The NA853C is a core version of the high-performance V853 microcontroller that employs the advanced 32-bit RISC engine of NEC’s V850™ family and is suitable for real-time control applications with 38 Dhrystone MIPS of performance. The NA853C is supported by NEC’s 0.35-µm CMOS process technology and enables designers to specify the amount of on-board ROM, RAM, and flash memory. The architecture of the V853 is highly optimized for fast DSP-like operation and very efficient implementation of C programmability.

The NA853 core is fully supported by NEC’s sophisticated OpenCAD® design framework that combines popular third-party design tools with proprietary NEC tools, including advanced floorplanner and clock tree synthesis tools. A wide range of OpenCAD macros is available, including A/D and D/A converters, watchdog timer, I2C™ interface, parallel/serial controllers, and universal serial bus. NEC’s CB-C9 Titanium-Silicide process achieves 1.6 million usable gates with a 3.3V power supply and features a 5V tolerance interface with exceptionally low power dissipation (0.7 µW/MHz/gate).

V853 ™ 32-BIT RISC MICROCONTROLLER CORE

NA853C

Block Diagram
FEATURE DESCRIPTION

CPU
- 38 Dhrystone MIPS at 33 MHz
- Highly integrated microcontroller
 - 32-bit arithmetic logic unit (ALU)
 - Thirty-two general-purpose 32-bit registers
 - 32-bit barrel shifter
 - Single-cycle 16 x 16 -> 32-bit hardware multiplier
 - Powerful RISC instruction set
 - 74 RISC instructions: 16- and 32-bit
 - Two-cycle MAC function for DSP applications
 - Saturated operation instructions (over/underflow detection)
 - Single-cycle 32-bit shift instructions
 - Bit manipulation instructions
 - Load and store instructions with 8-/16-/32-bit data
 - Fast instruction execution: 30 ns at 33 MHz

MEMORY
- User-specifiable single-cycle internal flash memory or ROM
- User-specifiable single-cycle internal RAM

EXTERNAL BUS INTERFACE
- Multiplexed 24-bit address/16-bit data bus
- Multiple bus mastership
- 16-MB linear address space external expansion
- Programmable and external wait functions
- Idle state insertion for slow memory

INTERRUPTS
- 32 software traps
- 32 maskable interrupts plus NMI
- Eight programmable priority levels on all interrupts and traps
- Specifiable rising and/or falling edge detection

PERIPHERALS
- Real-time pulse unit
 - Four-channel 16-bit timer/event counter
 - Sixteen 16-bit capture/compare registers
 - Four 16-bit timers
 - One-channel 16-bit interval timer
- Serial interface
 - UART: two channels
 - Clocked serial interface: two to four channels
 - Dedicated baud rate generator: three channels
- Analog interface
 - Eight-channel A/D converter with 10-bit resolution
 - Two-channel D/A converter with 8-bit resolution
 - Two-channel pulse-width modulator with 8-/9/10-/12-bit resolution

TESTABILITY
- Dedicated test pin for each core pin
- Core isolated from user logic and tested through test bus

OTHER
- Power saving features
 - Halt/stop modes
 - Clock output stop function
 - Fully static operation

© 1997 NEC Electronics Inc. NEC, V850 and V853 are trademarks of NEC Corporation. OpenCAD is a registered trademark of NEC Electronics Inc. PC is a trademark of NV Philips. All other trademarks are the property of their respective owners. Subject to change without notice. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. “Standard” quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL’s willingness to support a given application.