PNP Epitaxial Silicon Transistor

BSR16

PNP General Purpose Amplifier

- This Device Designed for Use as General Purpose Amplifier and Switches Requiring Collector Currents to 500 mA
- Sourced from Process 63
- See BCW68G for Characteristics

ABSOLUTE MAXIMUM RATINGS

(T_A = 25°C, unless otherwise specified.)

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	-60	V
V _{CBO}	Collector-Base Voltage	-60	V
V _{EBO}	Emitter-Base Voltage	-5.0	V
I _C	I _C Collector Current – Continuous		mA
T _J , T _{ST}	Operating and Storage Junction Temperature Range	−55 ~ +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

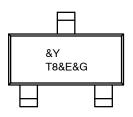
- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

THERMAL CHARACTERISTICS

(T_A = 25°C, unless otherwise specified)

Symbol	Parameter	Max.	Unit
P _D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

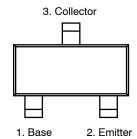
3. Device mounted on FR–4 PCB 40 mm \times 40 mm \times 1.5 mm.


ON Semiconductor®

www.onsemi.com

SOT-23 CASE 318BM

MARKING DIAGRAM


&Y ON Semiconductor Logo

T8 Specific Device Code

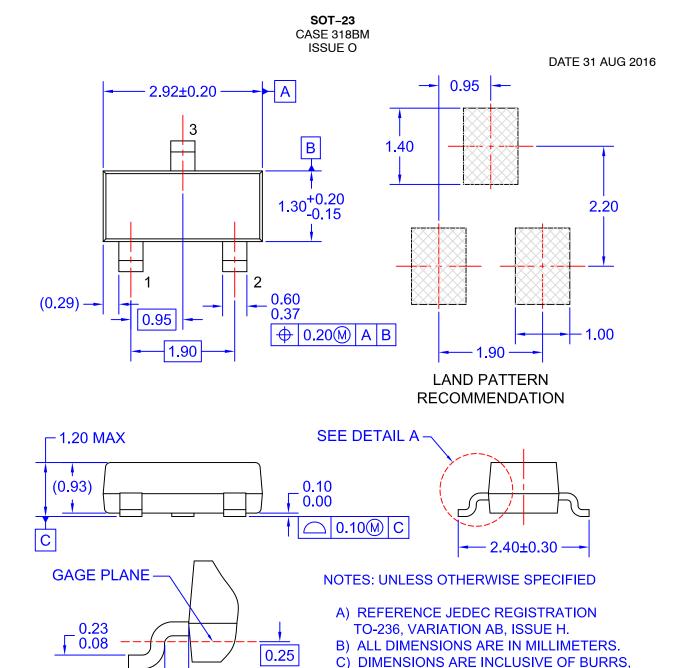
&E Designates Space

&G Date Code (Week)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
BSR16	SOT-23 (Pb-Free)	3,000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

BSR16

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C, \ unless \ otherwise \ specified)$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS	•				-
BV _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -10$ mA, $I_{\rm B} = 0$	-60			V
BV _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = -100 \mu A, I_E = 0$	-60			V
BV _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = -10 \mu A, I_C = 0$	-5.0			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -50 V V _{CB} = -50 V, T _A = 150°C			-10 -10	nA μA
I _{CEX}	Collector Cut-off Current	$V_{CE} = -30 \text{ V}, V_{EB} = -0.5 \text{ V}$			-50	nA
I _{BEX}	Reverse Base Current	$V_{CE} = -30 \text{ V}, V_{EB} = -3.0 \text{ V}$			-50	nA
ON CHARAC	CTERISTICS					
h _{FE}	DC Current Gain	$\begin{split} I_C &= -0.1 \text{ mA, } V_{CE} = -10 \text{ V} \\ I_C &= -1.0 \text{ mA, } V_{CE} = -10 \text{ V} \\ I_C &= -10 \text{ mA, } V_{CE} = -10 \text{ V} \\ I_C &= -150 \text{ mA, } V_{CE} = -10 \text{ V} \\ I_C &= -500 \text{ mA, } V_{CE} = -10 \text{ V} \end{split}$	75 100 100 100 50	300		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = -150 \text{ mA}, I_B = -15 \text{ mA}$ $I_C = -500 \text{ mA}, I_B = -50 \text{ mA}$			-0.4 -1.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	$I_C = -150 \text{ mA}, I_B = -15 \text{ mA}$ $I_C = -500 \text{ mA}, I_B = -50 \text{ mA}$			-1.3 -2.6	V
SMALL SIGN	NAL CHARACTERISTICS					
f _T	Current Gain Bandwidth Product	$I_C = -50$ mA, $V_{CE} = -20$ V, $f = 100$ MHz, $T_A = 25$ °C	200			MHz
C _{cb}	Output Capacitance	V _{CB} = -10 V, I _E = 0, f = 1.0 MHz			8.0	pF
C _{eb}	Emitter-Base Capacitance	$V_{CB} = -2.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$			30	pF
SWITCHING	CHARACTERISTICS					
t _{on}	Turn-On Time	$V_{CC} = -30 \text{ V}, I_{C} = -150 \text{ mA},$			45	ns
t _d	Delay Time	I _{B1} = -15 mA			10	ns
t _r	Rise Time				40	ns
t _{off}	Turn-Off Time	$V_{CC} = -6 \text{ V}, I_{C} = -150 \text{ mA},$			100	ns
t _s	Storage Time	$I_{B1} = I_{B2} = -15 \text{ mA}$			80	ns
t _f	Fall Time				30	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DETAIL A
SCALE: 2X

(0.55)

DOCUMENT NUMBER:	98AON13784G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23		PAGE 1 OF 1

SEATING

PLANE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

0.20 MIN

MOLD FLASH AND TIE BAR EXTRUSIONS.

D) DIMENSIONING AND TOLERANCING PER

ASME Y14.5M - 2009.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative