BD435G, BD437G, BD439G, BD441G

Plastic Medium-Power Silicon NPN Transistors

This series of plastic, medium–power silicon NPN transistors can be used for amplifier and switching applications.

Features

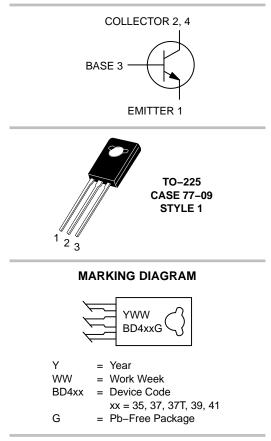
- Complementary Types are BD438 and BD442
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage BD435G BD437G BD439G BD441G	V _{CEO}	32 45 60 80	Vdc
Collector–Base Voltage BD435G BD437G BD439G BD441G	V _{CBO}	32 45 60 80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	Ι _C	4.0	Adc
Base Current	Ι _Β	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	36 288	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	3.5	°C/W

ON Semiconductor®

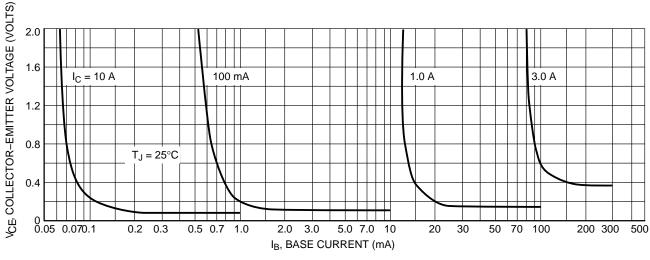
http://onsemi.com

4.0 AMPERES POWER TRANSISTORS NPN SILICON

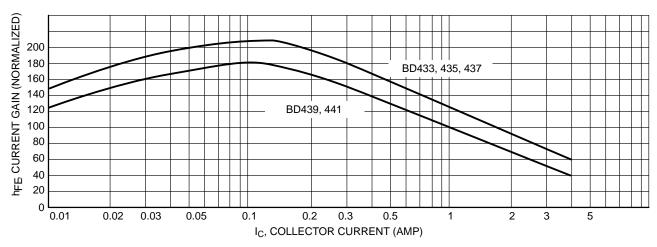
ORDERING INFORMATION

Device	Package	Shipping
BD435G	TO–225 (Pb–Free)	500 Units/Box
BD437G	TO–225 (Pb–Free)	500 Units/Box
BD437TG	TO-225 (Pb-Free)	50 Units/Rail
BD439G	TO–225 (Pb–Free)	500 Units/Box
BD441G	TO-225 (Pb-Free)	500 Units/Box

