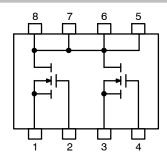
EMH2407 General-Purpose Switching Device Applications

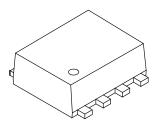
Features

- Low ON-Resistance
- Best Suited for LiB Charging and Discharging Switch
- Common-Drain Type
- 2.5 V Drive
- Protection Diode In

ABSOLUTE MAXIMUM RATINGS at Ta = 25°C

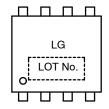

Symbol	Parameter	Conditions	Ratings	Unit
V _{DSS}	Drain to Source Voltage		20	V
V _{GSS}	Gate to Source Voltage		±12	V
I _D	Drain Current (DC)		6	Α
I _{DP}	Drain Current (Pulse)	PW ≤ 10 μs, duty cycles ≤ 1%	40	Α
P _D	Allowable Power Dissipation	When mounted on ceramic substrate (900 mm ² × 0.8 mm) 1 unit	1.3	W
P _T	Total Dissipation	When mounted on ceramic substrate (900 mm ² × 0.8 mm)	1.4	W
T _{CH}	Channel Temperature		150	°C
T _{STG}	Storage Temperature		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com



ELECTRICAL CONNECTION

EMH8 CASE 419AT

MARKING DIAGRAM

LG = Specific Device Code XX = Lot Number

ORDERING INFORMATION

Device	Package	Memo	Shipping
EMH2407-TL-H	EMH8	Pb-Free/ Halogen Free	3000 Units/ Reel

ELECTRICAL CHARACTERISTICS at Ta = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±8 V, V _{DS} = 0 V			±10	μА
V _{GS} (off)	Cutoff Voltage	V _{DS} = 10 V, I _D = 1 mA	0.5		1.3	V
yfs	Forward Transfer Admittance	V _{DS} = 10 V, I _D = 3 A	3	5		S
R _{DS} (on)1	Static Drain to Source On–State Resistance	I _D = 3 A, V _{GS} = 4.5 V	13	19	25	mΩ
R _{DS} (on)2		I _D = 3 A, V _{GS} = 4 V	14	20	26	mΩ
R _{DS} (on)3		I _D = 1.5 A, V _{GS} = 2.5 V	16	28	39	mΩ
C _{iss}	Input Capacitance	V _{DS} = 10 V, f = 1 MHz		580		pF
C _{oss}	Output Capacitance			95		pF
C _{rss}	Reverse Transfer Capacitance			75		pF
t _d (on)	Turn-ON Delay Time	See specified Test Circuit.		310		ns
t _r	Rise Time			1020		ns
t _d (off)	Turn-OFF Delay Time			3000		ns
t _f	Fall Time			2250		ns
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 6 \text{ A}$		6.3		nC
Qgs	Gate to Source Charge			0.83		nC
Qgd	Gate to Drain "Miller" Charge			1.9		nC
V _{SD}	Diode Forward Voltage	I _S = 6 A, V _{GS} = 0 V		0.78		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

