Low Capacitance Transient Voltage Suppressors / ESD Protectors

Description

The CM1218–C4 device features transient voltage suppressor arrays that provide a very high level of protection for sensitive electronic components which may be subjected to electrostatic discharge (ESD).

All pins of the CM1218–C4 are rated to withstand ± 15 kV ESD pulses using the IEC 61000–4–2 contact discharge method. Using the MIL–STD–883D (Method 3015) specification for Human Body Model (HBM) ESD, all pins are protected from contact discharges of greater than ± 30 kV.

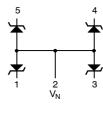
The CM1218-C4 is supplied in an SOT-553, RoHS-compliant, lead-free finished package.

Features*

- Low I/O Capacitance at 7 pF Typical
- Four Channels of ESD Protection
- In-system ESD Protection to ±15 kV Contact Discharge, per the IEC 61000-4-2 International Standard
- Compact SMT Package Saves Board Space and Facilitates Layout in Space-critical Applications
- Each I/O Pin Can Withstand over 1000 ESD Strikes
- These Devices are Pb-Free and are RoHS Compliant

Applications

- High-speed Consumer Electronic Ports
- ESD Protection of PC Ports, Including USB Ports, Serial Ports, Parallel Ports, IEEE1394 Ports, Docking Ports, Proprietary Ports, etc.
- Protection of Interface Ports or IC Pins which are Exposed to High ESD Levels


ON Semiconductor®

http://onsemi.com

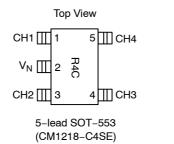
SOT-553 SE SUFFIX CASE 463B

CM1218-C4

MARKING DIAGRAM

R4C = Specific Device Code

- M = Month Code
- = Pb-Free Package


ORDERING INFORMATION

Device	Package	Shipping [†]		
CM1218-C4SE	SOT–553 (Pb–Free)	5000/Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*For Other Versions of the CM1218, see the CM1218 datasheet or the CM1218-H4 datasheet.

PACKAGE / PINOUT DIAGRAM & PIN DESCRIPTIONS

R4C	= Specific Device Code
CHx	= The Cathode of the Respective TVS Diode, which
	should be connected to the node requiring transient
	voltage protection
VN	= The Anode of the TVS Diodes

SPECIFICATIONS

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
Package Power Dissipation SOT-553	0.15	W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 2. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature	-40 to +85	°C

Table 3. ELECTRICAL OPERATING CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
C _{IN}	Channel Input Capacitance	T _A = 25°C, 2.5 VDC, 1 MHz		7		pF
ΔC_{IN}	Differential Channel I/O to GND Capacitance	T _A = 25°C, 2.5 VDC, 1 MHz		0.19		pF
V _{RSO}	Reverse Stand-off Voltage	I _R = 10 μA, T _A = 25°C	5.5			V
		$I_R = 1 \text{ mA}, T_A = 25^{\circ}\text{C}$	6.1			V
I _{LEAK}	Leakage Current	V_{IN} = 5.0 VDC, T_A = 25°C			1	μA
V _{SIG}	Small Signal Clamp Voltage Positive Clamp Negative Clamp	I = 10 mA, T _A = 25°C I = -10 mA, T _A = 25°C		6.8 -0.8		v
V _{ESD}	ESD Withstand Voltage Contact Discharge per IEC 61000-4-2 standard Human Body Model, MIL-STD-883, Method 3015	T _A = 25°C; Notes 2 & 3 T _A = 25°C; Notes 1 & 3	±15 ±30			kV
R _D	Diode Dynamic Resistance Forward Conduction Reverse Conduction	T _A = 25°C; Note 1		0.57 1.36		Ω

Human Body Model per MIL-STD-883, Method 3015, C_{Discharge} = 100 pF, R_{Discharge} = 1.5 KΩ, V_N grounded.
Standard IEC 61000-4-2 with C_{Discharge} = 150 pF, R_{Discharge} = 330 Ω, V_N grounded.
These measurements performed with no external capacitor on CH_X.

CM1218-C4

Performance Information

Diode Capacitance

Typical diode capacitance with respect to positive TVS cathode voltage (reverse voltage across the diode) is given in Figure 1.Diode Capacitance vs. Reverse Voltage.

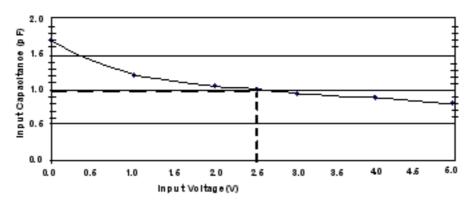
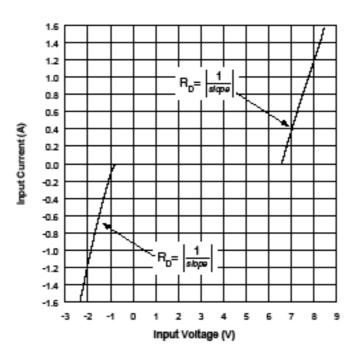
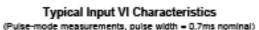
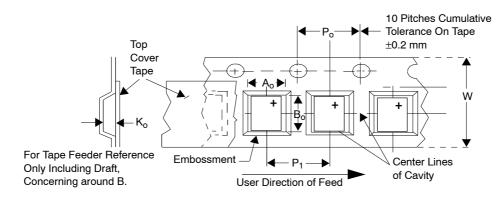




Figure 1. Diode Capacitance vs. Reverse Voltage

Typical High Current Diode Characteristics

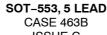
Measurements are made in pulsed mode with a nominal pulse width of 0.7 ms.

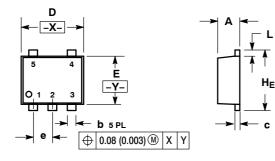


CM1218-C4

MECHANICAL SPECIFICATIONS

The CM1218-C4SE is supplied in a 5-pin SOT-553 package. Dimensions are presented below.


Part Number	Chip Size (mm)	Pocket Size (mm) B ₀ X A ₀ X K ₀	Tape Width W	Reel Diameter	Qty per Reel	Po	P ₁
CM1218-C4SE	1.60 X 1.60 X 0.55	1.78 X 1.78 X 0.69	8 mm	178 mm (7″)	5000	4 mm	4 mm




SCALE 4:1

ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 3.

CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е	0.50 BSC			0.020 BSC		
Г	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC **MARKING DIAGRAM***

XXM•

XX = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER: 98AON11127D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed **ON SEMICONDUCTOR STANDARD** STATUS: versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **NEW STANDARD: DESCRIPTION:** SOT-553, 5 LEAD PAGE 1 OF 2

DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2

ISSUE	REVISION	DATE			
Α	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003			
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005			
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative