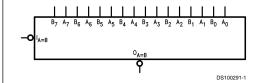
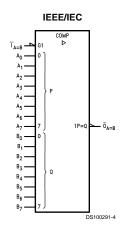


September 1998

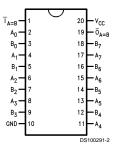
54AC521 • 54ACT521 8-Bit Identity Comparator

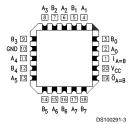

General Description


The AC/ACT521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $\overline{l}_{A\ =\ B}$ also serves as an active LOW enable input.

Features

- I_{CC} reduced by 50%
- Compares two 8-bit words in 6.5 ns typ
- Expandable to any word length
- Outputs source/sink 24 mA
- ACT521 has TTL-compatible inputs
- Standard microcircuit Drawing (SMD)
 54AC521: 5962-90985
 54ACT521: 5962-89793


Logic Symbols



Connection Diagram

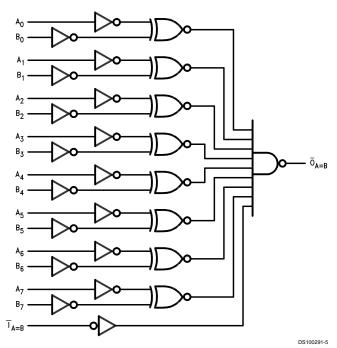
Pin Assignment for DIP and CERPACK

Pin Assignment for LCC

Pin Descriptions

Pin Names	Description
A ₀ -A ₇	Word A Inputs
B ₀ -B ₇	Word B Inputs
T _{A = B}	Expansion or Enable Input
$\overline{O}_{A = B}$	Identity Output

FACT™ is a trademark of Fairchild Semiconductor Corporation.


Truth Table

	Inputs					
Ī _{A = B}	Ī _{A = B} A, B					
L	A = B (Note 1)	L				
L	A ≠ B	Н				
Н	A = B (Note 1)	Н				
Н	A ≠ B	Н				

H = HIGH Voltage Level L = LOW Voltage Level

Note 1: $A_0 = B_0$, $A_1 = B_1$, $A_2 = B_2$, etc.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $V_{\rm O} = -0.5 {\rm V}$ -20 mA $V_{\rm O} = V_{\rm CC} + 0.5 {\rm V}$ +20 mA

DC Output Voltage (V_O) -0.5V to V_{CC} + 0.5V DC Output Source or Sink Current (I_O) ± 50 mA

or Sink Current (I_O) DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65° C to $+150^{\circ}$ C

Junction Temperature (T_J)

CDIP 175°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} AC & 2.0 V \text{ to } 6.0 V \\ ACT & 4.5 V \text{ to } 5.5 V \\ \text{Input Voltage (V_I)} & 0 V \text{ to } V_{CC} \\ \text{Output Voltage (V_O)} & 0 V \text{ to } V_{CC} \end{array}$

Operating Temperature (T_A)

Minimum Input Edge Rate $(\Delta V/\Delta t)$

AC Devices

 $\rm V_{IN}$ from 30% to 70% of $\rm V_{CC}$

 V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate $(\Delta V/\Delta t)$

ACT Devices

V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	3.15	V	or V _{CC} – 0.1V
		5.5	3.85		
V _{IL}	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	1.35	V	or V _{CC} – 0.1V
		5.5	1.65		
V _{OH}	Minimum High Level	3.0	2.9		I _{OUT} = -50 μA
	Output Voltage	4.5	4.4	V	
		5.5	5.4		
					V _{IN} = V _{IL} or V _{IH}
		3.0	2.4		$I_{OH} = -4 \text{ mA}$
		4.5	3.7	V	$I_{OH} = -24 \text{ mA}$
		5.5	4.7		$I_{OH} = -24 \text{ mA (Note 3)}$
V _{OL}	Maximum Low Level	3.0	0.1		I _{OUT} = 50 μA
	Output Voltage	4.5	0.1	V	
		5.5	0.1		
					V _{IN} = V _{IL} or V _{IH}
		3.0	0.4		I _{OL} = 12 mA
		4.5	0.5	V	I _{OL} = 24 mA
		5.5	0.5		I _{OL} = 24 mA (Note 3)
I _{IN}	Maximum Input	5.5	±1.0	μA	V _I = V _{CC} , GND
(Note 5)	Leakage Current				
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 4)	5.5	-50	mA	V _{OHD} = 3.85V Min
Icc	Maximum Quiescent	5.5	80.0	μA	V _{IN} = V _{CC}
(Note 5)	Supply Current				or GND

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Symbol	Parameter	V _{cc}	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	Units	Conditions
		(V)	Guaranteed Limits		
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					V _{IN} = V _{IL} or V _{IH}
		4.5	3.7	V	I _{OH} = -24 mA
		5.5	4.7		I _{OH} = -24 mA (Note 6)
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					V _{IN} = V _{IL} or V _{IH}
		4.5	0.5	V	I _{OL} = 24 mA
		5.5	0.5		I _{OL} = 24 mA (Note 6)
I _{IN}	Maximum Input	5.5	±1.0	μA	V _I = V _{CC} , GND
	Leakage Current				
I _{CCT}	Maximum	5.5	1.5	mA	V _I = V _{CC} - 2.1V
	I _{CC} /Input				
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 7)	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5	80.0	μА	V _{IN} = V _{CC}
	Supply Current				or GND

 $\textbf{Note 6:} \ \ \textbf{All outputs loaded; thresholds on input associated with output under test.}$

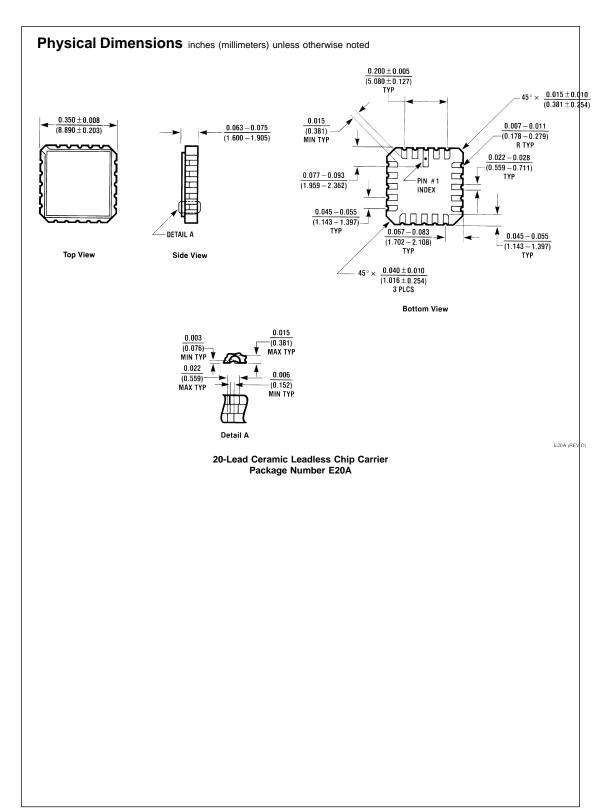
Note 7: Maximum test duration 2.0 ms, one output loaded at a time.

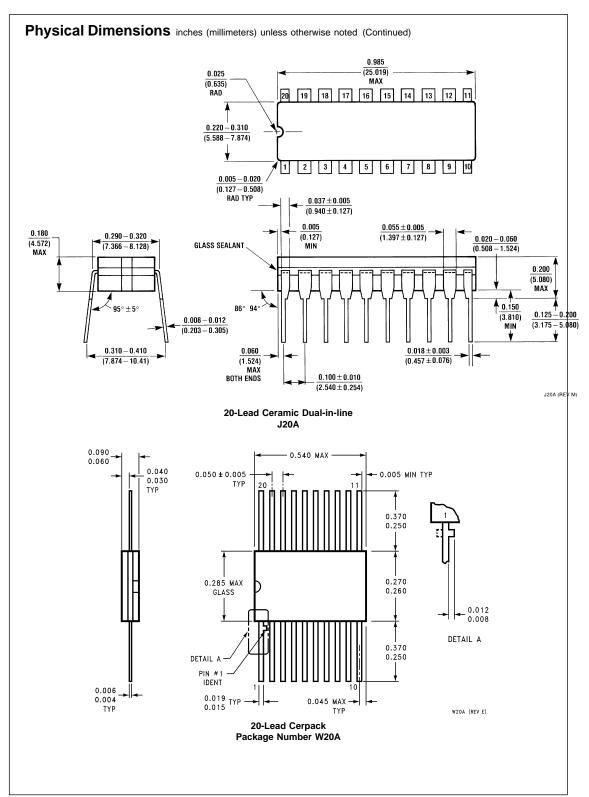
AC Electrical Characteristics for AC

Symbol	Parameter	V _{cc} (V)	•	C to +125°C 50 pF	Units
		(Note 8)	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.0	15.0	ns
	A_n or B_n to $\overline{O}_{A=B}$	5.0	1.0	11.0	
t _{PHL}	Propagation Delay	3.3	1.0	10.5	ns
	A_n or B_n to $\overline{O}_{A=B}$	5.0	1.0	8.0	
t _{PLH}	Propagation Delay	3.3	1.0	15.0	ns
	$\overline{I}_{A = B}$ to $\overline{O}_{A = B}$	5.0	1.0	11.0	
t _{PHL}	Propagation Delay	3.3	1.0	10.5	ns
	$\overline{I}_{A = B}$ to $\overline{O}_{A = B}$	5.0	1.0	8.0	

Note 8: Voltage Range 3.3 is 3.3V ±0.3V Voltage Range 5.0 is 5.0V ±0.5V

Symbol	Parameter	V _{cc}	~	C to +125°C	Units
		(V)	C _L =	50 pF	
		(Note 9)	Min	Max	
t _{PLH}	Propagation Delay	5.0	1.5	11.0	ns
	A_n or B_n to $\overline{O}_{A=B}$				
t _{PHL}	Propagation Delay	5.0	1.5	12.0	ns
	A_n or B_n to $\overline{O}_{A=B}$				
t _{PLH}	Propagation Delay	5.0	1.5	7.5	ns
	$\overline{I}_{A = B}$ to $\overline{O}_{A = B}$				
t _{PHL}	Propagation Delay	5.0	1.5	8.5	ns
	$\overline{I}_{A = B}$ to $\overline{O}_{A = B}$				


Note 9: Voltage Range 5.0 is 5.0V ±0.5V


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40	pF	V _{CC} = 5.0V

Applications Ripple Expansion A₈ B₈ A₁₅ B₁₅ ${\rm A}_{16}\,{\rm B}_{16} \qquad {\rm A}_{23}\,{\rm B}_{23}$ ENABLE LOW Parallel Expansion $\mathrm{A}_{15}\,\mathrm{B}_{15}$ $^{\rm A_{16}\,B_{16}} \quad ^{\rm A_{23}\,B_{23}}$ $O_{A=B}$ DS100291-7

	7	

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tei: +49 (0) 1 80-530 85 85
English Tei: +49 (0) 1 80-532 78 32
Français Tei: +49 (0) 1 80-532 35
Italiano Tei: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com

 acific Customer
 Japan Ltd.

 seg Group
 Tel: 81-3-5620-6175

 2544466
 Fax: 81-3-5620-6179

 -2504466
 Fax: 81-3-5620-6179

National Semiconductor

Products > Military/Aerospace > Logic > FACT AC > 54AC521

54AC521 8-Bit Identity Comparator

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing

General Description

The AC/ACT521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $I\#_{A=B}$ also serves as an active LOW enable input.

Features

- I_{CC} reduced by 50%
- Compares two 8-bit words in 6.5 ns typ
- Expandable to any word length
- Outputs source/sink 24 mA
- ACT521 has TTL-compatible inputs
- Standard microcircuit Drawing (SMD) 54AC521: 5962-90985 54ACT521: 5962-89793

Datasheet

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
54AC521 54ACT521 8-Bit Identity Comparator	195 Kbytes	10-Sep-98	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

D. AN. A.	Package		G4.4	Mod	els	Samples &	Budgetai	ry Pricing	Std	Package
Part Number	Type	# pins	Status	SPICE	IBIS	Electronic Orders	Quantity	\$US each	Pack Size	Marking
5962-9098501M2A	LCC	20	Full production	N/A	N/A		50+	\$9.0000	tube of 50	[logo]¢Z¢S¢4¢A 54AC521 LMQB/Q¢M\$E 5962- 9098501M2A
5962-9098501MRA	Cerdip	20	Full production	N/A	N/A	. X	50+	\$8.0000	tube of 20	[logo]¢Z¢S¢4¢A\$E 54AC521DMQB /Q¢M 5962-9098501MRA
5962-9098501MSA	Cerpack	20	Full production	N/A	N/A	X	50+	\$9.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 54AC521FMQB Q¢M 5962- 9098501MSA
5962R9098501BRA	Cerdip	20	Full production	N/A	N/A		50+	\$84.0000	tube of 20	[logo]¢Z¢S¢4¢A\$E 5962R9098501BRA 27014 Q
5962R9098501BSA	Cerpack	20	Full production	N/A	N/A		50+	\$90.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 5962R9098501BSA 27014 Q

5962-9098501B2A	LCC	20	Full production	N/A	N/A	· X State State	50+	\$10.5000	tube of 50	[logo] 5962- 9098501B2A 27014 QS ¢Z¢S¢4¢A\$E
5962R9098501B2A	LCC	20	Full production	N/A	N/A		50+	\$79.0000	tube of 50	[logo] 5962 R9098501B2A 27014 QS ¢Z¢S¢4¢A\$E
5962-9098501BSA	Cerpack	20	Full production	N/A	N/A		50+	\$9.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 5962- 9098501BSA 27014 QS
5962R9098501S2A	LCC	20	Full production	N/A	N/A		50+	\$138.0000	tube of 50	[logo]¢Z¢S¢4¢A 27014 Q \$E 5962R 9098501S2A
5962R9098501SRA	Cerdip	20	Full production	N/A	N/A		50+	\$138.0000	tube of 20	[logo] ¢Z¢S¢4¢A\$E 5962R9098501SRA 27014 Q
5962R9098501SSA	Cerpack	20	Full production	N/A	N/A		50+	\$138.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 27014 Q 5962 R9098501SSA

[Information as of 1-Sep-2000]

Quick Search	<u>Parametric</u>	<u>System</u>	Product	Home
	Search	Diagrams	Tree	Home

About Languages . About the Site . About "Cookies"

National is QS 9000 Certified . Privacy/Security

Copyright © National Semiconductor Corporation

Preferences . Feedback

×	<u>Design</u>	<u>Purchasing</u>	Quality	Company	<u>Jobs</u>				
Products > Military / Acrospose > Logic > EACT ACT > EAACTE21									

Products > Military/Aerospace > Logic > FACT ACT > 54ACT521

54ACT521 8-Bit Identity Comparator

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing
- Application Notes

General Description

The AC/ACT521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $I\#_{A=B}$ also serves as an active LOW enable input.

Features

- I_{CC} reduced by 50%
- Compares two 8-bit words in 6.5 ns typ
- Expandable to any word length
- Outputs source/sink 24 mA
- ACT521 has TTL-compatible inputs
- Standard microcircuit Drawing (SMD) 54AC521: 5962-90985 54ACT521: 5962-89793

Datasheet

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
54AC521 54ACT521 8-Bit Identity Comparator	195 Kbytes	10-Sep-98	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Package		C4 - 4	Models		Samples & Budgetan		y Pricing		Package	
	Type	# pins	Status	SPICE	IBIS	Electronic Orders	Quantity	\$US each	Pack Size	Marking	
5962-89793022A	LCC	20	Full production	N/A	N/A	× ************************************	50+	\$9.0000	tube of 50	[logo]¢Z¢S¢4¢A 54ACT521 LMQB /Q¢M\$E 5962- 89793022A	
5962-8979302RA	Cerdip	20	Full production	N/A	N/A		50+	\$8.0000	tube of 20	[logo]¢Z¢S¢4¢A\$E 54ACT521DMQB /Q¢M 5962-8979302RA	
5962-8979302SA	Cerpack	20	Full production	N/A	N/A		50+	\$9.0000	tube of 19	[logo]¢Z¢S¢4¢A\$E 54ACT521FMQB Q¢M 5962- 8979302SA	
54ACT521 MDA	die	2	Full production	N/A	N/A	•			N/A	-	

Application Notes

Title	Size (in Kbytes)	Date	View Online	Download	Receive via Email
AN-925: Radiation Design Test Data for Advanced CMOS Product	194 Kbytes	5-Aug-95	View Online	Download	Receive via Email

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 1-Sep-2000]

Quick SearchParametric
SearchSystem
DiagramsProduct
TreeHome

About Languages . About the Site . About "Cookies"

National is QS 9000 Certified . Privacy/Security

Copyright © National Semiconductor Corporation

Preferences . Feedback