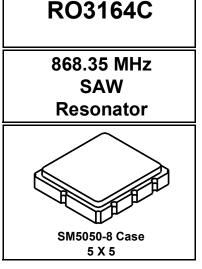


RoHS Compliance This component is compliant with RoHS directive. This component was always RoHS compliant from the first date of manufacture.


• Ideal for European 868.35 MHz Transmitters

- Very Low Series Resistance
- Quartz Stability

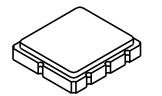
The RO3164C is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 868.35 MHz.

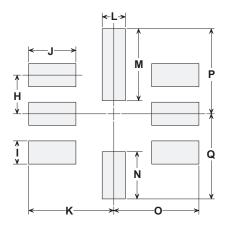
Absolute Maximum Ratings

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +85	°C
Operating Temperature	-40 to +85	°C

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C) Nomin	nal Frequency RO3164C	f _C	2,3,4,5	868.150		868.550	MHz
Tolerance fror	n 868.35 MHz RO3164C	∆f _C				±200	kHz
Insertion Loss		IL	2,5,6		1.1	2.5	dB
Quality Factor	Unloaded Q	QU	5,6,7		7000		
	50 Ω Loaded Q	QL			671		
Temperature Stability	Turnover Temperature	То		10	25	40	°C
	Turnover Frequency	f _O	6,7,8		f _C		kHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year		1		<±10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			10.8		Ω
	Motional Inductance	L _M	5, 6, 7, 9		13.6		μH
	Motional Capacitance	C _M			2.5		fF
	Shunt Static Capacitance	Co	5, 6, 9		2.1		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		16		nH
Lid Symbolization (in addition to Lot and/or Date Codes)			•	799	/ YWWD	•	


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:


- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- guent years. 2. The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, for the term of transmitter is approximately equal to the resonator f_C.
- $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is approximately equal to the resonator f_C . 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
 Unless noted otherwise, case temperature T_C = +25°C±2°C.
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
 The design, manufacturing process, and specifications of this device are subject to change without notice.

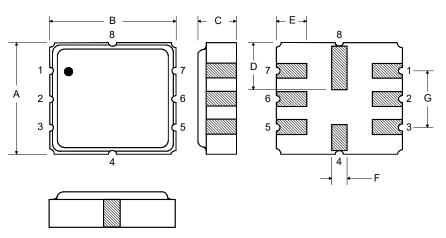
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically *oscillator* T_O is approximately equal to the specified *resonator* T_O.
 This equivalent RLC model approximates resonator performance near the
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_0 0.05$ pF.

SM5050-8 Surface-Mount 8-Terminal Ceramic Case 5.0 X 5.0 mm Nominal Footprint

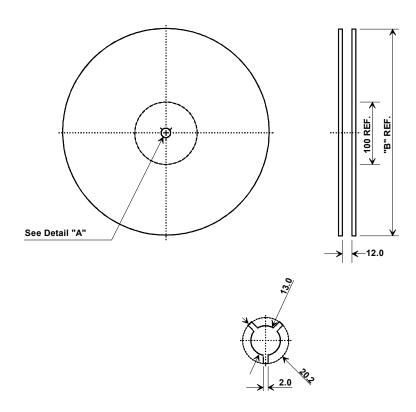
PCB Footprint

Dimension	mm			Inches			
Dimension	Min	Nom	Max	Min	Nom	Max	
Α	4.80	5.00	5.20	0.189	0.197	0.205	
В	4.80	5.00	5.20	0.189	0.197	0.205	
С	1.30	1.50	1.70	0.050	0.060	0.067	
D	1.98	2.08	2.18	0.078	0.082	0.086	
E	1.07	1.17	1.27	0.042	0.046	0.050	
F	0.50	0.64	0.70	0.020	0.025	0.028	
G	2.39	2.54	2.69	0.094	0.100	0.106	
Н		1.27			0.050		
I		0.76			0.030		
J		1.55			0.061		
K		2.79			0.110		
L		0.76			0.030		
М		2.36			0.093		
N		1.55			0.061		
0		2.79			0.110		
Р		2.79			0.110		
Q		2.79			0.110		

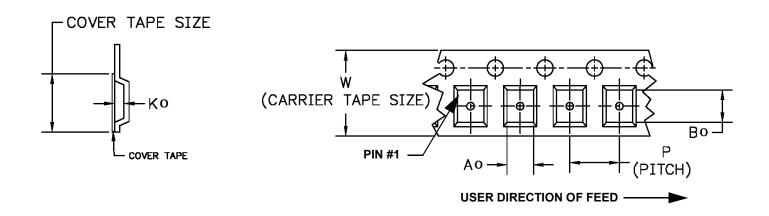
Case Materials


Materials					
Solder Pad Plating	0.3 to 1.0 μm Gold over 1.27 to 8.89 μm Nickel				
Lid Plating	2.0 to 3.0 µm Nickel				
Body	Al ₂ O ₃ Ceramic				
Pb Free					

Electrical Connections


	Connection	Terminals		
Port 1	Input	2		
Port 2	Output	6		
	Ground	All others		
Dot indicates Pin 1				

TOP VIEW


Tape and Reel Specifications

	"B" nal Size	Quantity Per Reel
Inches	millimeters	
7	178	500
13	330	3000

COMPONENT ORIENTATION and DIMENSIONS

Carrier Tape Dimensions				
Ao	5.3 mm			
Во	5.3 mm			
Ко	2.0 mm			
Pitch	8.0 mm			
W	12.0 mm			

