°CAV

NDH8301N

Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

These N-Channel enhancement mode power field effect transistors are produced using Nationals proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where fast switching. and low in-line power loss are needed in a very small outline surface mount package.

Features

- 3A, 30V. $R_{DS(ON)} = 0.06\Omega$ @ $V_{GS} = 4.5V$ $R_{DS(ON)} = 0.075\Omega$ @ $V_{GS} = 2.7V$.
- Proprietary SuperSOTTM-8 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}
- · Exceptional on-resistance and maximum DC current capability.

40

Thermal Resistance, Junction-to-Case

 $R_{\theta JC}$

Symbol	Parameter		NDH8301N	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		8	V
l _D	Drain Current - Continuous	(Note 1)	3	A
	- Pulsed		9	
P _D	Maximum Power Dissipation	(Note 1)	0.9	W
$T_{J'}T_{STG}$	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			
R _{0JA}	Thermal Resistance, Junction-to-Ambi	ent (Note 1)	135	°CW

(Note 1)

ELECTRI	CAL CHARACTERISTICS (T _A = 25°C	unless otherwise noted)					
Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAI	RACTERISTICS	- 1					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_{D} = 250 \mu\text{A}$		20			٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$				1	μA
			T _J = 55°C			10	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 8 V, V_{DS} = 0 V$				100	nΑ
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nΑ
ON CHAR	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS'} I_D = 250 \mu\text{A}$		0.4		1	V
			T _J = 125℃	0.3		0.8	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$				0.06	Ω
			T _J = 125℃			0.11	
		$V_{GS} = 2.7 \text{ V}, I_D = 2.7 \text{ A}$				0.075	
D(on)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		9			Α
		$V_{GS} = 2.7 \text{ V}, V_{DS} = 5 \text{ V}$		3			
DRAIN-SO	URCE DIODE CHARACTERISTICS AND MA	AXIMUM RATINGS		·			
l _s	Maximum Continuous Drain-Source Diode Forward Current					0.75	Α
V _{so}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.75 A (Note 2)				1.2	V

$$P_D(t) = \frac{T_J - I_A}{R_{DM}(t)} = \frac{I_J - I_A}{R_{DM}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$$

Typical R_{8,4} using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

135°C/W when mounted on a 0.0025in² pad of 2oz copper.

2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.

^{1.} Rela is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{QC} is guaranteed by design while R_{QCA} is determined by the user's board design. $P_D(t) = \frac{T_J - T_A}{R_{\text{QLA}}(t)} = \frac{T_J - T_A}{R_{\text{QCA}}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$