CM1263-02SE

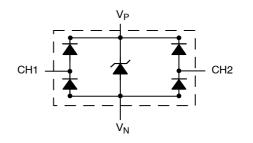
Low Capacitance ESD Protection for High-Speed Serial Interfaces

Features

- 2 Channels of ESD Protection
- 0.85 pF Loading Capacitance per Channel Typical
- Provides ESD Protection to IEC61000-4-2 Level 4:
 - ±8 kV Contact Discharge
 - ±15 kV Air Discharge
- 5-Pin SOT-553 Package
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Wireless Handsets that Use High-speed Serial Interfaces such as MDDI, MIPI, MVI and MPL
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- Wireless Handsets
- Handheld PCs/PDAs
- LCD and Camera Modules


ON Semiconductor®

http://onsemi.com

SOT-553 SE SUFFIX CASE 463B

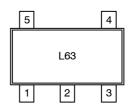
BLOCK DIAGRAM

MARKING DIAGRAM

L63 = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
CM1263-02SE	SOT-553 (Pb-Free)	5000/Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

CM1263-02SE

Table 1. PIN DESCRIPTIONS

5-Pin, SOT-553 Package		
Pin	Description	
1	V _P	
2	V _N	
3	NC	
4	(CH1) ESD Channel #1	
5	(CH2) ESD Channel #2	

PACKAGE / PINOUT DIAGRAM

SPECIFICATIONS

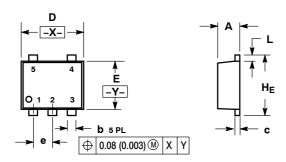
Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Supply Voltage (V _P – V _N)	6.0	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
DC Voltage at any channel input	$(V_N - 0.5)$ to $(V_P + 0.5)$	V

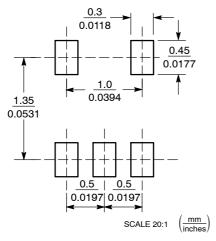
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

CM1263-02SE

Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _P	Operating Supply Voltage (V _P – V _N)			3.3	5.5	V
l _P	Operating Supply Current	$(V_P - V_N) = 3.3 \text{ V}$			8.0	μΑ
V _F	Diode Forward Voltage Top Diode Bottom Diode	I _F = 8 mA; T _A = 25°C	0.60 0.60	0.80 0.80	0.95 0.95	٧
I _{LEAK}	Channel Leakage Current	$T_A = 25^{\circ}C; V_P = 5 \text{ V}, V_N = 0 \text{ V}, V_{TEST} = 0 \text{ to } 5 \text{ V}$		0.1	1.0	μΑ
C _{IN}	Channel Input Capacitance	At 1 MHz, V _P = 3.3 V, V _N = 0 V, V _{IN} = 1.65 V		0.85	1.2	pF
ΔC_{IN}	Channel Input Capacitance Matching	At 1 MHz, V _P = 3.3 V, V _N = 0 V, V _{IN} = 1.65 V		0.02		pF
V _{ESD}	ESD Protection Peak Discharge Voltage at any channel input, in system: a) Contact Discharge per IEC 61000-4-2 standard b) Air Discharge per IEC 61000-4-2 standard	T _A = 25°C; (Notes 2 and 3) T _A = 25°C; (Note 3)	±8 ±15			kV
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	$T_A = 25^{\circ}C$, $I_{PP} = 1$ A, $t_P = 8/20 \ \mu S$ (Note 3)		+9.96 -1.6		V
R _{DYN}	Dynamic Resistance Positive Transients Negative Transients	$\begin{split} I_{PP} = 1 & \text{A, t}_P = 8/20 \ \mu\text{S} \\ \text{Any I/O pin to Ground;} \\ \text{(Note 3)} \end{split}$		0.96 0.5		Ω

^{1.} All parameters specified at $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ unless otherwise noted.
2. Standard IEC 61000–4–2 with $C_{Discharge} = 150\text{pF}$, $R_{Discharge} = 330~\Omega$, $V_P = 3.3~V$, V_N grounded.
3. These measurements performed with no external capacitor on V_P (V_P floating).



SOT-553, 5 LEAD CASE 463B **ISSUE C**

DATE 20 MAR 2013

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS: MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BSC	
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except accessed directly from the Document Repository. versions are uncontrolled except when stam	'	
STATUS:	ON SEMICONDUCTOR STANDARD		' '	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2	

DOCUMENT	NUMBER:
98AON11127	'D

PAGE 2 OF 2

ISSUE	REVISION	DATE
Α	ADDED STYLES 3-9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative