

BIPOLAR DIGITAL INTEGRATED CIRCUIT $\mu PB587G$

1 GHz DIVIDE-BY-2/4/8 3 V, 5.5 mA PRESCALER

The μ PB587G is a divide by 2/4/8 prescaler for portable VHF/UHF TV and radio applications. This IC operates up to 1 GHz with 2.2 to 3.5 V bias supply by utilizing highly efficient ECL process technology. This IC is packaged in 8 pin SOP.

Thus, this IC can contribute to produce a physically small and low voltage PLL synthesizer in conjunction with DTS microcomputer 17K series.

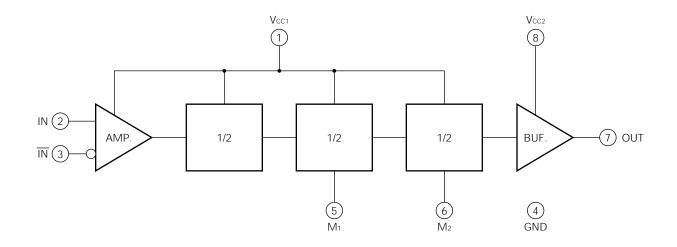
FEATURES

Low power operation : 2.2 to 3.5 V
Low supply current : 5.5 mA (TYP.) at 3 V
Divide by 2/4/8
Wide band operation : 50 to 1000 MHz @ Divide by 8

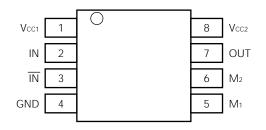
50 to 600 MHz @ Divide by 4
50 to 300 MHz @ Divide by 2

High sensitivity : -18 dBm (MIN.)

ORDERING INFORMATION


PART NUMBER	PACKAGE	SUPPLYING FORM	QUALITY GRADE
μPB587G-E1	8 pin plastic SOP (225 mil)	Embossed tape 12 mm wide. QTY 2.5 k/reel Pin1 is in tape pull-out direction.	Standard
μPB587G-E2	8 pin plastic SOP (225 mil)	Embossed tape 12 mm wide. QTY 2.5 k/reel Pin1 is in tape roll-in direction.	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Caution: Electro-static sensitive devices

NEC

INTERNAL BLOCK DIAGRAM

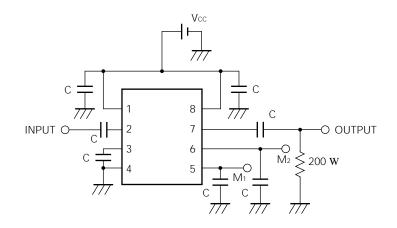
PIN CONFIGURATION (Top View)

PIN DESCRIPTION

PIN No.	SYMBOL		DESCRIPTION				
1	Vcc1	Power Su	Power Supply Pin of Input Amplifier and Divider				
2	IN	Signal Inp	Signal Input Pin				
3	ĪN		Input Bypass Pin should be connected to ground through bypass capacitor (e.g. 1000 pF)				
4	GND	Ground P	Ground Pin				
		Division F	Division Ratio Control				
			M1	M2	Division Ratio		
5	M1		L	L	1/8		
6	M2		L	Н	1/4		
			Н	Н	1/2		
7	OUT	Output Pi	Output Pin				
8	Vcc2	Power Su	Power Supply Pin of Output Buffer				

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	Vcc	-0.5 to +4.0	V	
Input Voltage to M pin		Vı	–0.5 to Vcc + 0.5 V	
Input Level to IN pin		Pin	10 dBm	۱
Power Dissipation	PD	250	mW	
Storage Temperature	Tstg	-65 to +150	°C	


RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	Vcc	2.2	3.0	3.5	V
Operating Temperature	Topt	-20		+75	°C

ELECTRICAL CHARACTERISTICS (Vcc = 2.2 to 3.5 V, T_a = -20 to +75 °C, Zs = 50 Ω , ZL = 200 Ω)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Supply Current	Icc		5.5	7.5	mA	$V_{CC} = 3.0 V, T_{a} = +25 °C$
Output Voltage	Vo	0.1	0.3		VP-P	OUT pin, fin = 500 MHz, Pin = -10 dBm
Input Power	Pin1	-20		0	dBm	IN pin, fin = 100 to 1000 MHz
Input Power	Pin2	-18		0	dBm	IN pin, fin ≥ 50 MHz
Operating Frequency	fin1	100		1000	MHz	IN pin, $P_{in} = -20$ to 0 dBm Divide by 8
Operating Frequency	fin2	50		1000	MHz	IN pin, $P_{in} = -18$ to 0 dBm Divide by 8
Operating Frequency	fin3	100		600	MHz	IN pin, $P_{in} = -20$ to 0 dBm Divide by 4
Operating Frequency	fin4	50		600	MHz	IN pin, $P_{in} = -18$ to 0 dBm Divide by 4
Operating Frequency	fin5	100		300	MHz	IN pin, Pin = -20 to 0 dBm Divide by 2
Operating Frequency	fin6	50		300	MHz	IN pin, $P_{in} = -18$ to 0 dBm Divide by 2
Division ratio control input high	Vін	Vcc		Vcc×1.1	V	M1, M2 pin
Division ratio control input low	VIL	0		Vcc – 0.5	V	M1, M2 pin

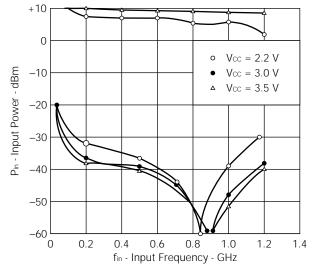
TEST CIRCUIT

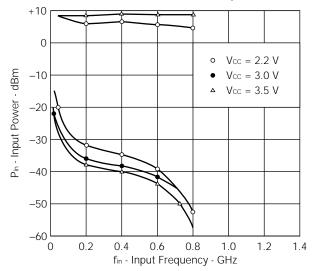


C: 1 000 pF

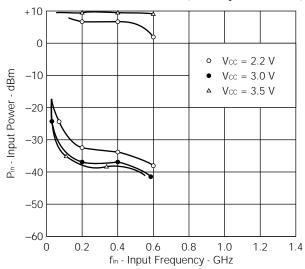
CHARACTERISTICS ON THE APPLICATION CIRCUIT (Vcc = 2.2 to 3.5 V, Ta = -20 to +75 °C)

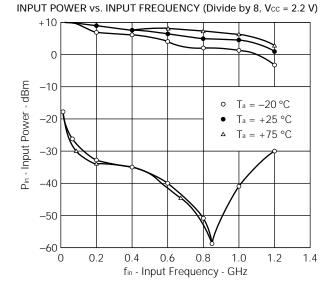
	SYMBOL	REFERENCE VALUE (UNIT: V)					
PARAMETER		CONDITIONS	MIN.	TYP.	MAX.		
Division ratio control input high	Vін	External registor 300 k Ω on	Vcc - 0.2		5.5		
Division ratio control input low	VIL	application circuit example	0		Vcc $ imes$ 0.3		


Application circuit example

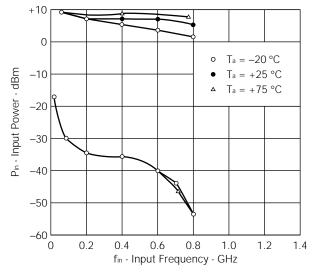

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

TYPICAL CHARACTERISTICS - ON THE TEST CIRCUIT -

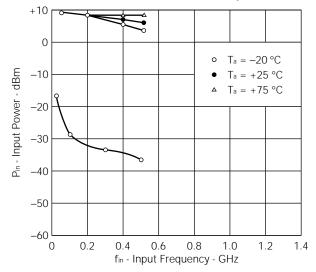

INPUT POWER vs. INPUT FREQUENCY (Divide by 8, Ta = +25 °C)

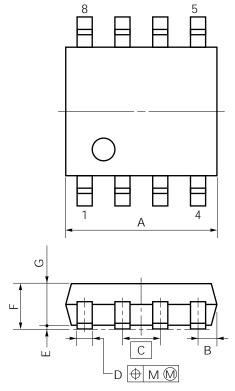


INPUT POWER vs. INPUT FREQUENCY (Divide by 4, Ta = +25 °C)

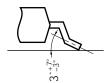


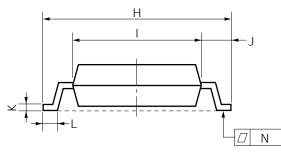
INPUT POWER vs. INPUT FREQUENCY (Divide by 2, Ta = +25 °C)




INPUT POWER vs. INPUT FREQUENCY (Divide by 4, Vcc = 2.2 V)

INPUT POWER vs. INPUT FREQUENCY (Divide by 2, Vcc = 2.2 V)


8 PIN PLASTIC SOP (225 mil)



ΝΟΤΕ

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

detail of lead end

S8GM-50-225B-3

ITEM	MILLIMETERS	INCHES
А	5.37 MAX.	0.212 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	0.016 ^{+0.004} 0.003
E	0.1±0.1	0.004 ± 0.004
F	1.8 MAX.	0.071MAX.
G	1.49	0.059
Н	6.5±0.3	0.256±0.012
1	4.4	0.173
J	1.1	0.043
К	$0.15^{+0.10}_{-0.05}$	0.006 ^{+0.004} 0.002
L	0.6±0.2	0.024+0.008
М	0.12	0.005
Ν	0.10	0.004

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to keep the minimum ground impedance (to prevent undesired operation).
- (3) Keep the wiring length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (e.g. 1 000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Package peak temperature: 235 °C, Hour: within 30 s. (more than 210 °C), Time: 2 times, Limited days: no.*	IR35-00-2
VPS	Package peak temperature: 215 °C, Hour: within 40 s. (more than 200 °C), Time: 2 times, Limited days: no.*	VP15-00-2
Wave soldering	Soldering tub temperature: less than 260 °C, Hour: within 10 s. Time: 1 time, Limited days: no.	WS60-00
Pin part heating	Pin area temperature: less than 300 °C, Hour: within 10 s. Limited days: no.*	

- *: It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH.
- **Note 1.** The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (IEI-1207).

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6