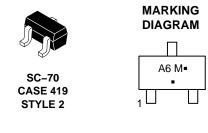
Silicon Switching Diode

Features


- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

A6 = Specific Device Code M = Date Code = Pb-Free Package

(*Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BAS16WT1G	SC-70 (Pb-Free)	3000 / Tape & Reel
SBAS16WT1G	SC–70 (Pb–Free)	3000 / Tape & Reel
NSVBAS16WT3G	SC–70 (Pb–Free)	10000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V _R	100	V
Recurrent Peak Forward Current	I _R	200	mA
Peak Forward Surge Current Pulse Width = 10 μ s	I _{FM(surge)}	500	mA
Total Power Dissipation, One Diode Loaded $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$ Mounted on a Ceramic Substrate (10 x 8 x 0.6 mm)	P _D	200 1.6	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient One Diode Loaded Mounted on a Ceramic Substrate (10 x 8 x 0.6 mm)	$R_{ hetaJA}$	625	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Voltage $(I_F = 1.0 \text{ mA})$ $(I_F = 10 \text{ mA})$ $(I_F = 50 \text{ mA})$ $(I_F = 150 \text{ mA})$	V _F	- - - -	715 866 1000 1250	mV
Reverse Current $(V_R = 100 V)$ $(V_R = 75 V, T_J = 150^{\circ}C)$ $(V_R = 25 V, T_J = 150^{\circ}C)$	I _R	- - -	1.0 50 30	μΑ
Capacitance ($V_R = 0, f = 1.0 \text{ MHz}$)	C _D	-	2.0	pF
Reverse Recovery Time $(I_F = I_R = 10 \text{ mA}, R_L = 50 \Omega)$ (Figure 1)	t _{rr}	-	6.0	ns
Stored Charge (I _F = 10 mA to V _R = 6.0 V, R _L = 500 Ω) (Figure 2)	QS	-	45	PC
Forward Recovery Voltage ($I_F = 10 \text{ mA}, t_r = 20 \text{ ns}$) (Figure 3)	V _{FR}	-	1.75	V

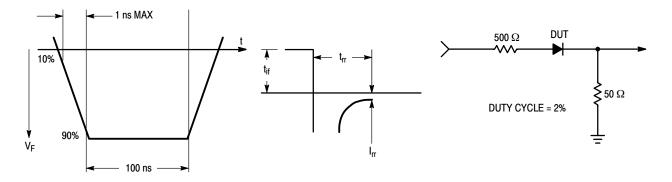


Figure 1. Reverse Recovery Time Equivalent Test Circuit

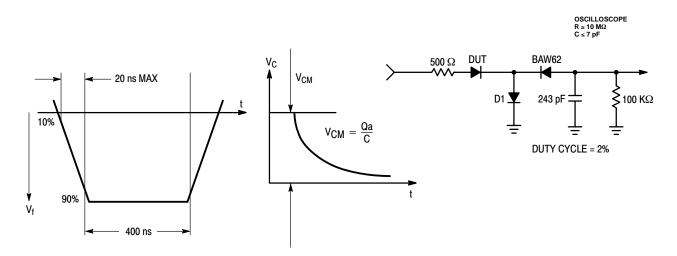


Figure 2. Stored Charge Equivalent Test Circuit

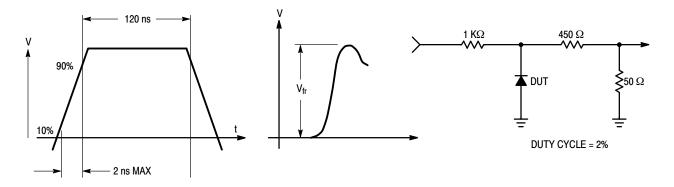


Figure 3. Forward Recovery Voltage Equivalent Test Circuit

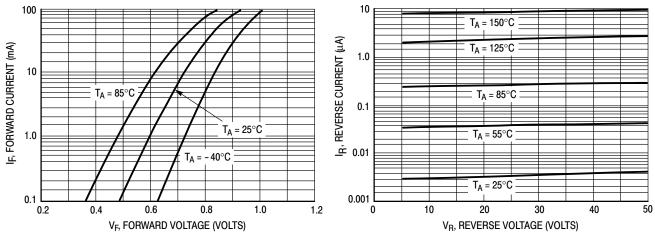


Figure 5. Leakage Current

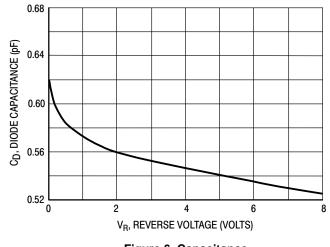
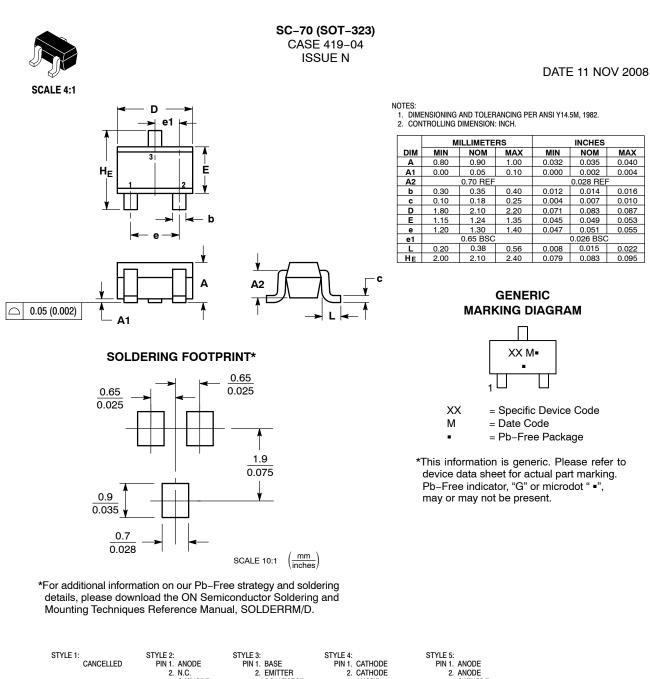



Figure 6. Capacitance

	3. CATHODE	3. COLLECTOR	3. ANODE	3. CATHODE	
Style 6:	STYLE 7:	STYLE 8:	STYLE 9:	Style 10:	STYLE 11:
Pin 1. Emitter	PIN 1. BASE	PIN 1. GATE	Pin 1. Anode	Pin 1. Cathode	PIN 1. CATHODE
2. Base	2. EMITTER	2. SOURCE	2. Cathode	2. Anode	2. CATHODE
3. Collector	3. COLLECTOR	3. DRAIN	3. Cathode-Anode	3. Anode-Cathode	3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative