M36W0R6040T3 M36W0R6040B3 M36W0R6050T3 M36W0R6050B3 64-Mbit (4 Mbits ×16, multiple bank, burst) Flash memory and 16-Mbit (1 Mbit ×16) or 32-Mbit (2 Mbits x16) PSRAM MCP **Preliminary Data** #### **Features** - Multichip package - 1 die of 64 Mbits (4 Mbits x16) flash memory - 1 die of 16 Mbits (1 Mbit x16) or 32 Mbits (2 Mbit x 16) pseudo SRAM - Supply voltage - $V_{DDF} = V_{DDP} = V_{DDQ} = 1.7 \text{ V to } 1.95 \text{ V}$ - Low power consumption - Electronic signature - Manufacturer code: 20h - Device codes (top flash configuration), M36W0R6040T3 and M36W0R6050T3: 8810h - Device codes (bottom flash configuration), M36W0R6040B3 and M36W0R6050B3: 8811h - ECOPACK® packages available #### Flash memory - Programming time - 10 µs by word typical for fast factory program - Double/quadruple word program option - Enhanced factory program options - Memory blocks - Multiple bank memory array: 4 Mbit banks - Parameter blocks (top or bottom location) - Synchronous/asynchronous read - Synchronous burst read mode: 66 MHz - Asynchronous/synchronous page read mode - Random access times: 70 ns - Synchronous burst read suspend - Dual operations - Program erase in one bank while read in others - No delay between read and write operations - Block locking - All blocks locked at power-up - Any combination of blocks can be locked - WP for block lock-down - Security - 128-bit user programmable OTP cells - 64-bit unique device number - Common flash interface (CFI) - 100 000 program/erase cycles per block - ECOPACK® package available #### **PSRAM** ■ Access time: 70 ns ■ Low standby current: 110 µA ■ Deep power down current: 10 µA Contents M36W0R60x0x3 ## **Contents** | 1 | Desc | ription | |---|-------|---| | 2 | Signa | al descriptions 9 | | | 2.1 | Address inputs (A0-A21) 9 | | | 2.2 | Data input/output (DQ0-DQ15) | | | 2.3 | Flash Chip Enable (\overline{E}_{F}) | | | 2.4 | Flash Output Enable (\overline{G}_{F}) | | | 2.5 | Flash Write Enable (W̄ _F) 10 | | | 2.6 | Flash Write Protect (WP _F) 10 | | | 2.7 | Flash Reset (RP _F) 10 | | | 2.8 | Flash Latch Enable (\overline{L}_{F}) | | | 2.9 | Flash Clock (K _F) | | | 2.10 | Flash Wait (WAIT _F) 10 | | | 2.11 | PSRAM Chip Enable (E1 _P)11 | | | 2.12 | PSRAM Chip Enable (E2 _P)11 | | | 2.13 | PSRAM Output Enable (\overline{G}_P) | | | 2.14 | PSRAM Write Enable (W _P)11 | | | 2.15 | PSRAM Upper Byte Enable (UB _P) | | | 2.16 | PSRAM Lower Byte Enable (LB _P) 11 | | | 2.17 | V _{DDF} supply voltage | | | 2.18 | V _{DDP} supply voltage | | | 2.19 | V _{DDQ} supply voltage | | | 2.20 | V _{PPF} program supply voltage | | | 2.21 | V _{SS} ground | | 3 | Func | tional description13 | | 4 | Maxi | mum ratings | | 5 | DC a | nd AC parameters | | 6 | Pack | age mechanical | | M36W0R60 | x0x3 Conte | nts | |----------|------------------|-----| | 7 | Part numbering | 20 | | 8 | Revision history | 21 | List of tables M36W0R60x0x3 ## List of tables | Table 1. | Signal names | 7 | |----------|--|----| | Table 2. | Main operating modes | | | Table 3. | Absolute maximum ratings | | | Table 4. | Operating and AC measurement conditions | | | Table 5. | Device capacitance | 17 | | Table 6. | Stacked TFBGA88 8 × 10 mm - 8 × 10 ball array, 0.8 mm pitch, package | | | | mechanical data | 19 | | Table 7. | Ordering information scheme | 20 | | Table 8. | Document revision history | 21 | List of figures M36W0R60x0x3 # **List of figures** | Figure 1. | Logic diagram | . 6 | |-----------|---|-----| | Figure 2. | TFBGA connections (top view through package) | 8 | | Figure 3. | Functional block diagram | 13 | | Figure 4. | AC measurement I/O waveform | 16 | | Figure 5. | AC measurement load circuit | 17 | | Figure 6. | Stacked TFBGA88 8 \times 10 mm - 8 \times 10 active ball array, 0.8 mm pitch, package outline | 18 | 5/22 Description M36W0R60x0x3 ## 1 Description The M36W0R6040x3 and M36W0R6050x3 combine two memory devices in a multichip package: - a 64-Mbit, multiple bank flash memories, the M58WR064KT/B. - a 16- or 32-Mbit pseudo SRAM, the M69AR024B or M69KB048B, respectively. Recommended operating conditions do not allow more than one memory to be active at the same time. The purpose of this document is to describe how the two memory components operate with respect to each other. It must be read in conjunction with the datasheets of the M58WR064KT/B and M69AR024B or M69KB048B, respectively, which fully detail all the specifications required to operate the flash memory and PSRAM components. The memory is offered in a stacked TFBGA88 (8 \times 10 mm, 8 \times 10 ball array, 0.8 mm pitch) package, and is supplied with all the bits erased (set to '1'). Figure 1. Logic diagram M36W0R60x0x3 Description Table 1. Signal names⁽¹⁾ (2) | Name | Function | | | | | | |------------------------|---|--|--|--|--|--| | A0-A19 | Common address inputs | | | | | | | DQ0-DQ15 | Common data input/output | | | | | | | V_{DDF} | ash Memory power supply | | | | | | | V_{DDQ} | Common flash and PSRAM power supply for I/O buffers | | | | | | | V _{PPF} | Common flash optional supply voltage for fast program and erase | | | | | | | V _{SS} | Ground | | | | | | | V _{DDP} | PSRAM power supply | | | | | | | NC | Not connected internally | | | | | | | DU | Do not use as internally connected | | | | | | | Flash memory con | trol functions | | | | | | | A21-A20 | Address inputs for the flash memory only | | | | | | | L _F | Latch Enable input | | | | | | | Ē _F | Chip Enable input | | | | | | | G _F | Output Enable input | | | | | | | \overline{W}_F | Write Enable input | | | | | | | RP _F | Reset input | | | | | | | WP _F | Write Protect input | | | | | | | K _F | Burst Clock | | | | | | | WAIT _F | Wait Data in burst mode | | | | | | | PSRAM control fu | nctions | | | | | | | E1 _P | Chip Enable input | | | | | | | G _P | Output Enable input | | | | | | | \overline{W}_{P} | Write Enable input | | | | | | | E2 _P | Power-down input | | | | | | | ŪB _P | Upper Byte Enable input | | | | | | | <u>IB</u> _P | Lower Byte Enable input | | | | | | A16-A19 (for a 16-Mbit PSRAM) or A16-A20 (for a 32-Mbit PSRAM) are common to the flash memory and the PSRAM. ^{2.} A20-A21 (if the MCP contains a 16-Mbit PSRAM) or A21 (if the MCP contains a 32-Mbit PSRAM) are address input(s) for the flash memory component only. Description M36W0R60x0x3 Figure 2. TFBGA connections (top view through package) | gure 2. | IFBGA | | - (.or | | . о а д р | | | | |---------|----------------------|---------------------------------|--------------------|---|---------------------------------|---|--------------------|---------------------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | A | (DU) | (DU) | | | | | (DU) | (DU) | | В | (A4 | (A18) | (A19) | (V _{SS}) | (V _{DDF}) | (NC) | (A21) | (A11) | | С | (A5) | $(\overline{\mathbb{B}}_{P})$ | (NC) | (V _{SS}) | (NC) | $\left(\begin{array}{c} K_{F} \end{array}\right)$ | (NC) | (A12) | | D | (A3) | (A17) | (NC) | (V _{PPF}) | (\overline{W}_{P}) | $\left(\overline{E}_{P}\right)$ | (A9) | (A13) | | E | (A2) | (A7) | (NC) | (\overline{WP}_F) | $\left(\overline{L}_{F}\right)$ | (A20) | (A10) | (A15) | | F | (A1) | (A6 | (UB _P) | $\left(\overline{\overline{RP}_F}\right)$ | (\overline{W}_F) | (A8) | (A14) | (A16) | | G | (A0) | DQ8 | DQ2 | (DQ10) | DQ5 | (DQ13) | WAIT _F | (NC) | | н | (\overline{G}_{P}) | (DQ0) | (DQ1) | DQ3 | (DQ12) | (DQ14) | (DQ7) | (NC) | | J | (NC) | $\left(\overline{G}_{F}\right)$ | DQ9 | (DQ11) | DQ4 | (DQ6) | (DQ15) | (V _{DDQ}) | | к | | (NC) | (NC) | (NC) | V _{DDP} | (NC) | V _{DDQ} , | (E2p) | | L | (V _{SS}) | (V _{SS}) | V _{DDQ} , | (V _{DDF}) | (V _{SS}) | (V _{SS}) | (V _{SS}) | (V _{SS}) | | М | DU | (DU) | | | | | (DU) | (DU) | M36W0R60x0x3 Signal descriptions ## 2 Signal descriptions See Figure 1: Logic diagram and Table 1: Signal names for a brief overview of the signals connected to this device. ## 2.1 Address inputs (A0-A21) Addresses A0-A21 are common inputs for the flash Memory and PSRAM components. The address inputs select the cells in the memory array to access during bus read operations. During bus write operations they control the commands sent to the command interface of the flash memory program/erase controller, and they select the cells to access in the PSRAM. The flash memory is accessed through the Chip Enable signal (\overline{E}_F) and through the Write Enable (\overline{W}_F) signal, while the PSRAM is accessed through two Chip Enable signals $(\overline{E1}_P)$ and E2_P) and the Write Enable signal (\overline{W}_P) . Addresses A20-A21 (for the M36W0R6040x3) or A21 (for the M36W0R6050x3) are inputs for the flash memory component only. The flash memory is accessed through the Chip Enable signals ($\overline{\mathbb{E}}_{\text{F}}$) and through the Write Enable ($\overline{\mathbb{W}}_{\text{F}}$) signal. ## 2.2 Data input/output (DQ0-DQ15) For the flash memory, the data I/O outputs the data stored at the selected address during a bus read operation or inputs a command or the data to be programmed during a write bus operation. For the PSRAM, the upper byte data inputs/outputs carry the data to or from the upper part of the selected address during a write or read operation, when Upper Byte Enable ($\overline{\text{UB}}_{P}$) is driven Low. Likewise, the lower byte data inputs/outputs carry the data to or from the lower part of the selected address during a write or read operation, when Lower Byte Enable (\overline{LB}_P) is driven Low. ## 2.3 Flash Chip Enable (\overline{E}_F) The Chip Enable inputs activate the memory control logics, input buffers, decoders and sense amplifiers. When Chip Enable is Low, V_{IL} , and Reset is High, V_{IH} , the device is in active mode. When Chip Enable is at V_{IH} the flash memory is deselected, the outputs are high impedance and the power consumption is reduced to the standby level. ## 2.4 Flash Output Enable (\overline{G}_F) The Output Enable pins control data outputs during flash memory bus read operations. Signal descriptions M36W0R60x0x3 ## 2.5 Flash Write Enable (\overline{W}_F) The Write Enable controls the bus write operation of the flash memories' command interface. The data and address inputs are latched on the rising edge of Chip Enable or Write Enable, whichever occurs first. ## 2.6 Flash Write Protect (\overline{WP}_F) Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is Low, V_{IL} , lock-down is enabled and the protection status of the locked-down blocks cannot be changed. When Write Protect is at High, V_{IH} , lock-down is disabled and the locked-down blocks can be locked or unlocked. (Refer to the lock status table in the M58WR064KT/B datasheet). ## 2.7 Flash Reset (\overline{RP}_F) The Reset input provides a hardware reset of the memory. When Reset is at V_{IL} , the memory is in reset mode: the outputs are high impedance and the current consumption is reduced to the Reset supply current I_{DD2} . Refer to the M58WR064KT/B datasheet, for the value of I_{DD2} . After Reset all blocks are in the locked state and the Configuration Register is reset. When Reset is at VIH, the device is in normal operation. Upon exiting reset mode the device enters asynchronous read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid data outputs. The Reset pin can be interfaced with 3 V logic without any additional circuitry. It can be tied to VRPH (refer to the M58WR064KT/B datasheet). ## 2.8 Flash Latch Enable (\overline{L}_F) Latch Enable latches the address bits on its rising edge. The address latch is transparent when Latch Enable is Low, V_{IL} , and it is inhibited when Latch Enable is High, V_{IH} . Latch Enable can be kept Low (also at board level) when the Latch Enable function is not required or supported. ## 2.9 Flash Clock (K_F) The Clock input synchronizes the flash memory to the microcontroller during synchronous read operations; the address is latched on a Clock edge (rising or falling, according to the configuration settings) when Latch Enable is at V_{IL} . Clock is 'don't care' during asynchronous read and in write operations. ## 2.10 Flash Wait (WAIT_F) WAIT is a flash output signal used during synchronous read to indicate whether the data on the output bus are valid. This output is high impedance when flash Chip Enable is at V_{IH} or flash Reset is at V_{IL} . It can be configured to be active during the wait cycle or one clock cycle in advance. The WAIT_F signal is not gated by Output Enable. M36W0R60x0x3 Signal descriptions ## 2.11 PSRAM Chip Enable ($\overline{E1}_{P}$) When asserted (Low), the Chip Enable, $\overline{E1}_{P_i}$ activates the memory state machine, address buffers and decoders, allowing read and write operations to be performed. When deasserted (High), all other pins are ignored, and the device is put, automatically, in low-power standby mode. ## 2.12 PSRAM Chip Enable (E2_P) The Chip Enable, $E2_{\rm P}$ puts the device in deep power-down mode when it is driven Low. This is the lowest power mode. ## 2.13 PSRAM Output Enable (\overline{G}_P) The Output Enable, \overline{G}_{P} provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the common I/O data bus. ## 2.14 PSRAM Write Enable (\overline{W}_P) The Write Enable, \overline{W}_{P} controls the bus write operation of the memory. ## 2.15 PSRAM Upper Byte Enable (UB_P) The Upper Byte Enable, $\overline{\text{UB}}_{P}$ gates the data on the upper byte data inputs/outputs (DQ8-DQ15) to or from the upper part of the selected address during a write or read operation. ## 2.16 PSRAM Lower Byte Enable (\overline{LB}_P) The Lower Byte Enable, \overline{LB}_{P} gates the data on the lower byte data inputs/outputs (DQ0-DQ7) to or from the lower part of the selected address during a write or read operation. ## 2.17 V_{DDF} supply voltage V_{DDF} provides the power supply to the internal core of the flash memory component. It is the main power supplies for all flash memory operations (read, program, and erase). ## 2.18 V_{DDP} supply voltage The V_{DDP} supply voltage supplies the power for all operations (read or write) and for driving the refresh logic, even when the device is not being accessed. **√** numonyx 11/22 Signal descriptions M36W0R60x0x3 ## 2.19 V_{DDQ} supply voltage V_{DDQ} provides the power supply for the flash memory and PSRAM I/O pins. This allows all outputs to be powered independently of the flash memory and PSRAM core power supplies: V_{DDE} and V_{DDB} respectively. ### 2.20 V_{PPF} program supply voltage V_{PPF} is both a flash memory control input and a flash memory power supply pin. The two functions are selected by the voltage range applied to the pin. If V_{PPF} is kept in a low voltage range (0 V to V_{DDQ}) V_{PPF} is seen as a control input. In this case a voltage lower than V_{PPLKF} provides absolute protection against program or erase, while $V_{PPF} > V_{PP1F}$ enables these functions (see the M58WR064KT/B datasheet for the relevant values). V_{PPF} is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase operations continue. If V_{PPF} is in the range of V_{PPHF} it acts as a power supply pin. In this condition V_{PPF} must be stable until the program/erase algorithm is completed. ## 2.21 V_{SS} ground V_{SS} is the common ground reference for all voltage measurements in the flash (core and I/O buffers) and PSRAM chips. Note: Each flash memory device in a system should have its supply voltage (V_{DDF}) and the program supply voltage V_{PPF} decoupled with a 0.1 μ F ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). See Figure 5: AC measurement load circuit. The PCB track widths should be sufficient to carry the required V_{PPF} program and erase currents. #### 3 **Functional description** The flash memory and PSRAM components have separate power supplies but share the same grounds. They are distinguished by three Chip Enable inputs: \overline{E}_F for the flash memory and $\overline{E1}_P$ and $E2_P$ for the PSRAM. Recommended operating conditions do not allow more than one device to be active at a time. The most common example is simultaneous read operations on the flash memory and the PSRAM which would result in a data bus contention. Therefore it is recommended to put the other devices in the high impedance state when reading the selected device. - Address inputs corresponding to the M36W0R6040T3 and M36W0R6040B3 devices. - 2. Address inputs corresponding to the M36W0R6050T3 and M36W0R6050B3 devices. Table 2. Main operating modes⁽¹⁾ | Operation | Ē _F | \overline{G}_{P} | \overline{W}_{P} | \overline{L}_{F} | \overline{RP}_F | WAIT _F ⁽²⁾ | E1 _P | E2 _P | \overline{G}_{P} | \overline{W}_{P} | \overline{UB}_P | \overline{LB}_P | DQ15-DQ0 | |-----------------------|-----------------------------|--------------------|--------------------|---------------------|-------------------|----------------------------------|--|-----------------|--------------------|--------------------|-------------------|--|----------------| | Flash read | V_{IL} | V_{IL} | V_{IH} | V _{IL} (3) | V_{IH} | | | | | | | | Flash data out | | Flash write | V _{IL} | V _{IH} | V _{IL} | V _{IL} (3) | V _{IH} | | F | PSRAI | M mus | st be c | lisable | d | Flash data in | | Flash address latch | V _{IL} | Х | V _{IH} | V _{IL} | V _{IH} | | PSRAM must be disabled Flash data out or Hi-Z ⁽⁴⁾ | | | | | Flash data out or
Hi-Z ⁽⁴⁾ | | | Flash output disable | V _{IL} | V _{IH} | V _{IH} | Х | V _{IH} | | | | | | | | Flash Hi-Z | | Flash standby | V_{IH} | Х | Χ | Х | V_{IH} | Hi-Z | An | y PSF | RAM n | node i | s allow | ed | Flash Hi-Z | | Flash reset | Х | Х | Χ | Х | V_{IL} | Hi-Z | | | | | | | Flash Hi-Z | | PSRAM read | | Ilooh | mom | ory muo | t bo di | ooblod | V _{IL} | V_{IH} | V _{IL} | V _{IH} | V_{IL} | V_{IL} | PSRAM data out | | PSRAM write | ' | TIASIT | шетт | ory mus | t be ui | Sabieu | V _{IL} | V _{IH} | V _{IH} | V_{IL} | V _{IL} | V _{IL} | PSRAM data in | | Output disable | | | | | | | V _{IL} | V_{IH} | V _{IH} | V _{IH} | Х | Χ | PSRAM Hi-Z | | PSRAM standby | Any flash mode is allowed. | | | | | ved. | V_{IH} | V_{IH} | Χ | Х | Х | Χ | PSRAM Hi-Z | | PSRAM deep power-down | Trily hash mode is allowed. | | | | | | Х | V _{IL} | Х | Х | Х | Х | PSRAM Hi-Z | ^{1.} X = 'don't care'. ^{2.} WAIT signal polarity is configured using the Set Configuration Register command. Refer to M58WR064KT/B datasheet for details. ^{3.} \overline{L}_{F} can be tied to V_{IH} if the valid address has been previously latched. ^{4.} Depends on \overline{G}_F . M36W0R60x0x3 Maximum ratings ## 4 Maximum ratings Stressing the device above the rating listed in *Table 3: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 3. Absolute maximum ratings | Symbol | Parameter | Va | Unit | | |--------------------|--|-------------|-----------------------|-------| | Symbol | Parameter | Min | Max | Offic | | T _A | Ambient operating temperature | -30 | 85 | °C | | T _{BIAS} | Temperature under bias | -40 | 125 | °C | | T _{STG} | Storage temperature | – 55 | 125 | °C | | V _{IO} | Input or output voltage | -0.5 | V _{DDQ} +0.6 | V | | V_{DDF} | Flash memory core supply voltage | -0.2 | 2.45 | V | | V_{DDQ} | Input/output supply voltage | -0.2 | 2.45 | V | | V_{DDP} | PSRAM supply voltage | -0.2 | 3.3 | V | | V _{PPF} | Flash memory program voltage | -0.2 | 10 | V | | Io | Output short circuit current | | 100 | mA | | t _{VPPFH} | Time for V _{PPF} at V _{PPFH} | | 100 | hours | Numonyx 15/22 ## 5 DC and AC parameters This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables in this section are derived from tests performed under the measurement conditions summarized in *Table 4*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. Operating and AC measurement conditions | Parameter | Flash | memory | PSF | Unit | | |---|-------|-----------------------|-----------------|------|------| | raiametei | Min | Max | Min | Max | Oill | | V _{DDF} supply voltage | 1.7 | 1.95 | _ | - | V | | V _{DDP} supply voltage | _ | _ | 1.7 | 1.95 | V | | V _{DDQ} supply voltage | 1.7 | 1.95 | _ | - | V | | V _{PPF} supply voltage (factory environment) | 8.5 | 9.5 | _ | - | V | | V _{PPF} supply voltage (application environment) | -0.4 | V _{DDQ} +0.4 | _ | - | V | | Ambient operating temperature | -30 | 85 | -30 | 85 | °C | | Load capacitance (C _L) | | 30 | 5 | pF | | | Input rise and fall times | 5 | | | | ns | | Input pulse voltages | 0 to | V_{DDQ} | 0 to ' | V | | | Input and output timing ref. voltages | VD | _{DQ} /2 | V _{DE} | V | | Figure 4. AC measurement I/O waveform V_{DDQ} V_{DDQ} $O.1\mu F$ Figure 5. AC measurement load circuit Table 5. Device capacitance⁽¹⁾ | Symbol | Parameter | Test condition | Min | Max | Unit | |------------------|--------------------|------------------------|-----|-----|------| | C _{IN} | Input capacitance | $V_{IN} = 0 V$ | | 13 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V | | 20 | pF | ^{1.} Sampled only, not 100% tested. Please refer to the M58WR064KT/B and M69AR024B or M69KB048B datasheets for further DC and AC characteristics values and illustrations. Package mechanical M36W0R60x0x3 ## 6 Package mechanical To meet environmental requirements, Numonyx offers the M36W0R6040x3 and M36W0R6050x3 in ECOPACK® packages, which have a lead-free second-level interconnect. In compliance with JEDEC standard JESD97, the category of second-level interconnect is marked on the package and on the inner box label. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK specifications are available at: www.numonyx.com. Figure 6. Stacked TFBGA88 8 \times 10 mm - 8 \times 10 active ball array, 0.8 mm pitch, package outline 1. Drawing is not to scale. M36W0R60x0x3 Package mechanical Table 6. Stacked TFBGA88 8 \times 10 mm - 8 \times 10 ball array, 0.8 mm pitch, package mechanical data | Cymhal | | Millimeters | | Inches | | | | |--------|--------|-------------|--------|--------|--------|--------|--| | Symbol | Тур | Min | Max | Тур | Min | Max | | | Α | | | 1.200 | | | 0.0472 | | | A1 | | 0.200 | | | 0.0079 | | | | A2 | 0.850 | | | 0.0335 | | | | | b | 0.350 | 0.300 | 0.400 | 0.0138 | 0.0118 | 0.0157 | | | D | 8.000 | 7.900 | 8.100 | 0.3150 | 0.3110 | 0.3189 | | | D1 | 5.600 | | | 0.2205 | | | | | ddd | | | 0.100 | | | 0.0039 | | | E | 10.000 | 9.900 | 10.100 | 0.3937 | 0.3898 | 0.3976 | | | E1 | 7.200 | | | 0.2835 | | | | | E2 | 8.800 | | | 0.3465 | | | | | е | 0.800 | - | _ | 0.0315 | _ | - | | | FD | 1.200 | | | 0.0472 | | | | | FE | 1.400 | | | 0.0551 | | | | | FE1 | 0.600 | | | 0.0236 | | | | | SD | 0.400 | | | 0.0157 | | | | | SE | 0.400 | | | 0.0157 | | | | Part numbering M36W0R60x0x3 ## 7 Part numbering Table 7. Ordering information scheme E = ECOPACK® package, standard packing F = ECOPACK® package, tape and reel packing Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics sales office nearest to you. M36W0R60x0x3 Revision history # 8 Revision history Table 8. Document revision history | Date | Version | Revision Details | |-------------|---------|---| | 06-Dec-2007 | 1 | Initial release. | | 11-Dec-2007 | 2 | Typing error in Section 1: Description on page 6. | | 20-Feb-2008 | 3 | Removed 0.18 µm from the RAM product version details of <i>Table 7: Ordering information scheme</i> . | | 31-Mar-2008 | 4 | Changed every instance of M69KB048BE to M69KB048B. Applied Numonyx branding. | Numonyx 21/22 #### Please Read Carefully: INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Numonyx may make changes to specifications and product descriptions at any time, without notice. Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com. Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved. Numonyx