

• Designed for 318 MHz Transmitter Applications

- Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RO3118 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode quartz frequency stabilization of fixed-frequency transmitters operating at or near 318 MHz.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature (10 seconds / 5 cycles max.	260	°C

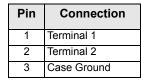
RO3118

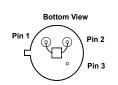
318.00 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units	
Frequency (+25 °C)	Nominal Frequency	f _C	2, 3, 4, 5	317.925		318.075	MHz	
	Tolerance from 318.000 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz	
Insertion Loss		IL	2, 5, 6		1.5	2.0	dB	
Quality Factor	Unloaded Q	QU	5, 6, 7		10700			
	50 Ω Loaded Q	QL			1400			
Temperature Stability	Turnover Temperature	т _о	6, 7, 8	10	25	40	°C	
	Turnover Frequency	f _O			f _C +4.2		kHz	
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C ²	
Frequency Aging	Absolute Value during the First Year	fA	1, 6		10		ppm/yr	
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ	
RF Equivalent RLC Model	Motional Resistance	R _M	5, 6, 7, 9		15		Ω	
	Motional Inductance	L _M			80		μH	
	Motional Capacitance	C _M			3.1		fF	
	Pin 1 to Pin 2 Static Capacitance	Co	5, 6, 9		2.6		pF	
	Transducer Static Capacitance	CP	5, 6, 7, 9		3.0		pF	
Test Fixture Shunt Inductance		L _{TEST}	2, 7		96		nH	
Lid Symbolization (in addition to Lot and/or Date Codes)			RFM // RO3118					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

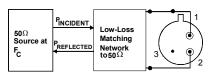

NOTES:


- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
 The center frequency, f_C is measured at the minimum insertion loss point, the center frequency, f_C is measured at the minimum insertion loss point.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point, IL_{MIN} , with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST} , is tuned for parallel resonance with C_O at f_C . Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- One or more of the following United States patents apply: 4,454,488 and 4,616,197 and others pending.
- 4,616,197 and others pending.Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.

- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: f = f_O [1 FTC (T_O -T_C)²]. Typically, *oscillator* T_O is 20°C less than the specified *resonator* T_O.
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_O.

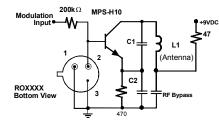
Electrical Connections

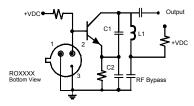
This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.


Typical Test Circuit

The test circuit inductor, $L_{TEST\!,}$ is tuned to resonate with the static capacitance, C_O at $F_C\!.$

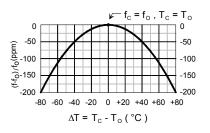
Electrical Test:


Power Test:

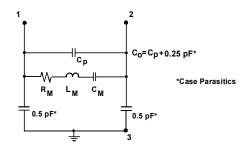

CW RF Power Dissipation = PINCIDENT - PREFLECTED

Typical Application Circuits

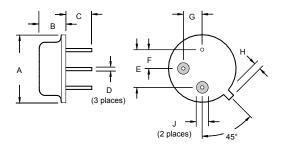
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millim	neters	Inches		
Dimensions	Min	Max	Min	Max	
A		9.30		0.366	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		