

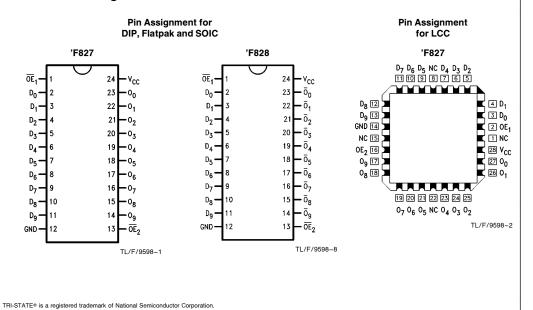
54F/74F827 ◆ 74F828 10-Bit Buffers/Line Drivers

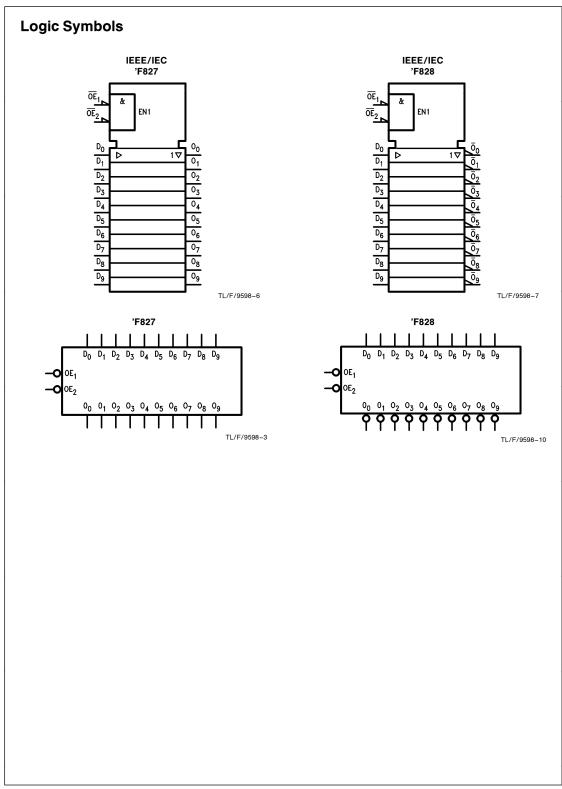
General Description

The 'F827 and 'F828 10-bit bus buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR output enables for maximum control flexibility.

The 'F827 and 'F828 are functionally- and pin-compatible to AMD's Am29827 and Am29828. The 'F828 is an inverting version of the 'F827.

Features


- TRI-STATE® output
- 'F828 is inverting
- Direct replacement for AMD's Am29827 and Am29828


Commercial	Military	Package Number	Package Description
74F827SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F827SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F827SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F827FM (Note 2)	W24C	24-Lead Cerpack
	54F827LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C
74F828SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
74F828SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC

Note 1: Devices also available in 13" reel. Use suffix = SCX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = SDMQB, FMQB and LMQB.

Connection Diagrams

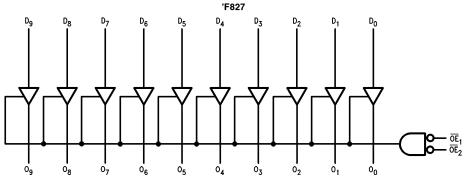
Unit Loading/Fan Out

		54F/74F					
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}				
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input	1.0/1.0	20 μA/ - 0.6 mA				
D_0-D_7	Data Inputs	1.0/1.0	20 μA/ - 0.6 mA				
O ₀ -O ₇	Data Outputs, TRI-STATE	600/106.6 (80)	-12 mA/64 mA (48 mA)				

Functional Description

The 'F827 and 'F828 are line drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers which provide improved PC board density. The devices have TRI-STATE outputs controlled by the Output Enable (OE) pins. The outputs can sink 64 mA (48 mA mil) and source 15 mA. Input clamp diodes limit high-speed termination effects.

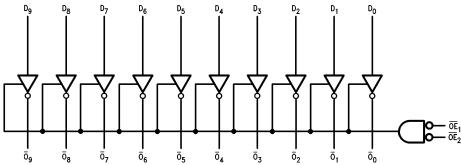
Function Table


Inp	uts	Out	puts	
ŌĒ	Dn	Ó) _n	Function
	υn	'F827 'F828		
L	Н	Н	L	Transparent
L	L	L	Н	Transparent
Н	X	Z	Z	High Z

H = HIGH Voltage level

L = LOW Voltage Level Z = High Impedance

X = Immaterial


Logic Diagrams

TL/F/9598-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

'F828

TL/F/9598-11

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V
Input Voltage (Note 2) -0.5V to +7.0V
Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{ll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{TRI-STATE Output} & -0.5\mbox{V to } +5.5\mbox{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

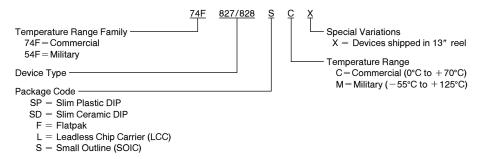
Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

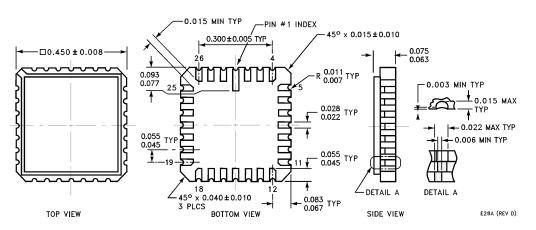
DC Electrical Characteristics

Symbol	Parameter			54F/74F	:	Units	V _{CC}	Conditions	
Symbol	raiaile			Тур	Max	Oilles	•66	Conditions	
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.4 2.0 2.4 2.0 2.7			V	Min	$\begin{split} I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -12 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -15 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.55 0.55	٧	Min	I _{OL} = 48 mA I _{OL} = 64 mA	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
l _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
l _{OZL}	Output Leakage Curr	ent			-50	μΑ	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit (Current	-100		-225	mA	Max	V _{OUT} = 0V	

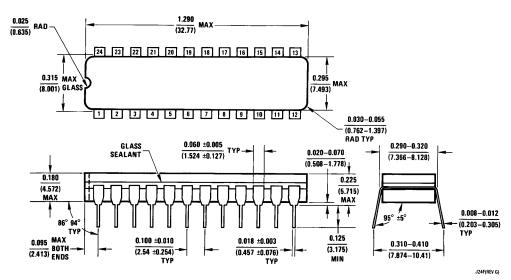
DC Electrical Characteristics (Continued)

