in} < 1 GHz f_{in} = 2 GHz f_{in} = 2.5 GHz	600 400 300	700 500 400		600 325 250	700 500 400		550 300 200	700 500 400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	D to Q, $\overline{\mathbb{Q}}$	200	250	325	200	250	325	225	300	350	ps
t _{Skew}	Pulse Skew (Note 15) Within Device Skew (Note 17) Device–to–Device Skew (Note 17)			5 5 25	25 25 100		5 5 25	25 25 100		5 5 25	25 25 100	ps
t _{JITTER}	RMS Random Clock Jitter (Note 18) Peak-to Peak Data Dependent Jitter (Note 19)	f _{in} = 2.5 GHz f _{in} = 1.5 Gb/s f _{in} = 2.5 Gb/s		0.5 5 5	1 15 15		0.5 5 5	1 15 15		0.5 5 5	1 15 15	ps
V _{INPP}	Input Voltage Swing (Differential Configu (Note 20)	uration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r	Output Rise/Fall Times @ 50 MHz (20% – 80%)	Q, Q	125	175	225	140	190	240	150	200	250	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{14.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. Input edge rates 150 ps (20% – 80%).

^{15.} Pulse Skew = |tpLH - tpHL|
16. Worst case difference between Q0 and Q1 outputs.

^{17.} Skew is measured between outputs under identical transitions.

^{18.} Additive RMS jitter with 50% Duty Cycle Clock Signal at 2.5 GHz.

^{19.} Peak-to-Peak jitter with input NRZ data at PRBS 231-1 at 2.5 Gb/s with all inputs active.

^{20.} Input voltage swing is a single-ended measurement operating in differential mode, with minimum propagation change of 50 ps.

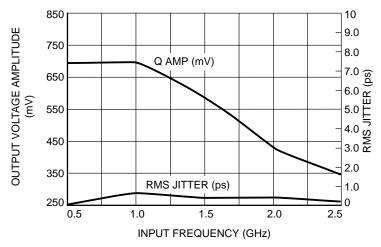


Figure 4. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) at V_{CC} = 2.5 V, Ambient Temperature

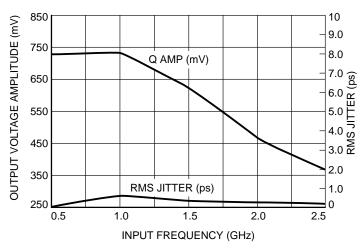


Figure 5. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) at V_{CC} = 3.3 V, Ambient Temperature

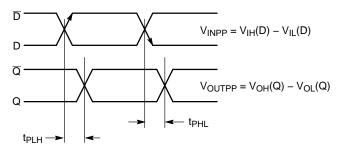


Figure 6. AC Reference Measurement

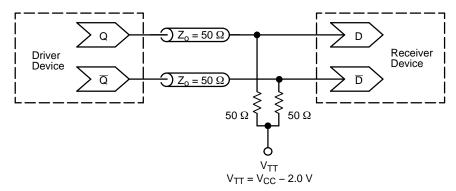


Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping†		
NB100LVEP17DTG	TSSOP-20	75 Units / Rail		
NB100LVEP17DTR2G	(Pb-Free)	2500 Tape & Reel		
NB100LVEP17MNG	QFN-24	92 Units / Rail		
NB100LVEP17MNR2G	(Pb-Free)	3000 Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

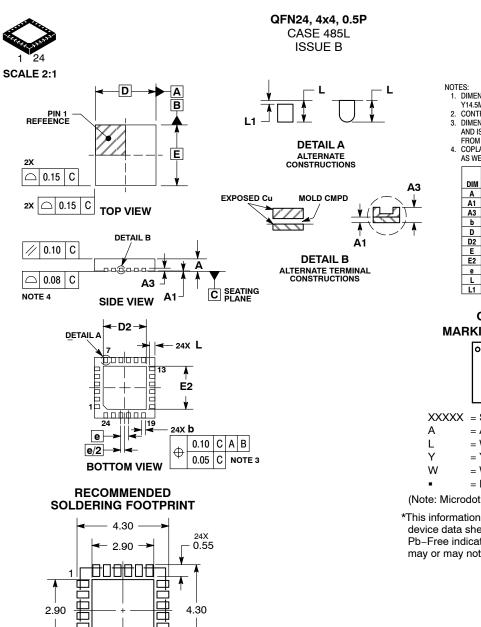
AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D – The ECL Translator Guide


AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

24X

DIMENSIONS: MILLIMETERS

0.32

DATE	05	II INI	2012

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 114.5M, 1994.

 2 CONTROLLING DIMENSION: MILLIMETERS.

 3 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIN	IETERS					
DIM	MIN	MAX					
Α	0.80	1.00					
A1	0.00	0.05					
A3	0.20	REF					
b	0.20	0.30					
D	4.00	BSC					
D2	2.70	2.90					
E	4.00	BSC					
E2	2.70	2.90					
е	0.50 BSC						
L	0.30	0.50					
L1	0.05	0.15					

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location

= Wafer Lot

= Year = Work Week

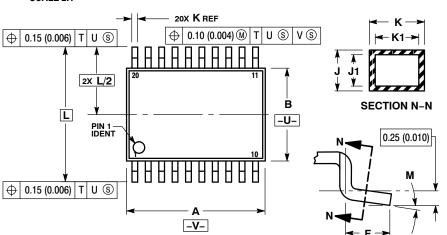
= Pb-Free Package

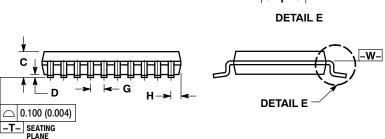
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON11783D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	QFN24, 4X4, 0.5P		PAGE 1 OF 1				

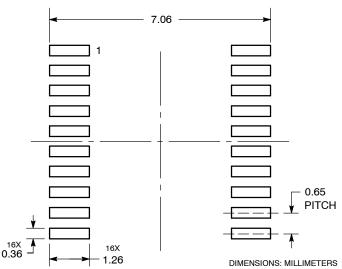
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


0.50

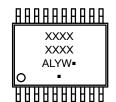

PITCH

TSSOP-20 WB CASE 948E ISSUE D

DATE 17 FEB 2016


NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.


 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-

	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	6.40	6.60	0.252	0.260			
В	4.30	4.50	0.169	0.177			
С		1.20		0.047			
D	0.05	0.15	0.002	0.006			
F	0.50	0.75	0.020	0.030			
G	0.65	BSC	0.026 BSC				
Н	0.27	0.37	0.011	0.015			
J	0.09	0.20	0.004	0.008			
J1	0.09	0.16	0.004	0.006			
K	0.19	0.30	0.007	0.012			
K1	0.19	0.19 0.25		0.010			
L	6.40	6.40 BSC		BSC			
M	0°	8°	0°	8°			

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative