Preferred Devices

Product Preview

Thyristor Surge ProtectorsHigh Voltage Bidirectional TSPD

These Thyristor Surge Protective devices (TSPD) prevent overvoltage damage to sensitive circuits by lightning, induction and power line crossings. They are breakover—triggered crowbar protectors. Turn—off occurs when the surge current falls below the holding current value.

Secondary protection applications for electronic telecom equipment at customer premises.

Features

- High Surge Current Capability: 50 A 10 x 1000 µsec, for Controlled Temperature Environments
- The MMT05B350T3 is used to help equipment meet various regulatory requirements including: Bellcore 1089, ITU K.20 and K.21, IEC 950, UL 1459 and 1950 and FCC Part 68
- Bidirectional Protection in a Single Device
- Little Change of Voltage Limit with Transient Amplitude or Rate
- Freedom from Wearout Mechanisms Present in Non–Semiconductor Devices
- Fail-Safe, Shorts When Overstressed, Preventing Continued Unprotected Operation
- Surface Mount Technology (SMT)
- N Indicates UL Recognized File #E210057
- Pb-Free Package is Available

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Off-State Voltage - Maximum	V_{DM}	300	V
Maximum Pulse Surge Short Circuit Current Non–Repetitive Double Exponential Decay Waveform (–25°C Initial Temperature) (Notes 1 and 2) 2 x 10 μsec 8 x 20 μsec 10 x 160 μsec 10 x 360 μsec 10 x 700 μsec 10 x 1000 μsec	IPPS1 IPPS2 IPPS3 IPPS4 IPPS5 IPPS6 IPPS7	±150 ±150 ±100 ±100 ±70 ±70 ±50	A(pk)
Non-Repetitive Peak On-State Current 60 Hz Full Sign Wave	I _{TSM}	32	A(pk)
Maximum Non–Repetitive Rate of Change of On–State Current Exponential Waveform, < 100 A	di/dt	±300	A/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Allow cooling before testing second polarity
- 2. Measured under pulse conditions to reduce heating.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

http://onsemi.com

BIDIRECTIONAL TSPD (%) 50 AMP SURGE, 350 VOLTS

SMB (No Polarity) (Essentially JEDEC DO-214AA) CASE 403C

MARKING DIAGRAMS

A = Assembly Location

Y = Year

WW = Work Week

RPBM = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMT05B350T3	SMB	12 mm Tape & Reel (2.5 K/Reel)
MMT05B350T3G	SMB (Pb-Free)	12 mm Tape & Reel (2.5 K/Reel)

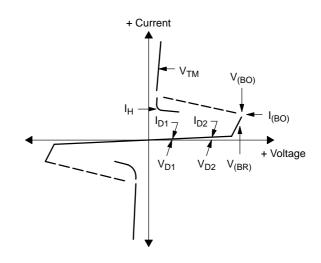
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Operating Temperature Range Blocking or Conducting State	T _{J1}	-40 to +125	°C
Overload Junction Temperature – Maximum Conducting State Only	T _{J2}	+175	°C
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Devices are bidirectional. All electrical parameters apply to forward and reverse polarities.

Characteristics		Symbol	Min	Тур	Max	Unit
Breakover Voltage (Both polarities) (dv/dt = 100 V/ μ s, I _{SC} = 1.0 A, Vdc = 1000 V) (+65°C)		V _(BO)	- -	- -	400 412	V
Breakover Voltage (Both polarities) (f = 60 Hz, I_{SC} = 1.0 A(rms), V_{OC} = 1000 V(rms), R_I = 1.0 k Ω , t = 0.5 cycle) (Note 3)		V _(BO)	-	-	400	V
(+65°C)			_	_	412	
Breakover Voltage Temperature Coefficient		$dV_{(BO)}/dT_{J}$	_	0.12	_	V/°C
Breakdown Voltage (I _(BR) = 1.0 mA) Both polarities		V _(BR)	_	350	-	V
Off State Current ($V_{D1} = 50 \text{ V}$) Both polarities ($V_{D2} = V_{DM}$) Both polarities		I _{D1} I _{D2}	_ _	- -	2.0 5.0	μΑ
On-State Voltage (I _T = 1.0 A) (PW ≤ 300 μs, Duty Cycle ≤ 2%) (Note 3)		V _T	-	1.6	3.0	V
Breakover Current (f = 60 Hz, V_{DM} = 1000 V(rms), R_S = Both polarities	1.0 kΩ)	I _{BO}	_	475	_	mA
Holding Current (Both polarities) $V_S = 500 \text{ V; } I_T \text{ (Initiating Current)} = \pm 1.0 \text{ A}$	(Note 3) (+65°C)	I _H	150 130	270 –	- -	mA
Critical Rate of Rise of Off–State Voltage (Linear waveform, V_D = Rated V_{BR} , T_J = 25°C)		dv/dt	2000	-	-	V/μs
Capacitance (f = 1.0 MHz, 50 Vdc, 1.0 V rms Signal) (f = 1.0 MHz, 2.0 Vdc, 1.0 V rms Signal)		C _O	_ _	14 27	18 30	pF

^{3.} Measured under pulse conditions to reduce heating.