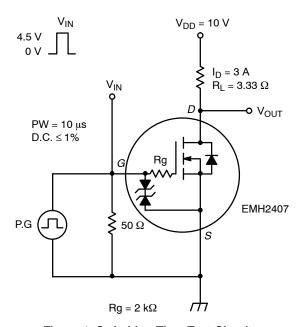
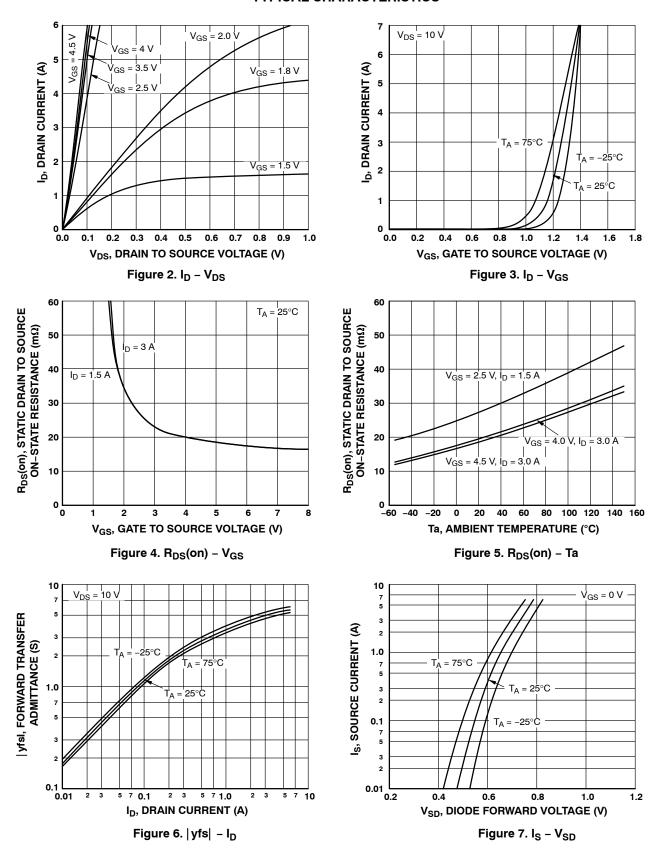



Figure 1. Switching Time Test Circuit

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

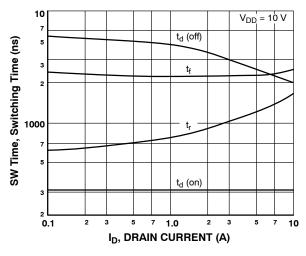


Figure 8. SW Time - ID

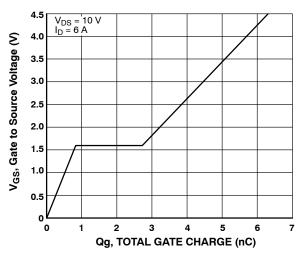
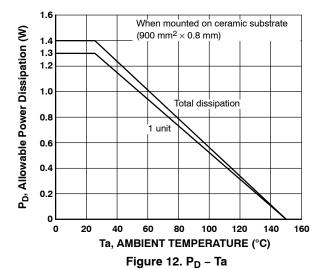



Figure 10. V_{GS} - Qg

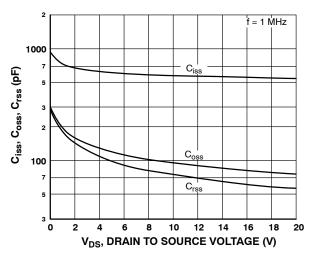
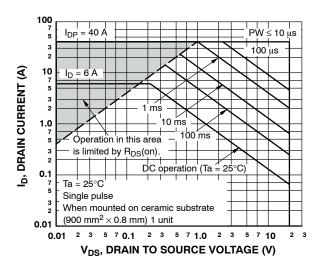
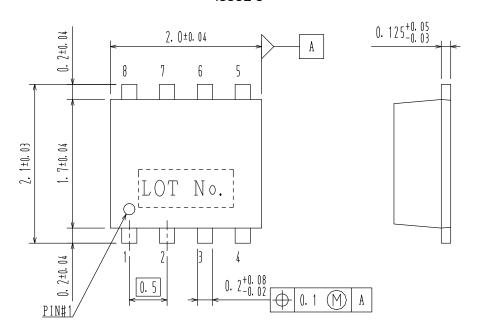
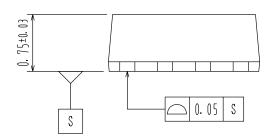
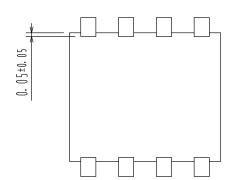


Figure 9. C_{iss} , C_{oss} , C_{rss} – V_{DS}


Figure 11. ASO

PACKAGE DIMENSIONS

SOT-383FL / EMH8 CASE 419AT ISSUE O

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative