5 V ECL Triple 2:1 Multiplexer

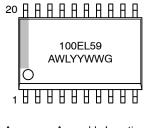
Description

The MC100EL59 is a triple 2:1 multiplexer with differential outputs. The output data of the multiplexers can be controlled individually via the select inputs or as a group via the common select input. The flexible selection scheme makes the device useful for both data path and random logic applications.

The 100 Series Contains Temperature Compensation.

Features

- Individual or Common Select Controls
- 500 ps Typical Propagation Delays
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range:
 V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Internal Input Pulldown Resistors
- ESD Protection:
 - ◆ > 2 kV Human Body Model
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note <u>AND8003/D</u>)
- Flammability Rating: UL 94 V-0 @ 1.125 in, Oxygen Index: 28 to 34
- Transistor Count = 182 Devices
- This Device is Pb-Free, Halogen Free and is RoHS Compliant


ON Semiconductor®

www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

MARKING DIAGRAM*

A	= Assembly Location
WL	= Wafer Lot
YY	= Year
WW	= Work Week

G = Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping
MC100EL59DWG	SOIC–20 WB (Pb-Free)	38 Units/Tube

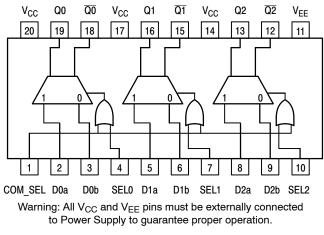


Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D0a-D2a	ECL Input Data a*
D0b-D2b	ECL Input Data b*
SEL0-SEL2	ECL Individual Select Input*
COM_SEL	ECL Common Select Input*
Q0-Q2; <u>Q0</u> - <u>Q2</u>	ECL Differential Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

*Pins will default LOW when left open.

Table 2. TRUTH TABLE

SEL*	DATA
Н	а
L	b

*Pins will default LOW when left open.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		–8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage			6 to 0 –6 to 0	V V
I _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	90 60	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		130	156		130	156		130	156	mA
I _{EE}	Power Supply Current		27	32		27	32		27	32	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
VIH	Input HIGH Voltage	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage	3190		3525	3190		3525	3190		3525	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 4. PECL DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

Table 5. NECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 1))

		-40°C		25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		27	32		27	32		27	32	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage	-1810		-1475	-1810		-1475	-1810		-1475	mV
Ι _{ΙΗ}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.

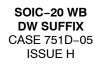
2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

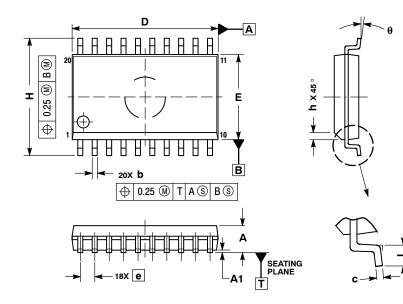
Table 6. AC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			-40°C			25°C			85°C			
Symbol	Characteris	stic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay CC	DATA to Q/Q SEL to Q/Q DM_SEL to Q/Q	340 340 340		690 690 690	340 340 340		690 690 690	340 340 340		690 690 690	ps
t _{skew}	Output–Output Skew Any D _n , D _m to Q				100			100			100	ps
tJITTER	Cycle-to-Cycle Jitter			TBD			TBD			TBD		ps
t _r t _f	Output Rise/Fall Times C	Q (20%–80%)	200		540	200		540	200		540	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary +0.8 V / -0.5 V.

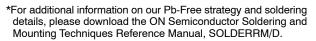



Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS



NOTES:

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAI DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
b	0.35	0.49							
C	0.23	0.32							
D	12.65	12.95							
E	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
θ	0 °	7 °							

RECOMMENDED SOLDERING FOOTPRINT* 20X 20X 1.30 11.00 10 1.27 PITCH DIMENSIONS: MILLIMETERS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all ways, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hand us and expenses, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative