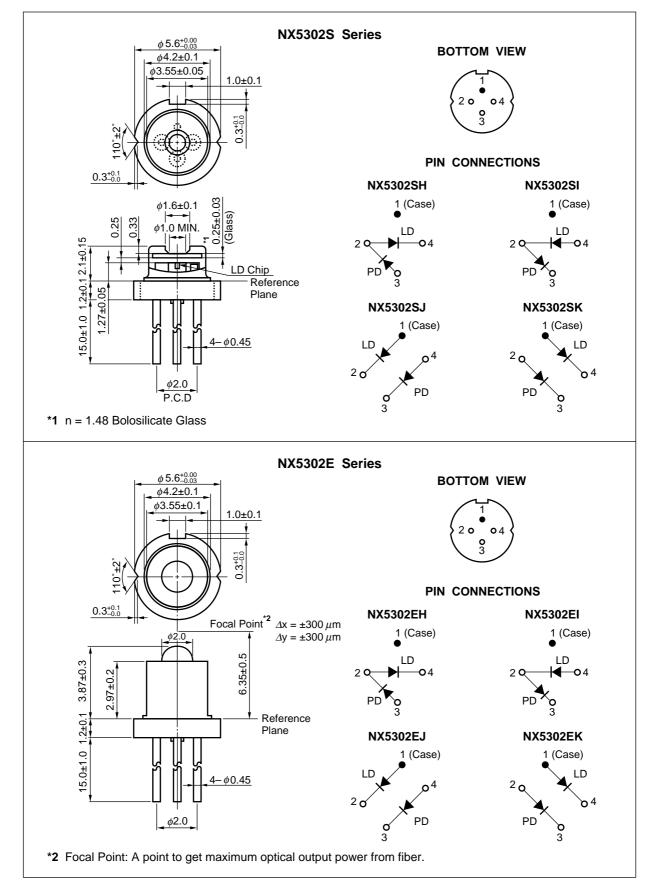
LASER DIODE NX5302 Series

1 310 nm FOR 156 Mb/s, SHORT HAUL 622 Mb/s InGaAsP MQW-FP LASER DIODE

DESCRIPTION

NEC


The NX5302 Series is a 1 310 nm Multiple Quantum Well (MQW) structured Fabry-Perot (FP) laser diodes with InGaAs monitor PIN-PD. These devices are ideal for Synchronous Digital Hierarchy (SDH) system, short haul and long haul STM-1, short haul STM-4, ITU-T recommendations.

FEATURES

- Optical output power
 Low threshold current
 Po = 5.0 mW
 Ith = 10 mA
- High speed tr = 0.15 ns MAX.
 - tf = 0.3 ns MAX.
- Wide operating temperature range $T_c = -40$ to +85°C
- InGaAs monitor PIN-PD
- CAN package ϕ 5.6 mm
- Based on Telcordia reliability

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

★ PACKAGE DIMENSIONS (UNIT: mm)

ORDERING INFORMATION

NX5302S Series

Part Number	Package	Pin Connections
NX5302SH	4-pin CAN with flat glass cap	
NX5302SI		
NX5302SJ		
NX5302SK		

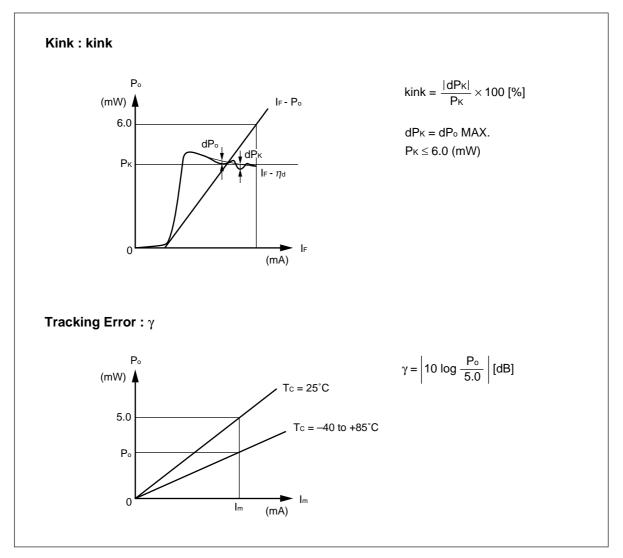
NX5302E Series

Part Number	Package	Pin Connections
NX5302EH	4-pin CAN with spherical lens cap	
NX5302EI		2 0 1 1 1 1 1 1 1 1 1 1
NX5302EJ		
NX5302EK		2 0 4 PD 0 3

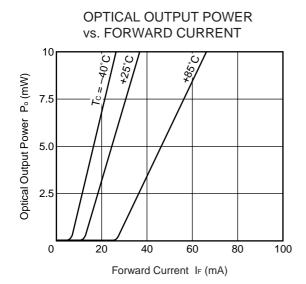
ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Optical Output Power	P∘	10	mW
Forward Current of LD	lf	150	mA
Reverse Voltage of LD	VR	2.0	V
Forward Current of PD	lf	10	mA
Reverse Voltage of PD	VR	20	V
Operating Case Temperature	Tc	-40 to +85	°C
Storage Temperature	Tstg	-40 to +85	°C
Assembly Temperature	T _{asb}	150 (15 Hr)	°C
Lead Soldering Temperature	Tsld	350 (3 sec.)	°C
Relative Humidity (noncondensing)	RH	85	%

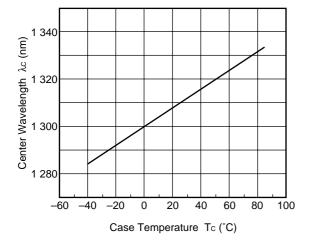
ELECTRO-OPTICAL CHARACTERISTICS (Tc = 25°C, unless otherwise specified)

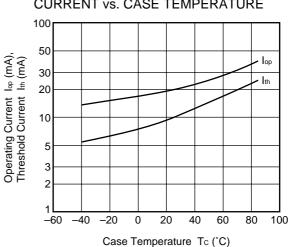

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating Voltage	Vop	P₀ = 5.0 mW	-	1.1	1.3	V
Threshold Current	I th			10	20	mA
		Tc = 85°C	_	25	35	
Threshold Output Power	Pth	Tc = -40 to +85°C, IF = Ith	-	100	200	μW
Differential Efficiency	$\eta_{ ext{d}}$		0.4	0.5	-	W/A
Temperature Dependence of Differential Efficiency	$\Delta\eta$ d	$\Delta \eta_{\rm d} = 10 \log \frac{\eta_{\rm d} \ (@85^{\circ}\text{C})}{\eta_{\rm d} \ (@25^{\circ}\text{C})}$	-3.0	-1.5	-	dB
Center Wavelength	λς	P₀ = 5.0 mW, RMS (−20 dB) Tc = −40 to +85°C	1 263	-	1 360	nm
Temperature Dependence of Center Wavelength	Δλ/ΔΤ	Tc = −40 to +85°C	-	0.4	0.5	nm/°C
Spectral Width	σ	P₀ = 5.0 mW, RMS (−20 dB) Tc = −40 to +85°C	-	1.0	2.5	nm
Vertical Beam Angle ^{*1}	$ heta_{\perp}$	$P_0 = 5.0 \text{ mW}, \text{ FAHM}^{*2}$	-	25	40	deg.
Lateral Beam Angle ^{*1}	θ//	$P_0 = 5.0 \text{ mW}, \text{ FAHM}^{*2}$	-	20	35	deg.
Rise Time	tr	10-90%	-	0.05	0.15	ns
Fall Time	tr	90-10%	-	0.15	0.3	ns
Monitor Current	lm	$V_{R} = 5 V, P_{0} = 5.0 mW$	200	500	800	μA
Monitor Dark Current	lь	V _R = 5 V	-	0.1	10	nA
		$V_{R} = 5 V, T_{C} = -40 \text{ to } +85^{\circ}C$	-	-	500	
Monitor PD Terminal Capacitance	Ct	V _R = 5 V, f = 1 MHz	-	6	20	pF
Kink (Refer to DEFINITIONS)	kink	$P_{\circ} = Up$ to 6.0 mW, $T_{c} = -40$ to +85°C	-20	-	20	%
Tracking Error (Refer to DEFINITIONS)	γ	I_m = const. (@ Po = 5.0 mW, Tc = 25°C) Tc = -40 to +85°C	-1.0	_	1.0	dB

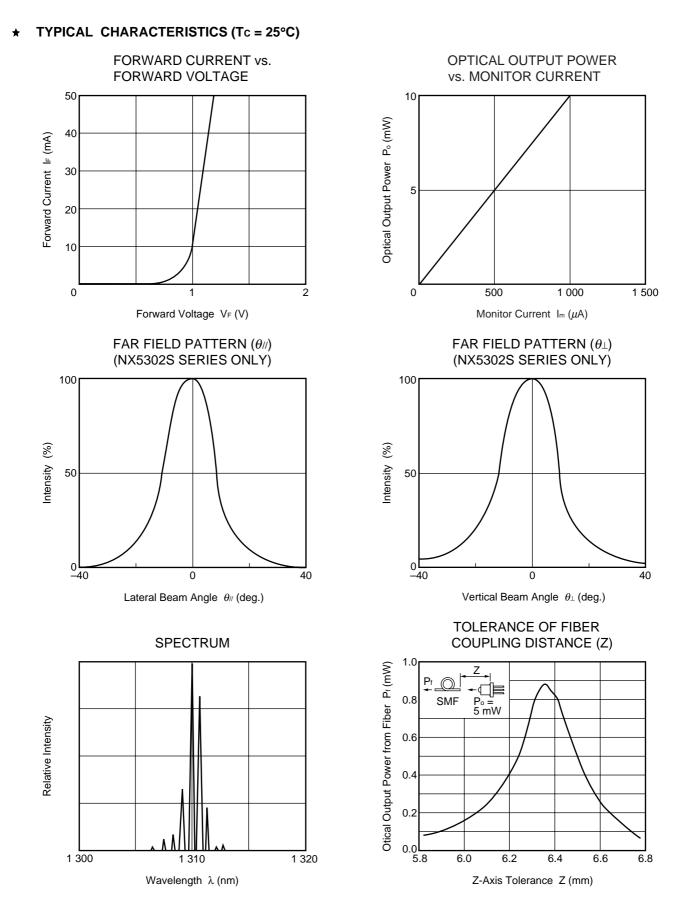
*1 Applicable to only NX5302S Series


*2 FAHM: Full Angle at Half Maximum

 \star


PARAMETER DEFINITIONS


TYPICAL CHARACTERISTICS (Tc = -40 to +85°C)


TEMPERATURE DEPENDENCE OF CENTER WAVELENGTH

Remark The graphs indicate nominal characteristics.

OPERATING CURRENT AND THRESHOLD CURRENT vs. CASE TEMPERATURE

Remark The graphs indicate nominal characteristics.

LD CAN PACKAGES FAMILY FOR OPTICAL FIBER COMMUNICATIONS

	Absolute Max	imum Ratings	Electr	o-Optical	Characte	ristics		
Dert Nershan			@Tc = 25°C		@Tc		Anglingting	Deckere
Part Number	Тс (°С)	T₅tg (°C)	I _{th} (mA)	P₀ (mW)		l m)	Application	Package
			TYP.	TYP.	MIN.	MAX.		
NX5302 Series	-40 to +85	-40 to +85	10	5	1 263	1 360	156 Mb/s: STM-1 (I-1, S-1.1, L-1.1)	CAN
							622 Mb/s: STM-4 (I-4, S-4.1)	
NX6301 Series	-40 to +85	-40 to +85	13	5	1 280	1 335	156 Mb/s: STM-1	CAN
							622 Mb/s: STM-4	
NX6504 Series	-10 to +85	-40 to +85	12	5	1 530	1 570	156 Mb/s: STM-1	CAN
							622 Mb/s: STM-4	

REFERENCE

Document Name	Document No.
Optical semiconducrtor devices for fiberoptic communications Selection Guide	P12480E
Opto-Electronics Devices Pamphlet	P13623E
Opto-Electronics Devices (CD-ROM)	P12944X
NEC semiconductor device reliability/quality control system ^{*1}	C11159E
Quality grades on NEC semiconductor devices ¹	C11531E
SEMICONDUCTOR SELECTION GUIDE –Products and Packages– ¹¹	X13769E

*1 Published by NEC Corporation

- The information in this document is current as of July, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
- "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

SAFETY INFORMATION ON THIS PRODUCT

SEMICONDUCTOR LASER

L

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture

Warning Laser Beam	A laser beam is emitted from this diode during operation.The laser beam, visible or invisible, directly or indirectly, may cause injury to the eye or loss of eyesight.Do not look directly into the laser beam.
	Avoid exposure to the laser beam, any reflected or collimated beam.
Caution GaAs Products	The product contains gallium arsenide, GaAs. GaAs vapor and powder are hazardous to human health if inhaled or ingested.
	Do not destroy or burn the product.
	Do not cut or cleave off any part of the product.
	Do not crush or chemically dissolve the product.
	Do not put the product in the mouth.
	Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

▶Business issue

NEC Compound Semiconductor Devices, Ltd.

5th Sales Group, Sales Division TEL: +81-3-3798-6372 FAX: +81-3-3798-6783 E-mail: salesinfo@csd-nec.com

 NEC Compound Semiconductor Devices Hong Kong Limited

 Hong Kong Head Office
 TEL: +852-3107-7303
 FAX: +852-3107-7309

 Taipei Branch Office
 TEL: +886-2-8712-0478
 FAX: +886-2-2545-3859

 Korea Branch Office
 TEL: +82-2-528-0301
 FAX: +82-2-528-0302

NEC Electron Devices European Operations http://www.nec.de/

TEL: +49-211-6503-101 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/ TEL: +1-408-988-3500 FAX: +1-408-988-0279

► Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/ Sales Engineering Group, Sales Division E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918