MITSUBISHI SEMICONDUCTOR (GAAs FET)

MGF1802

6249829 MITSUBISHI (DISCRETE SC)

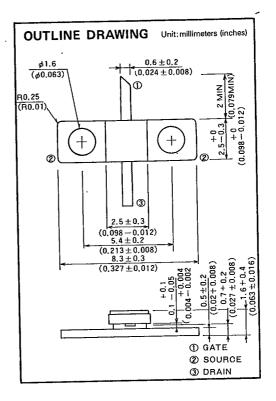
91D 10084

DT-31-25

FOR MICROWAVE POWER AMPLIFIERS

DESCRIPTION

The MGF1802, high-power GaAs FET with an N-channel Schottky gate, is designed for use in C- to X-band amplifiers. The hermetically sealed metal-ceramic package assures minimum parasitic losses and has a configuration suitable for microstrip circuits.


FEATURES

- High output power
 - P_{1dB} = 150 mW (TYP.) @f = 12 GHz
- High linear power gain
 - G_{LP} = 7.0 dB (TYP.) @f = 12 GHz
- High power added efficiency

 $\eta_{\rm add}$ = 20% (TYP.) @f = 12 GHz, $P_{\rm 1dB}$

QUALITY GRADE

• IG, IGX, IGV, HRG

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Rating	Unit
V _{GDO}	Gate to drain voltage	-8	
V _{GSO}	Gate to source voltage	-8	٧
I _D	Drain current	250	mA
Igr	Reverse gate current	-0.6	mA
IgF	Forward gate current	1.5	mA
PT	Total power dissipation	1.8	w
Tch	Channel temperature	175	*c
Tstg	Storage temperature	-55~+175	•c
Rth (ch-c)	Thermal resistance	83	•c/w

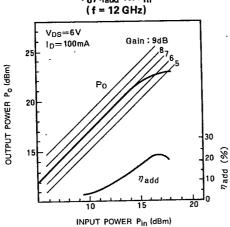
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	Paramter			Limits		
Symbol		Conditions	Min	Min Typ	Max	Unit
	Saturated drain current	V _{DS} =3V, V _{GS} =0V	150	200	250	mA
IDSS	Gate to source cut-off voltage	V _{DS} =3V, I _D =1mA	-1.5		-4.5	٧
V _{GS} (off)	Transconductance	V _{DS} =3V, I _D =100mA	70	90		mS
9m P _{1dB}	Output power at 1 dB gain	103 0110	130	150		mW
	compression Linear power gain	V _{DS} =6V, I _D =100mA, f=12GHz	6	7		dB
GLP 7add	Power added efficiency	·		20		%

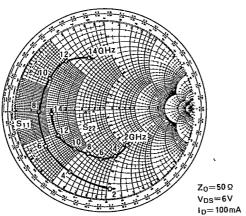
MITSUBISHI SEMICONDUCTOR (GaAs FET)

MGF1802

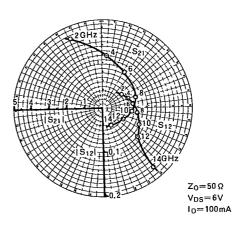
T-31-25


6249829 MITSUBISHI (DISCRETE SC)

91D 10085


FOR MICROWAVE POWER AMPLIFIERS

TYPICAL CHARACTERISTICS (Ta=25°C)


 P_o , η_{add} vs. P_{in} (f = 12 GHz)

. S₁₁, S₂₂ vs. f

S12, S21 vs. f

S PARAMETERS ($T_a=25^{\circ}C$, $V_{DS}=6V$, $I_D=100mA$)

		S Parameters (TYP.)							
f	S ₁₁		S ₁₂		S ₂₁		S ₂₂		
(GHz)	Magn.	Angle (deg.)	Magn.	Angle (deg.)	Magn.	Angle (deg.)	Mag.	Angle (deg.)	
	0.88	-86	0.044	40	4.3	113.5	0.5	-52	
2 4	0.78	-119	0,056	22	3.0	84.5	0.51	70	
6 .	0.75	-149	0.06	5.5	2,3	58.0	0.515	-89	
8	0.73	179.5	0.072	-10.5	1.8	19.5	0.53	109	
10	0.71	149	0.08	25	1,45	,-8.0	0.545	-128	
12	0.69	129	0,104	-40.5	1,25	-28.0	0.58	150	
14	0.6	104	0,175	-52	1.0	59.5	0.6	-178	

MITSUBISHI SEMICONDUCTOR (GaAs FET)

MGF1802

6249829 MITSUBISHI (DISCRETE SC)

91D 10086 D

FOR MICROWAVE POWER AMPLIFIERS

T-31-25

HANDLING PRECAUTIONS FOR GaAs FETs

1. Check of Electrical Characteristics

(1) Measurement of DC Characteristics by Curve Tracer Many curve tracers, if not properly grounded, exhibit a high leakage current from the high-voltage transformer, which can be a prime cause of failure or degradation of the FET. Measurement of the DC characteristics using a curve tracer is therefore not recommended. However, when tests using a curve tracer are required, first of all, check that the curve tracer is grounded to earth.

(2) Measurement of RF Characteristics

Before measurement, check that the measuring instruments are grounded to earth. Many instruments to measure RF characteristics such as RF power meters, network analyzers and so on, if not properly grounded to earth, sometimes allow a high AC leakage of up to 20 or more volts, which can be a cause of failure or degradation of the FET.

2. Installation of GaAs FET

When GaAs FET is soldered on a microstrip circuit, the following should be attended to,

(1) Properly ground the soldering iron to earth.

Leakage current from the soldering iron could cause failure or degradation of the FET.

(2) Solder the FET as promptly as possible at a low temperature. For a criterion, soldering in less than 8 seconds at a temperature of less than 250°C is recommended for each soldering process.

3. Bias Procedure and Conditions

When GaAs FET is biased, the following procedure is recommended.

- (1) Slowly adjust the gate to source voltage, $V_{\text{GS}},$ to about $-\,\text{1V}.$
- (2) Gradually increase the drain to source voltage, V_{DS} , from zero to a desired value.
- (3) Adjust the drain current, I_D, to the desired value by controlling the gate to source voltage, V_{GS}.

When bias is released, the reverse procedure is recommended.

Be careful that the FET is not operated under conditions exceeding the absolute maximum ratings.

4. Guaranteed Characteristics

All the graphic characteristics illustrated in this catalog are typical examples. The characteristics of individual devices as specified in the tables of absolute maximum ratings and electrical characteristics are guaranteed under the specified conditions.