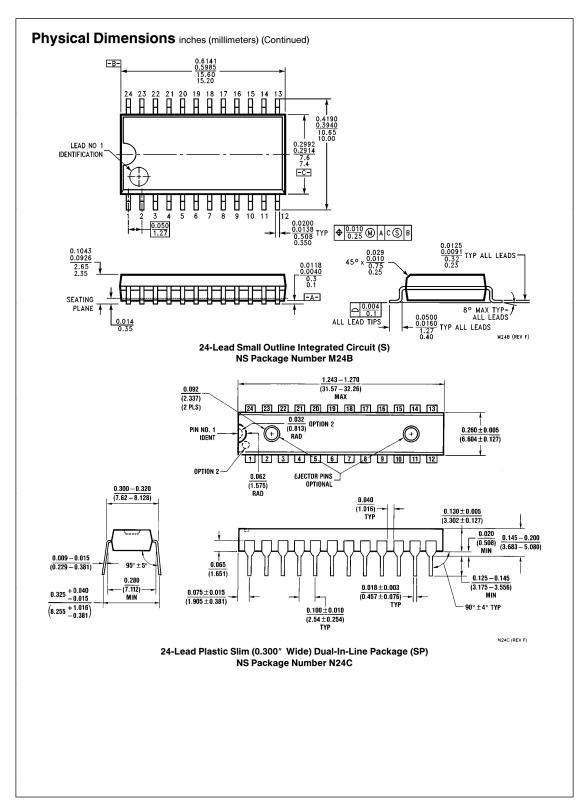

Symbol	Parameter		54F/74F		Units	V _{CC}	Conditions	
	T didilecter	Min	Тур	Max	Omis		Conditions	
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCH}	Power Supply Current ('F827)		30	45	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current ('F827)		60	90	mA	Max	$V_O = LOW$	
I _{CCZ}	Power Supply Current ('F827)		40	60	mA	Max	V _O = HIGH Z	
Icch	Power Supply Current ('F828)		14	20	mA	Max	V _O = HIGH	
ICCL	Power Supply Current ('F828)		56	85	mA	Max	$V_O = LOW$	
Iccz	Power Supply Current ('F828)		35	50	mA	Max	V _O = HIGH Z	

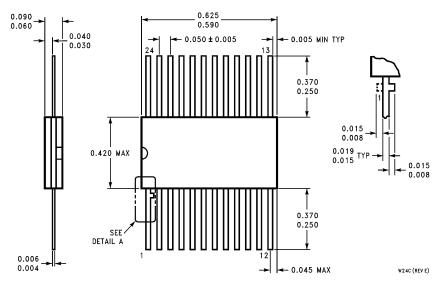
AC Electrical Characteristics


Symbol	Parameter				T _A , V _C	4F _C = Mil 50 pF	74F T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Data to Output ('F827)	1.0 1.5	3.0 3.3	5.5 5.5	1.0 1.5	7.5 7.0	1.0 1.5	6.5 6.0	ns
t _{PLH}	Propagation Delay Data to Output ('F828)	1.0 1.0	3.0 2.0	5.0 4.0			1.0 1.0	5.5 4.0	ns
t _{PZH}	Output Enable Time OE to On	3.0 3.5	5.7 6.8	9.0 11.5	2.5 3.0	10.0 12.5	2.5 3.0	9.5 12.0	ns
t _{PHZ}	Output Disable Time OE to On	1.5 1.0	3.3 3.5	8.0 8.0	1.5 1.0	9.0 9.0	1.5 1.0	8.5 8.5	ns

Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:




28-Lead Ceramic Leadless Chip Carrier (L) NS Package Number E28A

24-Lead (0.300" Wide) Ceramic Dual-In-Line Package (SD) NS Package Number J24F

Physical Dimensions inches (millimeters) (Continued)

24-Lead Ceramic Flatpak (F) NS Package Number W24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181

National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Mellbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

X ** ** ** ** ** ** ** ** ** ** ** ** **	<u>Design</u>	Purchasing	Quality	Company	<u>Jobs</u>
Products > Military/Aero	ospace > Log	<u>ic</u> > <u>FAST</u> > 5	4F827		

54F827 10-Bit Buffer/Line Driver

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The 'F827 and 'F828 10-bit bus buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR output enables for maximum control flexibility.

The 'F827 and 'F828 are functionally- and pin-compatible to AMD's Am29827 and Am29828. The 'F828 is an inverting version of the 'F827.

Features

- TRI-STATE® output
- 'F828 is inverting
- Direct replacement for AMD's Am29827 and Am29828

Datasheet

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
54F827 10-Bit Buffers/Line Drivers	164 Kbytes	9-Dec-97	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Package		Status	Models		Samples &	Budgetary Pricing		Std Pack	Package
rart Number	Type	# pins		SPICE	IBIS	Electronic Orders	Quantity	\$US each	I I	Marking
5962-9209001M3A	LCC	28	Full production	N/A	N/A	X	50+	\$26.0000	tray of 25	[logo]¢Z¢S¢4¢A 54F827LMQB Q¢M \$E5962- 9209001M3A
54F827SDMQB	Cerdip	24	Full production	N/A	N/A		50+	\$11.3000	tube of 15	[logo]¢Z¢S¢4¢A\$E 54F827SDMQB /Q¢M 5962-9209001MLA

[Information as of 1-Sep-2000]

Quick SearchParametric
SearchSystem
DiagramsProduct
Tree

About Languages . About the Site . About "Cookies"

National is QS 9000 Certified . Privacy/Security

Copyright © National Semiconductor Corporation

Preferences . Feedback