Voltage Current Characteristic of TSPD (Bidirectional Device)

Symbol	Parameter		
I _{D1} , I _{D2}	Off State Leakage Current		
V_{D1}, V_{D2}	Off State Blocking Voltage		
V _{BR}	Breakdown Voltage		
V _{BO}	Breakover Voltage		
I _{BO}	Breakover Current		
I _H	Holding Current		
V_{TM}	On State Voltage		

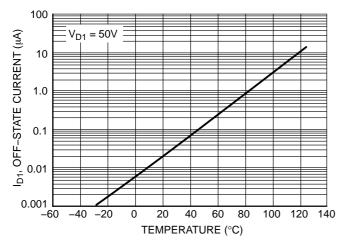


Figure 1. Typical Off-State Current versus Temperature

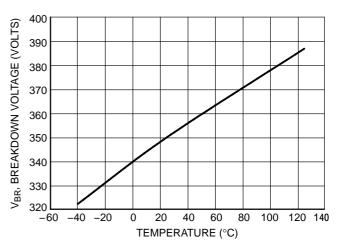


Figure 2. Typical Breakdown Voltage versus Temperature

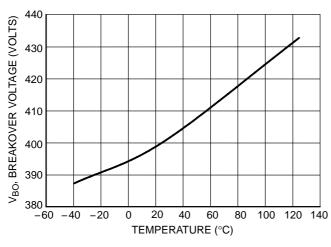


Figure 3. Maximum Breakover Voltage versus Temperature

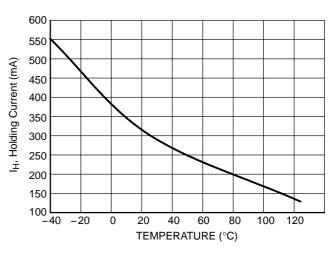


Figure 4. Typical Holding Current versus Temperature

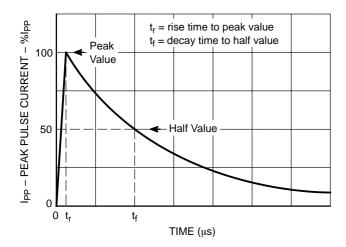


Figure 5. Exponential Decay Pulse Waveform

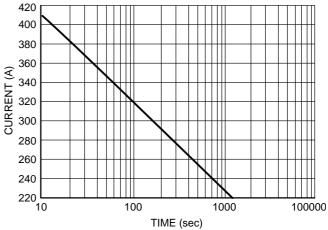
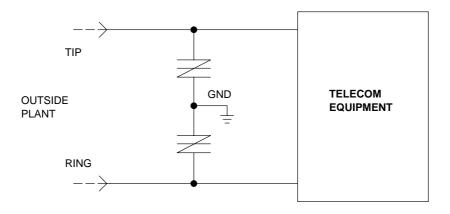
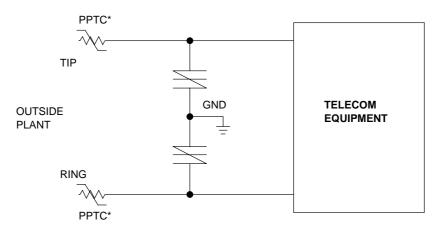
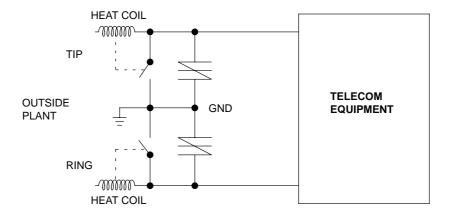
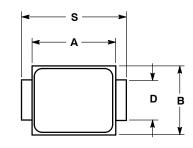
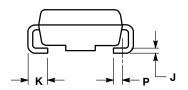
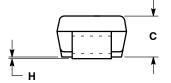





Figure 6. Peak Surge On-State Current versus Surge Current Duration, Sinusoidal Waveform

*Polymeric PTC (positive temperature coefficient) overcurrent protection device






SMB CASE 403C-01 **ISSUE A**

DATE 01/02/2000

NOTES:

- VOIES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P
- DIMENSION P.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.160	0.180	4.06	4.57
В	0.130	0.150	3.30	3.81
С	0.075	0.095	1.90	2.41
D	0.077	0.083	1.96	2.11
Н	0.0020	0.0060	0.051	0.152
J	0.006	0.012	0.15	0.30
K	0.030	0.050	0.76	1.27
P	0.020 REF		0.51 REF	
S	0.205	0.220	5.21	5.59

MARKING DIAGRAM

= Specific Device Code XXXX

= Year WW = Work Week

DOCUMENT NUMBER:	98ARB18918C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SMB		PAGE 1 OF 1	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative