MOTOROLA
= SEMICONDUCTOR 1550
TECHNICAL DATA
MC6800

8-Bit Microprocessing Unit (MPU)

The MC6800 is a monolithic 8-bit microprocessar forming the central control function for Motorola’s
M6800 Family. Compatible with TTL, the MC680G, as with all M6800 system parts, requires only one
+5.0-volt power supply and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its 16-bit address lines. The 8-bit data
bus is bidirectional as well as three-state, making direct memory addressing and multiprocessing applica-
tions realizable.

® 3-Bit Parallel Processing
® Bidirectional Data Bus
® 16-Bit Address Bus — 64K Bytes of Addressing
® 72 Instructions — Variable Length
® Seven Addressing Modes — Direct, Relative, Immediate, Indexed, Extended, implied, and
Accumulator
Variable Length Stack
Vectored Restart
Maskable interrupt Vectar
Separate Nonmaskable Interrupt — Internal Registers Saved in Stack
Six Internal Registers — Two Accumulators, Index Register, Program Counter, Stack Pointer and
Condition Code Register
Direct Memory Addressing {DMA) and Multiple Processor Capability
Simplified Clocking Characteristics
Clock Rates as High as 2.0 MHz
Simple Bus Interface without TTL
Halt and Single Instruction Execution Capability

This document contains information an a new product. Specifications and information herein are subject to change without notice.

MOTOROLA MICROPROCESSOR DATA
3-61

MC6800

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage Vee —-03to +7.0 v
Input Voltage Vin -03t0 +7.0 v
Operating Temperature Range TA TLto TH °C

MC6800, MC68A00, MC68BQ0, -0to 70

MC6800C, MCE8A0O0C -40to +85
Storage Temperature Range Tstg ~55to +150 °C

THERMAL RESISTANCE
Rating Symbol Value Unit
Plastic Package AT 100 °Cw
Cerdip Package 60
POWER CONSIDERATIONS
The average chip-junction temperature, TJ. in °C can be obtained from:
Ti=Ta+(Pp-0ja) (n
where:
TA = Ambient Temperature, °C
AT = Package Thermal Resistance,
Junction-to-Ambient, °C/W
Pp = PINT +PPORT
PINT =Iccx Ve, Watts — Chip Internal Power

PpQRT = Port Power Dissipation, Watts — User Determined
For most applications PPORT<PNT and can be neglected. PPORT may become significant if the device is configured
to drive Darlington bases or sink LED loads.
An approximate relationship between Pp and Ty {if PPORT is neglected) is:
Pp=K=(Ty+273°C) (2)
Solving equations (1) and (2) for K gives:

K=Pp+{(TA+273°C) + 6)A*PD2 (3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring Pp (at
equilibrium) for a known TA. Using this value of K, the values of Pp and T can be obtained by solving equations
(1) and (2) iteratively for any value of Ta

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0 Vde, +5%, Vss=0, TaA=T_ to TH unless otherwise noted)

Charactenistic Symbol Min Typ Max Unit
input High Voltage Logic ViH Vgs+240 - Vee v
¢1,02| ViHe |Vee-06] - Veo+03
input Low Voltage Logic VIL Vgg-0.3 - Vgs+0.8 v
o1, 62 ViLe Vgg-0.3 - Vss+04
Input Leakage Current
(Vin=0105.25V, Vo = Max) Logic lin - 1.0 25 A
Vin=0105625Vv, Vcc=0V 10525 V) o1, 62 - - 100
Hi-Z input Leakage Current DO-D7 | — 20 10 A
(Vin=0.4102.4V, Voo =Max) AO-A15, R/W 1z - - 100 #
Output High Voltage
{(ILoad= — 205 A, Voo =Min) __bo-D7 VoH Vsg+24| - - v
(I oad= - 146 4A, Voo = Min) AO-A15, R/W, VMA Vss+24] — -
{ILoad = — 100 kA, Ve c =Min) BA vVss+24 — -
Output Low Voltage (I gag= 1.6 mA, VCC = Min) VoL - — Vss+0.4 v
Internal Power Dissipation (Measured at TA=Tp PINT - 0.5 1.0 w
Capacitance
Vin=0, TA=25°C, f=1.0 MHz) #1 - 25 35
2| cp - 45 70 pF
DO-D7 - 10 125
Logic Inputs - 6.5 10
AG-ATS, R/W,VMA | Coy - - 12 of

MOTOROLA MICROPROCESSOR DATA

3-62

MC6800

CLOCK TIMING (Vcc=5.0V, £5%, Vgs=0, To=T| to T unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MC6800 0.1 — 1.0
MC68A00 f 0.1 - 18 MHz
MC68B00 0.1 - 2.0
Cycle Time (Figure 1) MC6800 1.000 - 10
MCE8A00 teye 0.666 — 10 #S
MCE8B0D 0.500 — 10
Clock Puise Width @1, 62 — MC6800 400 - 9500
{Measured at Ve -0.6 V) 1,62 — MCGBAOD | PWgH 230 - 9500 ns
1, ¢2 — MCE8BOO 180 - 9500
Total ¢1 and ¢2 Up Time MCB8800 900 - -
MCE8A00 tut 600 - - ns
MC68B0OD 440 — —
Rise and Fall Time {Measured between Vg5 +0.4 and Vg —0.6) tr. tf - - 100 ns
Delay Time or Clock Separation {(Figure 1}
(Measured at Voy=Vss+0.6 V@t =1;< 100 ns) td 0 - 9100 ns
(Measured at Voy=Vgg+ 1.0 V@t =11=<36 ns) 0 - 9100

FIGURE 1 — CLOCK TIMING WAVEFORM

teye

Tut —

td *’{ f— ta *»1

ViHC
2
¢ Vov i
ViLc |

H
g —| L‘PW¢H b tgs

NOTES:
1. Voltage levels shown are V| 0.4, V{=2.4 V, uniess otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted

READ/WRITE TIMING (Reference Figures 2 through 6, 8, 9, 11, 12 and 13)

Characteristic Symbol MC6800 M MCe8B00 Unit
Min | Typ | Max | Min | Typ | Max | Min | Typ | Max
Address Delay
C=90 pF tAD - - 270 - - 180 - - 150 | ns
C=30pF - — 250 — - 165 - - 135
Peripheral Aead Access Time
*apcc=u4z— CAD s oS tace 530 — | — 360 - | — {280 - [— | ns
Data Setup Time (Read) {DSR 100 - - 60 - - 40 - - ns
input Data Hoid Time H 10 - - 10 - — 10 - - ns
Output Data Hold Time tH 10 25 - 10 25 - 10 25 — ns
Address Hold Time (Address, R/W, VMA) tAH 30 |5 | ~ [3]|s0)] ~ (3} - |ns
Enable High Time for OBE input tEH 480 | — - 280 - - 220 - - ns
Data Delay Time {Write) IDDW — - 225 - - 200 | — - 160 | ns
Pracessor Controls
Processor Control Setup Time tpPCS 200 - - 140 — - 110 - -
Processor Control Rise and Fall Time tPCr. tPCE - - 100 - - 100 - - 100
Bus Awvailable Delay 1BA - - | 250 | - - 165 | — - 135 ns
Hi-Z Enable tTSE 0 - 40 0 — 40 0 - 40
Hi-Z Delay tTSD - - 20 | - - |20 - - 220
Data Bus Enable Down Time During ¢1 Up Time tDBE 150 | — - 120] — - 75 - -
Data Bus Enable Rise and Fall Times tDBEr- 1DBEf | — - 25 - - 25 - — 25

MOTOROLA MICROPROCESSOR DATA
3-63

MC6800

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

Start of Cycle
I/
1 ViHC ‘\; /
ViLe ViLc
[t, ;
\'J
02 / X IHC
e
tAD
A Y

oy taH

Add
From'h.n:U _‘_“\L

[tAD — =

bty
F——1AD % 'DSR~—~J
Data !
From Memory Data Valid %—
or Peripherais -

Z

\\\\\\‘ Dats Not Valid

FIGURE 3 — WRITE IN MEMORY OR PERIPHERALS

»—— Start of Cycle

teye
& ViHC 1 /
ViLe ViLe
— et 1y
@2 / \.

fe—tAD ——]

AW
AN . N
PUS— e tAH
Address
From MPU
——

Pe——1AD —=
vMAa

(et AD — iy

1DBE teH ﬁ]l
!
DBE Z SI:
F~— 'DBEf, ——= t=—tDBEr N
) ety

?:;:n MPY @: Deta Valid
et
m Data Not Valid DDW_—‘

NOTES:
1. Voltage levels shown are V| <0.4, Vi4=2.4 V, unless otherwise specified.

2. Measurement points shawn are 0.8 V and 2.0 V, unless otherwise noted.

MOTOROLA MICROPROCESSOR DATA
3-64

MC6800

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

FIGURE 5 — TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING {TAD)

DELAY TIME (ns)

§00

500

400

300

200

100

C(, LOAD CAPACITANCE (pF}

CL, LOAD CAPACITANCE {pF]

FIGURE 6 — BUS TIMING TEST LOADS

Vee
R =22 kQ
TEST CONDITIONS
Test Paint MMDG‘!E’O _The dynamic test load for the Data Bus is
or Equiv. 130 pF and one standard TTL ioad as shown.
The Address, H/W, and VMA outputs are tested
[+ R MMD 7000 under two conditions to allow optimum opera-
tion in both buffered and unbuffered systems,
or Equiv.

C = 130 pF for DO-D7, E

R

=90 pF for AD-A15, R/W, and VMA
{Except toAp2)

= 30 pF for AD-A15, R/W, and VMA
{(tapz only)

= 30 pF for BA

=11.7 kQ for DO-D7

16.5 k§2 for AO-A15, R/W, and VMA

=24 k§1 for BA

The resistar {R) is chosen to insure specified
load currents during Vo4 measuremant.

Notice that the Data Bus lines, the Address
lings, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 V of dynamic noise immunity at both
1" and “"0"’ logic levels.

MOTOROLA MICROPROCESSOR DATA

D NE

A T T 600 T T v
1gH =-205 uA mex @ 2.4 V =-145 yA max @ 2.4 V
FigL=1.6mA max @04V BmAmax @04V
L Vee =50V 0
Tp = 25°C 50
2 400
w
E
s am vms
] s Address, RA
S T
—— —
L P raiF e
M/ //
100
Cy, includes stray capacitance 0 C includes stray capacitance
0 100 200 300 400 500 600 0 100 200 300 400 600

MCé6800

FIGURE 7 — EXPANDED BLOCK DIAGRAM

Al6 Al4 A13 A12 A1l A0 A9 A8 A7 A5 A5 A4 A3 A2 Al A0
|
Output Qutput
Buffers r— Buffers
Clock, ¢1 —
Clock, ¢2 —
RESET — Program Program
Non-Maskable Interrupt —] Counter H Counter L
HALT —%1 Instruction
Interrupt Request ——m] Decode Stack Stack
and Pointer |, Pointer |
Three-State Control — Control
Deota Bus Ensble | ——in Index Index
Bus Available - Register Register L
Valid Memory Address -
Read/Write, R/W Accumulator
[.
Instruction Accumulator
Register B
Condition
Code
Reﬂis!er
Deata ,_J
Buffer ALU

BEEE RN

D7 D6 D5 D4 D3 D2 D1 DO

Vee=Pin 8
Vgg=Pins 1, 21

MOTOROLA MICROPROCESSOR DATA

5

IMAGE UNAVAILABLE

mm 9004L97 0743074 &T3 HE

MC6800

kmmmﬂ“ﬂu:_\‘>

/ \ AT avs
8UIINOY 1dnuieiu| sse.ppvy SSBIpPpPY
40 18U I8U15 £ -0 Dy MBN GL-8 Od mep -fele] 800v YooV Si-8 X L-0X G1-83d (004 {x) isu)

XX X Yoz X X X X X X XX X X sng e
Aseyy

\ §2d; 1dnusesu

[‘/I 1NN

SS3IPPY sseuppy ssaippy ysley 1o oYl

Od menN 6444 8444 (£-U)dS (9-U)dS (S-U)dS (P-U)dS (E-U)dS (Z-u)dS (L-U}dS {u)ds isug ixeN

XXX

X X X X X X XX

1 ss0.ppy

Si# ; iy ety Ziy L 7 o ; 6# A 8# 7 [‘ O ; a# 7 v ; €# _ H# ; L
810AD
ONIWLL LdNYYILNI — 6 IHNDI4
aleulwislepul = %
K TN ve
vonsnimau; JLUAUNRAURRWARAYARVARAARAMARRANRARRARN

W44 L-0 Dd G1-8 Od

A AR,

$0dy —o

— 413534

[A mh.v\ Ajddng

i 7 7 A gzg=— loMed
|
" m e uQ semog
Ll . A
_n+E_n+E_—+E_E_m+= vrule+sulzru]t vu] w _ou_wu_i_w*_g_ _u» —w_ _
812A)

ONIWIL L3534 — 8 36NOI4

™

MOTOROLA MICROPROCESSOR DATA

3-68

MC6800

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 kI external resistor to V¢ shouid be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt
(WAI) — The MC6800 is capable of handling two types of in-
terrupts: maskable (IRQ) as described earlier, and _non-
maskable (NMI) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
whife NMT is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either IRQ or NMI and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
low at time tpC s in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMI interrupt and from FFF8, FFF9
for an TRQ interrupt. Upon completion of the interrupt ser-
vice routine, the execution of RT! will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in preparation
for the interrupt. This technique speeds up the MPU’s
response to the interrupt because the stacking of the PC, IX,
ACCX, and the CCR is already done. While the MPU is
waiting for the interrupt, Bus Awvailable will go high in-
dicating the following states of the control lines: VMA is low,
and the Address Bus, R/W and Data Bus are all in the high
impedance state. After the interrupt occurs, it is serviced as
previously described.

A 3-10 k@ external resistor to Vi C should be used for wire-
OR and optimum control of interrupts.

MEMORY MAP FOR INTERRUPT VECTORS

Vector .
M5 s Description
FFFE FFFF Reset
FFFC FFFD Non-Maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control {TSC) line is a logic "1", the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC="1" to prevent
false reads or writes on any device enabled by VMA. it is
necessary 10 delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 (or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant 5o long as they do not change). Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

time PWgH without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
haveits transitions at tTSE {three-state enable} while hoiding
@1 high and $2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTgD (three-state
delay), with VMA being forced low. In this example, the
Data Bus is also in the high-impedance state while ¢2 is be-
ing heid low since DBE=¢2. At this point in time, a DMA
transfer could occur on cycles #3 and #4. When TSC is
returned low, the MPU Address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execu-
tion resumes in cycle #6.

Valid Memory Address {VMA) — This output indicates to
peripheral devices that there is a valid address on the address
bus. In normal operation, this signal should be utilized for
enabling peripheral interfaces such as the PIA and ACIA.
This signal is not three-state. One standard TTL load and
90 pF may be directly driven by this active high signal.

HALT — When this level sensitive input is in the low state,
all activity in the machine will be halted. This input is level
sensitive.

The HALT line provides an input to the MPU to allow con-
trol of program execution by an outside source. If HALT is
high, the MPU will execute the instructions; if it is low, the
MPU will go to a halted or idle mode. A response signal, Bus
Available {(BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabied by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NM! or IRQ interrupt occurs, it will be latched
into the MPU and acted on as socon as the MPU is taken out
of the haited mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=low, Data Bus=high impedance, R/W=high {read
state}, and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to lacations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of ¢1 of the last cycle of an instruction
{point A of Figure 13). HALT must not go low any time later
than the minmum tpCs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, the MPU would have
halted after completion of the following instruction. BA will
go high by time tgA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

MOTOROLA MICROPROCESSOR DATA

3-69

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high for one MPU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of
must occur tpCg before the trailing edge of ¢1. BA
will go low at tga after the leading edge of the next ¢1, in-
dicating that the Address Bus, Data Bus, VMA and R/W

1 —B8A

o

O

MC6800

FIGURE 10 — MPU FLOWCHART

ITMP — |

Stack
PC. X, A, B, CC

SWI?

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used for this example also. During the first cy-
cle, the instruction Y is fetched from address M+ 1. BA
returns high at tgA on the last cycle of the instruction in-
dicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

0 —8A v
ITEMP—=1
RESE I
Next Inst
1—= 1
0—-BA
| swi? ST 0—BA
Vector -+ PC
N
FFFe 1—= ITMP
WA S | =1
N

L,

Conditien Cade Register

Vector — PC

NM| FFCA
Swi FFEA
IRQ FFFB

Notes:

MOTOROLA MICROPROCESSOR DATA

3-70

Llleli[n]z]v]e]

ITEMP’ 1-Bit
Buffer Register

1. Reset is recognized at any position in the flowchart,

2. Instructions which affect the I-Bit act upon a one-bit buffer register,
“ITMP." This has the effect of delaying any CLEARING of the i-Bit one
clock time. Setting the I-Bit, however, is not delayed.

3. See Tables 6-11 for details of Instruction Execution.

MC6800

351, —| f—

: oS4

38Q =T¢

4 e1eQ

vﬁ VWA

XC

$$84ppY $50.PPY
L-0 Dd MeN §1-8 Od MaN

X ssosnpy
$$3ippPY
ASLy —em b

L NdW

— xewHY Ay |||'+

pet— QS 1)

L
walsAg

I R T I S B L B A

ONIWLL TOHLINOD F1VLS-3IHHL — Zi IHNOIS

*a1ms asuepedwi ybiy
$81e01pU| WIoeAeM BBuRIPIN (0ICN

] o

g400 800v vOOv S1-81 L0} SL-80d (-00Dd Hem

& X

A A e

SO dy—awd

sunnoy
ydnuelu| jo

——C X XXX X X X X

U IS4 4

/S
_/

M

¢ /

—/

I N

(9-U)d§ (g-U)dS (p-u)dS (E-U)dS (Z-¥)dS (L-U)dS (U)dS Uononasu|

EFF] EEEE] {{-u)dS
XX X)—

$581PPVY

——<C_ X X X XXX XXX

s ,

G+u +u £+u Z+u

1 +u

u

L#
B12AD

R ERERRE

ONIWIL NOILDNYLSNI LIVM — LI 3HNOI4

va

sng meq

N
40 DH!

e
1dnaselu|

YWA

Md

sng
s501ppY

z¢

MOTOROLA MICROPROCESSOR DATA

3N

MC6800

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

Last Cycie

of Current
Instruction
BA
S e O e B e M e T
’-..

tPCS tpcs tPcs~1 | I
—] tpef ’ ! tper —, -

T : e
‘BA“' | 7L T
8a / I
VMA x ’ ! \ *)“ Fﬂ
1
" X > - o
Fetch Execute
s A AT e—
S e —
oat —f ~0C 00—
nst Inst
X Y

Instruction
Fetch

Instruction
Execute

g

Note: Midrange waveform indicates
high impedance state.

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit FIGURE 14 — PROGRAMMING MODEL OF
registers available for use by the programmer (Figure 14). THE MICROPROCESSING UNIT

Program Counter — The program counter is a two byte

(16 bits) register that points to the current program address. z g
7 o]

Stack Pointer — The stack ponter is a two byte register

that contains the address of the next available location in an _
)) accs Accumulator B
external push-down/pop-up stack. This stack is nermally a

random access Read/Write memary that may have any loca- ja 9
tion {address) that is convenient. In those applications that 1X Index Register
require storage of information in the stack when power is 15 o
lost, the stack must be nonvolatile. L j
PC Program Counter

Index Register — The index register is a two byte register 15 o
that is used to store data or a sixteen bit memory address for [sP ‘l Stack Pointer
the Indexed mode of memory addressing. - o

Conditian Code

Accumulators — The MPU contains two B-bit ac- T [PHINIZIVIC] Register
cumulators that are used to hold operands and results from
an arithmetic logic unit (ALU). Carry {(From Bit 7}
Overflow
Condition Code Register — The condition code register in- Zero
dicates the results of an Arithmetic Logic Unit operation: .
Negative (N], Zero (Z), Overflow {V}, Carry from bit 7 (C), Negative
and half carry from bit 3 (H). These bits of the Condition T Interrupt

Code Register are used as testable conditions for the condi-
tional branch instructions. Bit 4 is the interrupt mask bit (1),
The unused bits of the Condition Code Register (b6 and b7)
are ones.

Half Carry (From Bit 3)

MOTOROLA MICROPROCESSOR DATA

3-72

MC6800

MPU INSTRUCTION SET

The MCB800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MC6800 control programs. The MCB800 has a set of 72 dif-
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. (The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first for only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 266
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain(s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: (1} memory reference, so called
because they operate on specific memory locations; {2)
operating instructions that function without needing a
memory reference; (3) 1/0 instructions for transferring data
between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same opera-
tion on both its internal accumulators and the external
memory locations. In addition, the MCB800 interface
adapters (PIA and ACIA) allow the MPU to treat peripheral
devices exactly like other memory locations, hence, no I/Q
instructions as such are required. Because of these features,
other classifications are more suitable for introducing the
MCB800's instruction set: (1) Accumulator and memory
operations; {2) Program control operations; (3) Condition
Code Register operations.

TABLE 1 — HEXADECIMAL VALUES OF MACHINE CODES

oo - 4D NEG A 80 SuB A IMM
01 NOP 41 N 81 CMP A IMM
02 42 82 sBC A IMM
03 N 43 CcOom A 83 N

04 - 44 SR A 84 AND A IMM
05 : 45 - 85 BIT A IMM
06 TAP 46 ROR A 86 LDA A IMM
07 TPA 47 ASR A 87 N

08 INX 48 ASL A 88 EOR A IMM
09 DEX 489 ROL A 89 ADC A IMM
oA CLV 4A DEC A 8A DRA A IMM
OB SEV 4B - 8B ADD A IMM
oCc CLe 4C INC A 8C CPX A IMM
oD SEC 4D TST A 8D BSA REL
OE cu 4E - 8E LDS MM
0F SEl 4F CLR A 8F -

10 SBA 50 NEG B 90 suB A DIR
ARl CBA 51 - 91 CMP A DIR
12 52 92 SBC A DIR
13 53 COM B 93 N

14 N 54 LSR B 94 AND A DIR
15 : 55 N 95 BIT A DiR
16 TAB 56 RAOR B 96 LDA A DIR
17 TBA 57 ASR a 97 STA A DIR
18 " 58 ASL B 98 EOR A DIR
19 DAA 59 ROL B 99 ADC A DIR
1A 5A DEC :] 9A ORA A DIR
1B ABA 58 N 9B ADD A DIR
i * 5C INC a 9C CPX DR
w0 5D TST 8 90

1E - 5E y 9E 108 DIR
F 5F CLR B 9F STS DIR
20 BRA REL | 60 NEG IND | AD suB A IND
21 N 61 * Al CMpP A IND
22 BHI REL | 62 ° A2 SBC A IND
23 BLS REL |63 COM IND | A3 "

24 BCC REL | 64 LSR IND | A4 AND A IND
25 BCS REL | 85 * A5 BIT A IND
26 BNE REL | 66 ROR IND | AB LDA A IND
27 BEQ REL | 67 ASR IND | A7 STA A IND
28 BVC REL | 68 ASL IND | A8 EOR A IND
29 BVS REL | 69 ROL IND | A3 ADC A IND
2A BPL REL | 64 DEC ING | AA ORA A IND
2B BMI RELj68 - AB ADD A IND
2C BGE REL | 6C INC IND | AC CPX IND
20 BLT REL | 60 TST IND |AD JSR iIND
2E BGT REL | 6E JMP IND | AE LDS IND
2F BLE REL [6F CGLR IND | AF 87S IND
30 TSX 70 NEG EXT| B0 SUB A EXT
31 INS 7 : B1 CMP A EXT
32 PUL A 2 B2 sBC A EXT
33 PUL B 73 GOM EXT|B3

34 DES 74 LSR EXT|B4 AND A EXT
35 TXS %l BS BIT A EXT
36 PSH A 76 ROR EXT{B6 LDA A EXT
37 PSH B 77 ASR EXT|B7 STA A EXT
38 78 ASL EXT|B8 EOR A EXT
39 RTS 78 ROL EXT|B9 ADC A EXT
3A 7A DEC EXT|BA ORA A EXT
38 RTI 1 BB ADD A EXT
3¢ 7C INC EXTIBC CPX EXT
10 I 70 TST EXT|BD JSR EXT
3E wal 7€ JMP EXT|BE LDS EXT
3F swi 7F CLR EXT|BF STS EXT

suB 8 IMM

CMP B IMM

SBC] IMM

AND B IMM

BIT | IMM

LDA 8 MM Notes: 1. Addressing Modes:

EOR B IMM A = Accumulator A
ADC B IMM B = Accumuiator B
ORA ;] IMM REL = Relative
{\DD B iMM IND = Indexed
. IMM = Immediate
Lox MM DIR Direct
sus 8 DIR tewts
oMP 8 R 2. Unassigned code indicated by .
SBC B DIR

AND B DIR

BT B OIR

LDA B DIR

STA B DIR

EOR B DIR

ADC 8 DR

ORA B8 DIR

ADD B DR

LDX DIA

STX DIR

SuB B IND

CMP B IND

SBC B IND

AND B IND

BIT B IND

LDA B IND

STA 8 IND

EOR B IND

ADC B IND

ORA B IND

ADD B8 IND

LDX IND

STX IND

suB B EXT

CMP B EXT

SBC B EXT

AND B EXT

aiT B EXT

LDA B EXT

STA B8 EXT

EOR B EXT

ADC B EXT

ORA B EXT

ADD B EXT

LDX EXT

§TX EXT

MOTOROLA MICROPROCESSOR DATA

3-73

MC6800 :

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS

ADDRESSING MODES BOOLEAN/ARITHMETIC OPERATION COND. CODE REG.
IMMED DIRECT WDEX | EXTND | mpLiED | (Al register laels 5lal3jz|1]0
OPERATIONS 00 ~ -|op ~ -|op - :J o - :I op - j refer 10 contents} v In]z]v]c
Add ADDA | 3B 2 2(98 3 2]AB 5 2(BB & 3 A-m A ile :
ADDB 6B 2 2]08 3 268 5 2|fB 4 3 B+M -8 HE :
Add Acmitrs ABA i 2 0 avE -a HOBHHE
Add with Carry ADCA 89 2 2199 3 2(A3 5 2|BY 4 3 ACMAC A HOIHH
ADCE €8 2 2009 3 2|E3 5 2/f3 a4 3 B-M:C -8 el]
Ang ANDA 8 2 2019 3 2[Aat 5 2|82 a4 3 Ao ejelr(!|rle
ANDH €4 2 2|04 3 2[€4 5 2|ft a 3 8-M -8 elolililR|e
Bt Test BITA 85 2 2019 3 2/A5 & 2(Bs 4 3 Am elelli!|Rle
8IT8 €5 2 2|05 3 2[Es 5 2|F5 4 3 B M ool |r|e
Clear CLR 6F 7 2]/ B 3 0 -M ®/® RISIR|R
CLRA 2 0 [op-a eis[rls|RIR
CLRB SF 2 1008 ele|R|sfr|R
Compare CMPA 81 2 281 3 2ia1 5 2|81 4 3 A M elezi|]:
P8 ¢z 2(pr 3 2|Et 5 2|F1l 4 3 B M oot
Compare Acmitrs CBA 2 1]4a 8 LI I
Campiement, 1's coM B3 7 2013 5 3 Wom . RS
CoMA 3 2 1| KA DEIMHEN
coMB 5 2 1|88 .o 7s
Complement, 2's NEG 60 7 2|70 6 1 0 MM .. 03]
(Negate] NEGA 0 2 1|00 A-A .n Hoe)
NEGB 5 2 100 g -8 o DD
Decimal Adjust, A DAA 182 1| Converts Binary Add of BCD Characters | @ |®|:11| D
o BCO Farmat
Decrement DEC 6A 7 217A 6 3 Mo em ole:[:|a]e
DECA A 2 A qa ejoliii|ale
DECB 542 1|81 -8 DI RS
Exclusive OR EQRA 8 2 219 3 2|as 5 2|Bs 4 23 ADM A ole:l:|nle
EQRB €8 2 2/08 3 2(/E8 5 2|F8 4 3 ‘ BEM -8 sjel:[:1Re
Increment INC 6 7 2fic 5 3 M1 oM INN G
INCA W 2 1At ole o) e
INCB 5C 2 1| B-1 B 0) »
Laad Acmitr LDAA 86 2 2|9 3 21A6 5 2(BE 4 3 MoA ‘- . Ale
LoAg 6 2 2006 3 2|E6 5 2[F5 4 3 Mg iele: lRle
01 inclusie ORAA 18a 2 2|l9A 3 2|aA 5 2{BA a2 3| ‘ Atm oA . o‘ Rle
ORAB | CA 2 2|DA 3 2{€A 5 2/Fa 4 3 B+M B lelai:::lnle
Push Data PSHA 3B 4 1 A -Mgp. SP 1 -SP e ele
PSHB 37 a 1 B -Mgp. SP 1 -SP ole oo
Pull Data PULA ' 324 1| 5P -SP Mg -A ofe ols
PULB 334 1 SP-1 -SP Mgp - & o e .o
Ratate Left ROL 6 7 20m 5 3 ¥} — _ NOENGHE
ROLA | 7 A} —C - OToTo-— UUIHHGH
ROLB 15 o2 1|8 c b7 = b0 NOHHGE
Ratate Right ROR 66 7 2176 5 3 |23 NOBHGE
AOAA % 2 A} -0 ~ IITTme— LIHHGE
AORE 156 2 1’5 ¢ LI IDOHHGC B
St Lett, Anthmeti, ASL 6B 7 2|78 & 3 1Y - LI B
AsLA ‘48? 1A O - SIOTTO-o ele|:]:®N:
ASLE 58 2 1 B ¢ b7 b0 eolel:f: :
Shift Right, Anthmetic ASA ‘ 8/ 7 2‘ o8 3i ! M} L. ‘- NHRGHE
ASRA a7 1 a ~T11T -~ o iefe|T| .
ASRE 572 1|8 b7 wooC ROBHGE
Shift Right, Logic LSR 64 1 2| 5 31 w - eloirl: H
LSRA @ 2 1.4 0~CIIIT - G --n‘: H
LSRB ‘ [b7 W C elolr 1B
Store Acmitr STAA 91 & 20 A7 6 2|87 5 3] A -m elel:|:lnle
STAS D7 4 2|Er 6 2|FT & 3. g eleil|iRle
Subtract SUBA 80 2 2030 3 2/A0 5 z|BO 4 3| A M a elefr|z|]
SuBB 2 2{00 3 2lec 5 2{f0 a 3| B M-8 leje|zizli:
Subtract Acmitrs SBA L1002 1A g |o el
Subite. with Carry SBCA 82 2 2092 31 2|a2 5 2|B2 4 A M C-a olef|:]:]:
SBCB €2 7 2|D2 3 2[€2 5 2if2 4 B M Co-f DOIHH
Transter Acmitrs TA8 % 2 |- eleiz|:ln|e
TBA 212 s oA eS8 ||R|e
Test, Zero of Minus 18T BD 7 2{70 & 3 [oo |RiR
TSTA ; W2 1A OO HEE
T5TB 50 2 1]g o0 elel:|:[r|r
[Inz[v]c]
LEGEND: CONDITION CODE SYMBOLS CONDITION CODE REGISTER NOTES:
OPF Operation Code {Hexadecimal); {Bit setf test is true and cleared otherwise)
~ Number of MPU Cycles; H o Half-carry from bit 3; 1 [Bit V) Test: Result = 100000007
¥ Number ot Program Bytes; ! laterrupt mask 2 {BitC) Test: Result = 0DO000G0?
+ Arithmetic Plus; N Negatve tsign bit)
S Anthmetic Minus: 7 Zero thyrel 3 {Bit £} Test: Decimal value of most significant BCD
. Boolean AND; v Overtiow, 25 complement Character greater than nine?
Mgp Contents af memory location pointed fo be Stack Painter; € Carry frombit 7 {Not cleared if previously set]
+ Boolean Inclusive OR; [Reset Always 4 {Bit VI Test: Operand = 10000000 prior to execution?
@ Boulean Exclusive OR; S Set Always 5 (Bit V) Test: Operand = 01111111 prior ta execution?
M Complement of M; 1 Test and set if true, cleared oiherwise 6 (Bit VI Test: Set equal to result af N@C alter shitt has occurred
~ Transfer (nto: ® Not Affected
0 Bit = Zero;
00 Byte = Zero;
Note — addressing mode are included in the column for IMPLIED addressing

MOTOROLA MICROPROCESSOR DATA

3-74

MC6800

PROGRAM CONTROL OPERATIONS

Program Controt operation can be subdivided into two
categories: {1} Index Register/ Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/ Stack Pointer Operstions

The instructions for direct operation on the MPU'’s Index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS], load {LDX,
LDS}, and store {STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the index Register to be load-
ed with the address of the last data byte put onto the
“stack.” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
“stack” 1o come from the location indicated by the Index
Register. The utility of these two instructions can be clarified
by describing the “stack’’ concept relative to the M6800
system.

The “stack’"can be thought of as a sequential list of data
stored in the MPt'’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out {LIFO) basis in contrast
to the random access mode used by the MPU's other ad-
dressing modes.

The MCB800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instructions
can be used to establish one or more “'stacks’” anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is ilustrated in Figures 15 and 16. The Push in-
struction (PSHA) causes the contents of the indicated ac-
cumulator (A in this example) to be stored in memory at the
location indicated by the Stack Pointer. The Stack Pointer is
automatically decremented by one following the storage
operation and is “’pointing” to the next empty stack location.
The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “‘remove’’ the data from memory; in the
example, 1A is still in location (m+ 1) following execution of
PULA.. A subsequent PUSH instruction would overwrite that
location with the new "‘pushed” data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 18 through 20. The
stack is decremented after each byte of the return address is
pushed onto the stack. For both of these instructions, the
return address is the memory focation following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be sither two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended {three bytes) addressing mode.
Before it is stacked, the Program Counter is automatically in-
cremented the correct number of times to be pointing at the
location of the next instruction. The Return from Subroutine
Instruction, RTS, causes the return address to be retrieved
and loaded into the Program Counter as shown in Figure 21.

There are several operations that cause the status of the
MPU to be saved on the stack. The Software Interrupt (SWi)
and Wait fgr_!nterrupt (WAI) instructions as well as the
maskable (TRQ) and non-maskable (NMI) hardware inter-
rupts all cause the MPU's internal registers (except for the
Stack Pointer itself) to be stacked as shown in Figure 23.
MPU status is restored by the Return from Interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. 1t is useful during
program development as a “stand-in” for some other in-
struction that is to be determined during debug. It is also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND. CADE REG.

IMMED DIRECT INDEX EXTND IMPLIED 5(4[3[2]1]0
POINTER OPERATIONS MNEMONIC | OP[~| =|OP{~| = |OP|~ | = |OP|~ | ={DP|~ | = BOOLEAN/ARITHMETIC OPERATION ([H{)| N |Z(ViC
Compare Index Reg cPX sc|3] 3|eci4a|2(Aac|e6]|2|ec|s |3 XH-M X -(M+1) oot D]
Decrement Index Reg DEX 04|11 X-1-+X ole(e|llele
Decrement Stack Pntr DES 441 SP-1-8P DURIOEIES
Increment kndex Reg INX 08|41 X+1—-+X s|ojo|l|0e
increment Stack Pntr INS 3Mia | SP+1~5SP elo|o|sjele
Load Index Reg LDX CE|3] 3|DE| 4| 2|EE}{6 |2 |FE]D {3 M- XH, M) =X . D@ l|Ri®
Load Stack Patr L0S BE|3| 3|9E|4 | 2(AE|6|2|BE|S |3 M—~SPQ, (M +1} =8P . .@ tjr|e
Store Index Reg STX DF|s5| 2|ef|7{2]FF|6 |3 KH—=M XL~ M+ 1) O RED
Store Stack Pnte STS 9F (S| 2|AF{7 |2 BF|B |3 SPH =M SPL~(M+1} o|o|®D|!|R|e
Indx Reg — Stack Pntr TS |4 X-1-5P . ejeaie
Stack Pntr — Indx Reg TSX 041 SP+1 X L] olelale

@ (Bit N} Test: Sign bit of most significant {MS) byte of result= 17
{Bit V) Test: 2's comptement overflow from subtraction of ms bytes?
(Bit N) Test: Result less than zero? {Bit 15 = 1)

MOTOROLA MICROPROCESSOR DATA

3-75

MCé6800

FIGURE 16 — STACK OPERATION, PUSH INSTRUCTION
MPU MPU

&

acca [Fz] acca [F3]

._/

m -2 m -2
m—1 SP ——m — 1
o
w
SP——> m @ New Data m F3
b4
m+1 7F a3 m+1 7F
Previously Fraviousty
Stacked m+2 63 Stacked m+2 63
Data Data
m+3 FD m+3 FD

’:!C/—l 3C
/ ___/

PC ——b PSHA <) PSHA

Next instr.) PC —> Next Instr,
(a) Bafore PSHA (b) After PSHA

FIGURE 16 — STACK OPERATION, PULL INSTRUCTION
MPU MPU

Acca] ACCA]
m—2 m—2
m-—1 m—1
SP ~———p m m
m+ 1 1A SP—» m+1 1A
Previously
Stacked m+2 3C m+2 3c
Data Previously
m+3 Ds Stacked m+3 D&
Data
PC =t PULA K PULA
Next Instr. ‘/ PC =] Next (nstr.
{a) Betors PULA (b) After PULA
MOTOROLA MICROPROCESSOR DATA

3-76

MC6800

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS
CGND. CODE REG.

RELATIVE | INDEX EXTND IMPLIED 5|afal2|1r]0
OPERATIONS MNEMONIC | OP [~ | # |OP| ~ | #|OP|~ | #|OP|~ | # BRANCH TEST WiV |[N|Z|VvicC
Branch Always BRA 20042 None o|o|o|o|e|e
Branch if Carry Clear BCC (4|2 c=0 ole|o|o am
Branch If Carry Set BCS 25 (4 (2 c=1 ol ea|o|o|0o |
Branch If = Zero BEQ W42 Z=1 oo 0|0 e
Branch If 2> Zero BGE 2c| 4|2 N®V=0 o a|(o|[0j0]|e
Branch I > Zero BGT 26| 4 |2 Z+IN®VI=0 o oo 0o e
Branch it Higher BHI 2|4 (2 C+Z=0 o o oo oln
Branch If < Zero BLE 2F| 4 |2 Z+INBVI= oo o o a|»
Branch If Lower Or Same BLS 23(4 |2 C+2=1 ol e oo
Branch If < Zero BLT 20|42 N®V=1 ol o|e|es|e|e
Branch If Minus BMI 28|42 N=1 e/ oo o o
Branch If Not Equal Zero BNE 2|4 |2 zZ=10 o] e 0|0l o|»
Branch 1f Overflow Clear BVC 842 V=0 o o |0 ole|»
Branch If Overflow Set BVS 28(4 2 v=1 e oo/ e e|e
Branch If Phus BPL 284 |2 N=0 ol ojo| o|a|e
Branch To Subrouting BSR 8D | 8|2 el o o/ o|a|e
Jump JMP 6E| 4| 2| 7€ 3| 3 } See Special Operatians o e|o|e|a|n
Jump To Subroutine JSR AD(8| 2|BO[9|3 el ajo| 0| e|m®
No Dperation NOP 012 (1 Advances Prog. Cotr. Only o|e|s| 0| o]
Return From interrupt RTI 3B 10 ®
Return From Subroutine RTS 35 |1 o|e|eo) o a]|e

Software Interrupt Swi IF (12 See Special Opesations (e eofe|e |

Wait for Interrupt * WAI E(9 [} . @ o | o|e|se

*WAI puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

@ an Load Condition Code Register from Stack. {See Special Operations)
@ (Bit 1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt
is required 1o exit the wait state.

Execution of the Jump Instruction, JMP, and Branch cle faster than JSR. The Return from Subroutine, RTS, is
Always, BRA, affects program flow as shown in Figure 17. used as the end of a subroutine to return to the main pro-
When the MPU encounters the Jump {Indexed) instruction, gram as indicated in Figure 21.
it adds the offset to the value in the Index Register and uses The effect of executing the Software interrupt, SWI, and
the result as the address of the next instruction to be ex- the Wait for Interrupt, WAI, and their relationship to the
ecuted. In the extended addressing mode, the address of the hardware interrupts is shown in Figure 22. SWI causes the
next instruction 1o be executed is fetched from the two loca- MPU contents to be stacked and then fetches the starting
tions immediately following the JMP instruction. The Branch address of the interrupt routine from the memory locations
Always (BRA) instruction is similar to the JMP (extended) in- that respond to the addresses FFFA and FFFB. Note that as
struction except that the relative addressing mode applies in the case of the subroutine instructions, the Program
and the branch is limited to the range within — 125 or +127 Counter is incremented to point at the correct return address
bytes of the branch instruction itself. The opcode for the before being stacked. The Return from Interrupt instruction,
BRA instruction requires one less byte than JMP (extended) RTI, (Figure 22} is used at the end of an interrupt routine to
but takes ane more cycle to execute. restore control to the main program. The SWI instruction is

The effect on program flow for the Jump to Subroutine useful for inserting break points in the control program, that
{JSR) and Branch to Subroutine {BSR) is shown in Figures is, it can be used to stop operation and put the MPU
18 through 20. Note that the Program Counter is properly in- registers in memory where they can be examined. The WAI
cremented to be pointing at the correct return address instruction is used to decrease the time required to service a
before it is stacked. Operatian of the Branch to Subroutine hardware interrupt; it stacks the MPU contents and then
and Jump to Subroutine (extended) instruction is similar ex- waits for the interrupt to occur, effectively removing the
cept for the range. The BSH instruction requires less opcode stacking time from a hardware interrupt sequence.

than JSR (2 bytes versus 3 bytes) and also executes one cy-

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

PC Main Program

Main Progrem
" :EamJ::;gmm n | TE=IMP 26=BAA
= n =
" n+1 [KH=Next Address
n+1 | K=Dffset n+1 K = Offset”
INDXD - EXTND n+2 |Ky=Next Address T
M .

«

*K = Signed 7-bit value

(a) Jump {b) Branch

MOTOROLA MICROPROCESSOR DATA
3-77

MC6800

FIGURE 18 — PROGRAM FLOW FOR BSR
/

m -2 SP—m .. 2

m—1 m—1 {(n+2)H
SP—> m m (n+2)L

m+ 1 7€ m+ 1 JE

TA

f .

PC~=—» n BSR n BSR
n+1 1K = Offser* n+1 K = Otfset
n+2 Next Main Instr. n+2 Next Main tnstr.

———-/

*K = Signed 7-Bit Value

PC—(n + 2) K 1st Subr. Instr.
(a) Before Execution (b) Atter Execution
FIGURE 19 — PROGRAM FLOW FOR JSR {EXTENDED) FIGURE 20 — PROGRAM FLOW FOR JSR {INDEXED)
/ /
r__/. m-3 m -2 P 2
m-2 SP—e=m -2 m-1 m-1 {n+ 2
"1 m-t (n+ 3K SP ——a ™ (n+2)L
SP —=—=tr m m {n+ 3L m+1 7E m+1 7€
me 7€ m+ 7€ 74 74
f
me2 7A me2 74 R
ic
_/70__~ PC— n ISR = AD n JSR - AD
—] n+ K = Offser* a+t K = Offset
PCam—te n JSR = BD n ISR n+2 | NextMain tnstr. ne2 Next Main Inste.
n+1 | Sy =Subr Addr. n+1 S = Subr. Addr. / .
n+2 | S =Subr. Addr. n+2 | S =Subr. Addr.)
- K = 8:8it Unsignea value o ., ¢ 15t Subr. Insir
n+3 Next Main Instr. n+3 Next Main lnstr.
/— f
(a) Before Enscution PC—>§ 13t Subr. Instr. "Contents of Index Regster
{s) Before Execution {n) Afrer Execution
(S formaed from
Syand S,) \/__

(b} Ateer Execution

MOTOROLA MICROPROCESSOR DATA

3-78

PC —— Sn

m—6
m -5
m -4
m -3
m—2
m—1

m

PC —w—

FIGURE 21 — PROGRAM FLOW FOR RTS

in +3)H

{n +3)L

7E

7A

f

JSR = BD

Spy = Subr. Addr.

S = Subr. Addr.

Next Main Instr.

L/—

Last Subr. Instr,

RTS

L_/_

(a) Before Execution

SP——» m

m+1

n+2

PC—#n+3

Sn

FIGURE 22 — PROGRAM FLOW FOR RTI

/

CCR

ACCB

ACCA

Xy (Index Reg)

X {index Reg)

PCln+1)H

PCin+1)L

[= —
/

Next Main Instr.

./
—/

Last Inter. Instr.

AT

———

(a) Before Exscution

m -7
m—6
m—5
m—4
m -3
m-2
m -1
SP—mm— m

PC—= n+1

Sn

MOTOROLA MICROPROCESSOR DATA

7E

TA

—
/

JSR = BD

SH = Subr. Addr.

S| = Subr. Addr.

Next Main Instr,

——

Last Subr. instr.

RTS

{b) After Execution

——/—\

CCR

ACCB

ACCA

XL

PCH

PCL

TE

—/

Next Main Instr.

L
/

Last Subr. Instr.

RTI

(b) After E xecution

MC6800

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Wait For Hardware tnterrupt or
Software Interrupt interrupt Non-Maskable Interrupt {NMI)
Main Program Main Program Main Pragram
o 3F=sw n | 3E=wal [
n+1 | Next Main Instr. a+1 | Next Main instr. n uast Prog. Byte I

Continue Main Prog.

ne

Stack

SP—> m -7

m — & 1 Londition Code
Stack MPU :>
Register Contents m —5 | Acmitr. B
m—4] Acmitr. A
m — 3| Index Register (X))

m — 2| Index Register (X i
m -1 PCln + 1)H
m PCin + 1)L

Swi HDWR WA| NM) ‘ Restart
INT -

Int.
Mask Set?
{CCR 4)

Wait Loop

FFFA FEF8 FFFC & FFFE
¥ FFEB ¥ FFFY Frr0 Y FFFF

v

1
Interrupt Memory Assignment Set Interrupt

FFF8 IRQ MS Mask (CCR 4)
FFFY 1RQ Ls ‘
FFFA SWI MS First Instr.

LS Addr. Formed Load Interrupt
FFFB SWI MS @ By Fetching Vector lato
FFFC NMIt 2-Bytes From Program Counter
FFFO NM| LS Per. Mem.
FFFE Reset MS Assign.
FFFF Reset Ls

interrupt Program

NOTE: MS = Most Significant Address Byte; Tst Interrupt nstr.
LS = Least Significant Address Byte;

MOTOROLA MICROPROCESSOR DATA

3-80

MC6800

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI N=1 ; BEQ Z=1;
BPL : N=¢ BNE : Z=¢ .
8vVC : V=¢ ; B8CC C=¢ ;
8vs : v=1 BCS =1
BHI C+2=9¢ ; BLT : N@év=1 ;
BLS : C+Z=1; BGE : N@&Vv=¢ ;
BLE : Z+(NBV)=1 ;
8GT : Z+(N®V)=¢ ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence (test fails) or
cause a branch to another point in the program {test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BMI) and Branch On Plus (BPL) tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal (BEQ} and Branch On Not Equal
[BNE} are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zera. These two instructions are useful following & Com-
pare {CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test {BIT} to determine whether or not the same bit posi-
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branch On
Overflow Set {(BVS} tests the state of the V bit to determine
if the previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
[BCS) tests the state of the C bit to determine if the previous
operation caused a carry 1o occur. BCC and BCS are useful

for testing relative magnitude when the vaiues being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest]. BCC following a
comparison (CMP] will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BH!} and
Branch On Lower or Same (BLS) are, in a sense, com-
plements to BCC and BCS. BHI tests for both C and Z=0; if
used following a CMP, it will cause a branch if the value in
the accumulator is higher than the operand. Conversely,
BLS will cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two’s
camptement numbers. This differs from the unsigned binary
case in the following sense: in unsigned, the orientation is
higher or lower; in signed two’s complement, the com-
parison is between larger or smaller where the range of
values is between —~ 128 and + 127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero {BGE) test the status bits for Ne V=1
and Ne V=0, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the
operand was positive. BLT will never cause a branch follow-
ing a CMP in which the accumulator value was positive and
the operand negative. BGE, the complement to BLT, will
cause.a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
for Ze (N+V)=1 and Ze (N + V)=0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

The Condition Code Register (CCR) is a 6-bit register
within the MPU that is useful in controlling program flow
during system operation. The bits are defined in Figure 25.

The instructions shown in Table 5 are available to the user
for direct manipulation of the CCR.

A CLI-WAI instruction sequence operated properly, with
early MCB800 processars, only if the preceding instruction
was odd {Least Significant Bit= 1. Similarly it was advisable

to precede any SEl instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEL

MOTOROLA MICROPROCESSOR DATA

3-81

MC6800

FIGURE 26 — CONDITION CODE REGISTER BIT DEFINITION

bg bg b3z by by

[n]

INIZIVICT

H = Half-carry; set whenever a carry from b3 to by of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

| = Interrupt Mask; set by hardware or software interrupt or SE| instruction;
cleared by CLI instruction. {Narmally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if Im stared on the
stacked is low,

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there was arithmetic overflow as a result of the operation;
cteared otherwise.

C = Carry; set if there was a carry from the most significant bit (bz) of the
result; cleared otherwise.

TABLE 5 — CONDITION CODE REGISTER INSTRUCTIONS
COND. CODE REG.
— —r
IMPLIED 5{4(3[2]1]¢

OPERATIONS MNEMONIC | 0P | ~ | = |BDOLEANOPERATION | Hf 1 [N |Z [v| C
Clear Carry cLe oc|z i1 0-c o o e !e|e R
Clear Interrupt Mask CLI QE | 2 |1 0--1 @« R|(® o]0 @
Clear Dverfiow CLv 6A 2 |1 0—-v *| o | e o|R | @
Set Carry SEC gpl2 |1 t—C o o | o 0@
Set nterrupt Mask SEI OF [2 |1 1 eiSle | eie| e
Set Dverflow SEV oBl2 1 1-v o|s|eo leis|e
Acmitr A— CCR TAP 06|21 A ~CCR 1

CCR > Acmitr A TPA 07]2 1 CCR -A ARENIRIK
R = Reset
S = Set

® = Not affected

@ (ALL) Set according to the contents of Accumulator A

ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented
to it via the data bus. A given number {byte) may rep-
resent either data or an instruction to be executed, de-
pending on where it is encountered in the control program.
The M6800 has 72 unique instructions; however, it rec-
ognizes and takes action on 197 of the 256 possibilities
that can occur using an 8-bit word length. This larger
number of instructions results from the fact that many of
the executive instructions have more than one address-
ing mode.

These addressing modes refer to the manner in which
the program causes the MPU to obtain its instructions
and data. The programmer must have a method for ad-
dressing the MPU’s internal registers and all of the ex-
ternal memory locations.

Selection of the desired addressing mode is made by
the user as the source statements are written. Translation

into appropriate opcode then depends on the method
used. If manual translation is used, the addressing mode
is inherent in the opcode. For example, the immediate,
direct, indexed, and extended modes may all be used
with the ADD instruction. The proper mode is determined
by selecting (hexadecimal notation) 8B, 9B, AB, or BB,
respectively.

The source statement format includes adequate infor-
mation for the selection if an assembier program is used
to generate the opcode. For instance, the immediate mode
is selected by the assembler whenever it encounters the
“#' symbol in the operand field. Similarly, an X" in the
operand field causes the indexed mode to be selected.
Only the relative mode applies to the branch instructions;
therefore, the mnemonic instruction itself is enough for
the assemble to determine addressing mode.

e

MOTOROLA MICROPROCESSOR DATA

3-82

MC6800

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes ““Accumulator Addressing” Mode)

The successive fields in a statement are narmally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

“‘operands’ but the space between them and the operator
may be omitted. This is commonly done, resulting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment

ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA
or

ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also

applies to the accumulators and uses the ““accumulator ad-
dressing mode’* to designate which of the two accumulators
is being tested:

FIGURE 26 — ADDRESSING MODE SUMMARY

Direct: n

00 Instruction

Example: SUBB Z

Addr. Range = 0—255 n+1 Z = Oprnd Address
& n+2 Next Instr.
[4
L
L]
(K = One-Byte Oprnd} z
OR
(K = Two-Byte Qprnd) z K = Operand
Z+1 K| = Operand

A 112 $ 255, Assembler Select Direct Mode
If Z > 255, Extended Mode is selectad

E xtended: n FO Instruction
Exampie: CMPA 2 n+1 2y = OPrnd Address
Addr. Range: n+2 | Z|_ = Oprnd Address
256-65535
n+3 Next Instr.
L]
L]
(K = One-Byte Oprnd) z
QR
{K = Two-Byte Oprnd) 2 Ky = Operand

K = Opsrand

Immediate: n {nstruction

Exampie: LDAA #K n+1 =

{K = One-Byte Oprnd) K = Operand
n+2 Next Inst.

OR

(K = Two-Byte Oprnd) n .

(CPX, LDX, and LDS) Instruction
n+ Ky = Operand
n+2 K{ = Operand
n+3 Next instr.

Relative: n Instruction

Example: BNE K N+ *K = 8rnch Offset

(K - Signed 7-Bit Value) n +2 Next instr. 2\

Addr. Range: °

-125 to +129

Relative to n. °

(n+2)%K

A If Bench Tst False, & if Brnch Tst True.

Indexed: n Instruction
Example: ADDA Z, X n+1 Z = Otfsat
Addr. Range: n+2 Next instr.
0—255 Relative to
index Ragister, X

.

L]

L 4

{Z = 8-Bit Unsignad
Value)

MOTOROLA MICROPROCESSOR DATA

3-83

mMcCses00

Operator Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OFf ACCA

A number of the instructions either alone or together with
an accumuiator operand contain all of the address informa-
tion that is required, that is, “inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of "“accumulator addressing,” causes the contents
of accumulator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — In the Immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Operator Operand Comment
LDAA #25 LOAD 25 INTO ACCA

causes the MPU to “immediately load accumulator A with
the value 25”'; no further address reference is required. The
immediate mode is selected by preceding the operand value
with the “#’ symbol. Program flow for this addressing mode
is ilustrated in Figure 29.

The operand format allows either properly defined sym-
bols or numerical values. Except for the instructions CPX,
LDX, and LDS, the operand may be any value in the range 0
to 265. Since Compare Index Register (CPX), Load Index
Register {LDX], and Load Stack Pointer (LDS), require 16-bit
values, the immediate maode for these three instructions re-
quire two-byte operands. in the Immediate addressing

FIGURE 27 — INHERENT ADDRESSING

MPU MPU
INDEX
—
RAM RAM
PROGRAM
PROGRAM
MEMORY MEMORY
PC INSTR K PC = 5000 INX K
GENERAL FLOW EXAMPLE

mode, the “address” of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — in the Direct
and Extended modes of addressing, the aperand field of the
source statement is the address of the value that is to be
operated on. The Direct and Extended modes differ only in
the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand
and, hence, can address only memory locations 0 through
255; a two byte operand is generated for Extended address-
ing, enabling the MPU to reach the remaining memory loca-
tions, 266 through 65535. An example of Direct addressing
and its effect on program flow is illustrated in Figure 30.

The MPU, after encountering the opcode for the instruc-
tion LDAA (Direct) at memory location 5004 (Pragram
Counter=5004), looks in the next location, 5005, for the ad-
dress of the operand. It then sets the program counter equal
to the value found there {100 in the exampie) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a two-byte
operand such as LDX {Load the Index Register), the operand
bytes would be retrieved from locations 100 and 101. Table 8
shows the cycle-by-cycle aperation for the direct mode of
addressing.

Extended addressing, Figure 31, is similar except that a
two-byte address is obtained from locations 5007 and 5008
after the LDAB (Extended) opcode shows up in location
5006. Extended addressing can be thought of as the ““stan-
dard” addressing mode, that is, it is a8 method of reaching
any place in memory. Direct addressing, since anly one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 8 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

MPU MPU
ACCB
RAM RAM
PROGRAM PROGRAM
MEMORY MEMORY
pc[INsTR <_J_J PC=5001| INCEB
GENERAL FLOW EXAMPLE

MOTOROLA MICROPROCESSOR DATA

mMGaGooo

Relstive Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU’s branch instructions, specifies a
memory location relative to the Program Counter’s current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"relative” address (see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, 0" =plus and “1"=minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of + 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. If D is defined as the address of the
branch destination, the range is then:

(PC+2)-127<D=<(PC+2)+ 127
or
PC-125<D<PC+129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itself. For transferring controt beyond this range,

the unconditional jump {(JMP), jump to subroutine (JSR),
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. If that bit is *'0,” in-
dicating a non-zero resuit, the MPU continues execution
with the next instruction {in location 5010 in Figure 32). if the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+ 2 and
branches to location 50256 for the next instruction.

The branch instructions allow the programmer to efficient-
ly direct the MPU to one point or anather in the control pro-
gram depending on the outcome of test resuits. Since the
control program is normally in read-only memary and cannat
be changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 10 for relative addressing.

Indexed Addressing Mode — With Indexed addressing,
the numerical address is variatle and depends on the current
contents of the Index Register. A source statement such as

Comment
PUT A IN INDEXED LOCATION

Operator Operand
STAA X

causes the MPU to store the contents of accumulator A in

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2 2 1 Op Code Address + 1 t Op Code of Next Instruction
ASR INC SEV
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
ﬁ\‘ESX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INX 3 0 Previous Register Contents 1 trrelevant Data [Note 1)
4 0 New Register Contents 1 Irrelevant Data (Note 1)
PSH 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer Q Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Cade Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 o] Stack Pointer 1 Irrelevant Data {Note 1)
4 0 New Index Register 1 Irrelevant Data {Note 1)
XS 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Index Register 1 Irrelevant Data
4q o} New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Cade
2 1 Op Code Address + 1 1 Irrelevant Data (Note 2)
5 3 0 Stack Pointer 1 Irrelevant Data (Note 1}
4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
Order Byte)

MOTOROLA MICROPROCESSOR DATA

22_KS

MC6800

TABLE 8 — INHERENT MODE CYCLE-BY-CYCLE OPERATION (CONTINUED)

Address Mode Cycle| VMA R/W|
and Instructions Cycles # Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 | Return Address {Low Order Byte)
4 1 | Stack Pointer — 1 0 | Return Address (High Order Byte)
9 5 1 | Stack Pointer — 2 0 | Index Register (Low Order Byte)
6 1 | Stack Pointer — 3 0 { Index Register {High Order Byte}
7 1 | Stack Pointer — 4 0 | Contents of Accumulator A
8 1 | Stack Pointer — 5 0 | Contents of Accumulator 8
9 1 [Stack Pointer — 6 (Note 3} 1 | Contents of Cond. Code Register
RT! 1 1 |Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | lIrrelevant Data (Note 2)
3 0 | Stack Pointer 1 | Irrelevant Data (Note 1)
4 1 |Stack Pointer + 1 1 | Contents of Cond. Code Register fram
Stack
10 5 1 |Stack Pointer + 2 1 | Contents of Accumulator B from Stack
6 1 [Stack Pointer + 3 1 | Contents of Accumulator A from Stack
7 1 |Stack Pointer + 4 1 | Index Register from Stack (High Order
Byte)
8 1 {Stack Pointer +5 1 [Index Register from Stack (Low Order
Byte)
9 1 |Stack Pointer + 6 1 | Next Instruction Address from Stack
[High Order Byte}
10 1 |Stack Pointer + 7 1 | Next tnstruction Address from Stack
{Low Order Byte}
SWi 1 1 [Op Code Address 1 |.Op Code
2 1 [Op Code Address + 1 1 | lrrelevant Data (Note 1}
3 1 |Stack Pointer 0 | Return Address (Low Order Byte}
4 1 | Stack Pointer — 1 0 | Return Address (High Order Byte)
[1 |Stack Pointer — 2 0 | Index Register {(Low Order Byte}
12 6 1 |Stack Pointer — 3 0 | Index Register (High Order Byte)
7 1 |Stack Pointer — 4 0 | Contents of Accumulator A
8 1 |Stack Pointer — 5 0 | Contents of Accumulator B
9 1 |Stack Pointer — 6 0 | Contents of Cond. Code Register
10 0 |Stack Pointer — 7 1 | Irrelevant Data (Note 1}
1" 1 !Vector Address FFFA (Hex) 1 | Address of Subroutine (High Order
Byte)
12 1 |Vector Address FFFB {(Hex} 1 | Address of Subroutine (Low Order
Byte)
Note 1. f device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. Data is ignored by the MPU.
Note 3. While the MPU is waiting for the interrupt, Bus Available will go high indicating the following states of the cantrol lines: VMA is

low; Address Bus, R/W, and Data Bus are all in the high impedance state.

the memory location specified by the contents of the Index
Register {recall that the label **X"" is reserved to designate the
Index Register). Since there are instructions for manigulating
X during program execution {LDX, INX, DEC, etc.), the In-
dexed addressing mede provides a dynamic “‘on the fly” way
to modify program activity.

The aperand field can also contain a numerical value that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB {Indexed) opcode in

location 6008, it looks in the next memory location for the
value to be added to X (5in the examplel and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-265
as in the example. In the earlier example, STAA X, the
operand is equivalent to 0, X, that is, the O may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the Indexed Mode of Address-
ing.

MOTOROLA MICROPROCESSOR DATA

2-26

MC6800

FIGURE 29 — IMMEDIATE ADDRESSING MODE FIGURE 30 — DIRECT ADDRESSING MODE

MPY MPU My MPU
: ACCA : : ACCA :
RAM Ram RAM RAM
<: <: ADOR [DATA ADDR = 100 S
PROGRAM PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY
™~ q ——
ec | InsTR oC - 5002| LDA A pc | INSTR pc=5004| DA A .
DATA 25 pc+1| aopbr 5005 100 &
ADDR = 0 £ 255
GENERAL FLOW EXAMPLE GENERAL FLOW EXAMPLE
\'r
TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle [VMA R/W
and Instructions Cycles # | Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 | 1 | OpCode Address + 1 1 | Operand Data
AND ORA 2 p Code e
BIT SBC
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
tgi 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byts)
3 1 Op Code Address + 2 1 Operand Data (Low Order Byte)

TABLE 8 — DIRECT MODE CYCLE-BY-CYCLE OPERATION

Address Mode I vacle lVMA | R/W
and Instructions Cycles # Line Address Bus Line Dats Bus
ADC EOR 1 1 Op Code Address 1 Op Code
238 ('33/; 3 2 1 | Op Code Address + 1 1 | Address of Operand
BIT SBC 3 1 Address of Operand 1 Operand Data
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
tgi a 2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data {Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address 0 Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 Irrelevant Data (Note 1)
4 1 Address of Qperand 0 Register Data {High Order Byte)
5 1 Address of Operand + 1 0 Register Data {Low Order Byte)

Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained an the Data Bus.

MOTOROLA MICROPROCESSOR DATA
3-87

MCé6800

FIGURE 31 — EXTENDED ADDRESSING MODE

MPU MPU
: ACCB
RAM RaM
ADDR DATA ADDR = 300 a5
PROGRAM PROGRAM
MEMORY MEMQRY
INSTR PC = 5006 LDA 8
PC ADDR <
300
ADDR
— el TN
ADDR = 256
GENERAL FLOW EXAMPLE

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

<
-
e

Address Mode Cvcin] vMa] RAW [
and Instructions Cycles = Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
& 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 [} Address of Operand 1 Irrelevant Data (Note 1}
5 1 Address of Operand o) Dperand Data (High Order Byte)
[1 Address of Operand + 1 4] Operand Data {Law Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Subroutine (High Order Byte}
3 1 Op Code Address + 2 1 Address of Subroutine {Low Order Byte}
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Painter Q Return Address {Low Order Byte)
6 1 Stack Painter - 1 o] Return Address (High Order Byte)
7 a Stack Pomnter - 2 1 frrelevant Data (Noze 1}
8 0 Op Code Address + 2 1 Irreievant Data (Note 1)
9 1 Op Code Address + 2 1 Address of Subroutine {Low Drder Bytel
NP 1 1 Op Code Address 1 Op Code
3 2 1 QOp Code Address + 1 1 Jump Address (High Order Byte)
3 1 Op Code Address + 2 1 Jump Address {Low Order Byte)
ADC EOR 1 1 Op Code Address 1 QOp Code
ADD LDA 2 1 Op Code Address + 1 1| Adoress of Operand (High Order Byte)
AND ORA 4
BIT SBC 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
CMP 5UB 4 1 Address of Operand 1| Operand Data
CPX 1 1 Op Code Address 1 Op Code
tgi 2 | 1 | OpCode Address+ 1 1| Address of Operand [High Order Byte)
5 3 1 Op Code Address + 2 1 Address of Operand [Low Order Byte}
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data {Low Order Byte)
STA A 1 1 Op Code Address 1 Op Code
STAB 2 1 Op Code Address + 1 1| Destination Address (High Order Byte)
5 3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 Q Operand Destination Address 1 Irrelevant Data (Note 1)
5 1 Operand Destination Address o] Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
2‘5_2 gg‘f_ 2 1 Op Code Address + 1 1| Address ot Operand (High Order Byte)
COM ROR 6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)}
R‘ECC TST 4 1 Address of Operand 1 | Current Operand Data
5 o] Address of Operand 1 Irrelevant Data (Note 1)
6 1/0 Address of Operand 0 New Operand Data (Note 2)
(Note
2}
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA MICROPROCESSOR DATA

3-88

MC6800

FIGURE 32 — RELATIVE ADDRESSING MODE

MPU MPU
RAM AM
Program Program
Memory Memory
PC]| Instr,
Offset PC 5008 BEQ
(PC + 2)] Next Instr. 15
PC 5010] Next instr.
N _\J
{PC + 2) + (Offset)] Next Instr. PC 5025 Next Instr.

FIGURE 33 — INDEXED ADDRESSING MODE

MPU MPU

ACCB

[58]

NDEX

[200]

RAM RAM

ADDR = INDX < :
ADDR =
+ oFFseT |_DATA 405 59

PROGRAM PAOGRAM
MEMDRY MEMORY

PC INSTR PC = 5006
OFFSET K

OFFSET < 255
GENERAL FLOW EXAMPLE

Wl

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
BCC BHI BNE 1 1 |Op Code Address 1 |Op Code
Bcs BLE BRL a 2 | 1 |Op Code Address + 1 1 [Branch Offset
BGE BLT BVC 3 0 |Op Code Address + 2 1 |Irrelevant Data (Note 1)
BGT BMI BVS 4 0 |Branch Address 1 [Irrelevant Data (Note 1)
BSR 1 1 |Op Code Address 1 |Op Code
2 1 {Op Code Address + 1 1 |Branch Offset
3 0 |Return Address of Main Program 1 {irrelevant Data (Note 1)
8 4 1 |Stack Pointer 0 |Return Address (Low Order Byte)
5 1 |Stack Pointer — 1 0 [Return Address (High Order Byte]
6 0 |Stack Pointer — 2 1 |lrrelevant Data (Note 1)
7 D [Return Address of Main Program 1 [lrretevant Data (Note 1}
8 0 |Subroutine Address 1 |Irrelevant Data (Note 1)
Note 1. lf device which is addresed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
ding on bus , data from the previous cycle may be retained on the Data Bus.

MOTOROLA MICROPROCESSOR DATA
3-89

MC6800

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

L Address Mode [l Cycle [VMAT [RAN
ond Instructions Cycles Line Address Bus Line Dats Bus
INDEXED [
JMP 1 1 | Op Code Address 1 | OpCode ~
a 2 1 Op Code Address + 1 1 Offset
3 0 index Register 1 Irrelevant Data (Note 1}
4 0 index Register Plus Offset (w/o Carry) 1 Irretevant Data (Note 1)
ADC EQOR 1 1 Op Code Address 1 Op Code
:zg (L)g': 2 1 Op Code Address + 1 1 Offset
BIT SBC 5 3 0 index Register 1 Irrelevant Data (Note 1)
CMP SuB 4 0 Index Register Plus Offset (w/o Carry) 1 Irrefevant Data {Note 1}
5 1 Index Register Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Op Code
tgi 2 1 Op Code Address + 1 1 Offser
6 3 0 tndex Register 1 Irrelevant Data {Note 1)
a4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data {Note 1)
5 1 Index Register Plus Offset 1 Operand Data (High Order 8yte)
6 1 Index Register Plus Offset + 1 1 Operand Data (Low Order Byte}
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
6 3 0 index Register . 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1]
5] Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 Index Register Plus Offset "] Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
éfg :(E)?_ 2 1 Op Code Address + 1 1 Offset
COM ROR 7 3 0 index Register 1 irrelevant Data {(Note 1}
IIDNEé: TST 4 0 Index Register Pius Offset {w/o Carry) 1 trrelevant Data {Note 1}
5 1 index Register Plus Offset 1 Current Operand Data
[0 Index Register Plus Offset 1 Irrelevant Data {Note 1}
7 1/0 Index Register Plus Offset Q New Operand Data (Note 2}
{Note
2)
STS 1 1 Op Code Address 1 Op Code
sTX 2 1 Op Code Address + 1 1 Offset
7 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry} 1 Irrelevant Data (Note 1}
[0 Index Register Plus Offset 1 Irrelevant Data (Note 11
6 1 Index Register Plus Offset o Operand Data {High Order Byte!
7 1 Index Register Plus Offset + 1 0 Operand Data {Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 4] index Register 1 Irrelevant Data (Note 1)
8 4 1 Stack Pointer ¢ Return Addrass (Low Order Byte}
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (Note 1}
7 0 index Register 1 Irrelevant Data {(Note 1}
8 0 Index Register Plus Offsat (w/o Carry) 1 Irrelevant Data (Note 1)

Note 1. [f device which is addresed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
3] ding on bus cap: . data from the previous cycle may be retained on the Data Bus.
Note 2. For TST, VMA =0 and Operand data does not change.

MOTOROLA MICROPROCESSOR DATA
3-90

McCcegsoo

ORDERING INFORMATION

Package Type requency (MHz) Temperature Order Number
Cerdip 1.0 0°C to 70°C MC6800S
S Suffix 1.0 —-40°C to 85°C MC6800CS
1.5 0°C to 70°C MC68A00S
1.5 —40°C to 85°C MC68A00CS
2.0 0°C to 70°C MC68B00S
Plastic 1.0 0°C to 70°C MC6800P
P Suffix 1.0 -40°C to 85°C MC6800CP
15 0°C to 70°C MC68A00P
15 —-40°C to 85°C MC68AQ0OCP
2.0 0°C to 70°C MC68B00P

PIN ASSIGNMENT

vssfi @ 0[] RESET
HALTO » 9 TSC
#1032 38NC
RQf4 392
vMAQY 3 [1DBE
NMiQs “HONC
Bal] MRW
veel s 330100
AoQe 3zf1D1
arfhw 3102
Azlln 3003
A3ffr2 23[]1D4
Aaf]rs 28{J05
asfa 27pos
aslite 26107
a7lhe Al
asll7 24[1A14
asf]s 23[3A13
a0 22012
anffzo 21flvss

MOTOROLA MICROPROCESSOR DATA

3-91