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

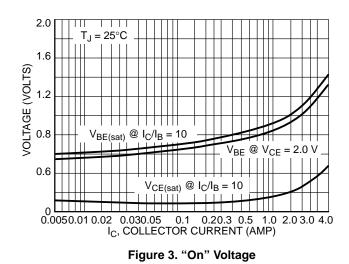

BD435G, BD437G, BD439G, BD441G

Characteristic	Symbol	Min	Тур	Max	Unit
$\begin{array}{l} \mbox{Collector-Emitter Breakdown Voltage} \\ (I_C = 100 \mbox{ mA, } I_B = 0) \\ \mbox{ BD435G} \\ \mbox{ BD437G} \\ \mbox{ BD439G} \\ \mbox{ BD441G} \end{array}$	V(BR)CEO	32 45 60 80	- - - -		Vdc
$\begin{array}{l} \mbox{Collector-Base Breakdown Voltage} \\ (I_C = 100 \ \mu\text{A}, \ I_B = 0) \\ \mbox{BD435G} \\ \mbox{BD437G} \\ \mbox{BD439G} \\ \mbox{BD441G} \end{array}$	V(BR)CBO	32 45 60 80	- - - -		Vdc
Emitter–Base Breakdown Voltage ($I_E = 100 \ \mu A, I_C = 0$)	V _{(BR)EBO}	5.0	-	-	Vdc
Collector Cutoff Current $(V_{CB} = 32 \text{ V}, I_E = 0)$ BD435G $(V_{CB} = 45 \text{ V}, I_E = 0)$ BD437G $(V_{CB} = 60 \text{ V}, I_E = 0)$ BD439G $(V_{CB} = 80 \text{ V}, I_E = 0)$ BD441G	I _{CBO}	- - -	- - -	0.1 0.1 0.1 0.1	mAdc
Emitter Cutoff Current (V _{EB} = 5.0 V)	I _{EBO}	_	_	1.0	mAdc
DC Current Gain (I _C = 10 mA, V _{CE} = 5.0 V) BD435G BD437G BD439G BD441G	hFE	40 30 20 15	- - - -	- - -	-
DC Current Gain (I _C = 500 mA, V _{CE} = 1.0 V) BD435G BD437G BD439G, BD441G	h _{FE}	85 85 40		475 375 475	-
DC Current Gain (I _C = 2.0 A, V _{CE} = 1.0 V) BD435G BD437G BD439G BD441G	h _{FE}	50 40 25 15		- - - -	-
Collector Saturation Voltage $(I_{C} = 2.0 \text{ A}, I_{B} = 0.2 \text{ V})$ BD435G $(I_{C} = 3.0 \text{ A}, I_{B} = 0.3 \text{ A})$ BD437G, BD439G, BD441G	V _{CE(sat)}	-		0.5 0.8	Vdc
Base–Emitter On Voltage ($I_C = 2.0 \text{ A}, V_{CE} = 1.0 \text{ V}$)	V _{BE(on)}	_	_	1.1	Vdc
Current–Gain – Bandwidth Product ($V_{CE} = 1.0 \text{ V}, I_C = 250 \text{ mA}, f = 1.0 \text{ MHz}$)	f _T	3.0	_	_	MHz


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BD435G, BD437G, BD439G, BD441G



10

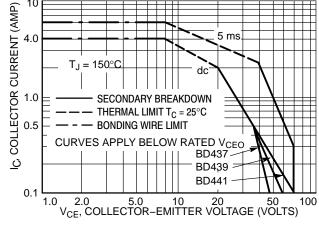
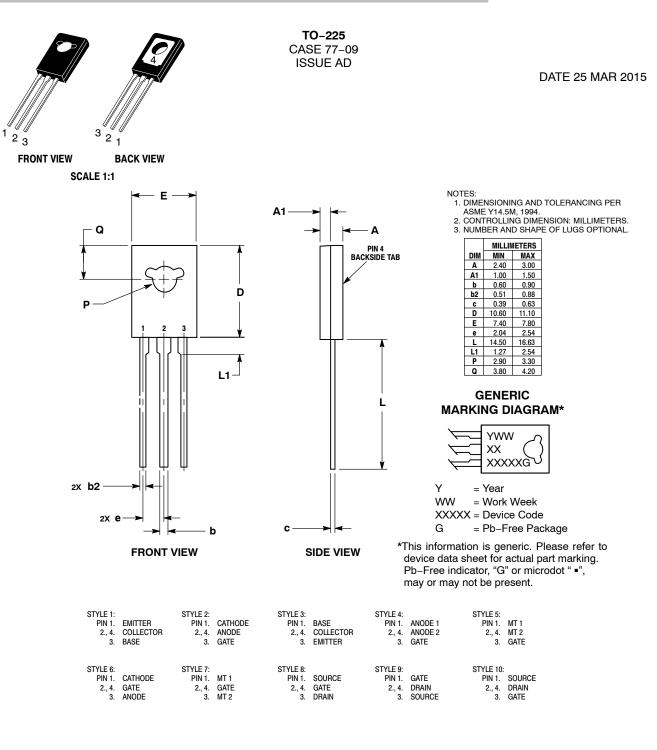



Figure 4. Active Region Safe Operating Area

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

ON Semiconductor®

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-225		PAGE 1 OF 1	
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative