NAND Flash Memory

MT29F64G08CBAA[A/B], MT29F128G08C[E/F]AAA, MT29F128G08CFAAB, MT29F256G08C[J/K/M]AAA, MT29F256G08CJAAB, MT29F512G08CUAAA, MT29F64G08CBCAB, MT29F128G08CECAB, MT29F256G08C[K/M]CAB, MT29F512G08CUCAB

Features

- Open NAND Flash Interface (ONFI) 2.2-compliant
- Multiple-level cell (MLC) technology
- Organization
 - Page size x8: 8640 bytes (8192 + 448 bytes)
 - Block size: 256 pages (2048K + 112K bytes)
 - Plane size: 2 planes x 2048 blocks per plane
 - Device size: 64Gb: 4096 blocks;
 128Gb: 8192 blocks;
 256Gb: 16,384 blocks;
 512Gb: 32,786 blocks
- Synchronous I/O performance
 - Up to synchronous timing mode 5
 - Clock rate: 10ns (DDR)
 - Read/write throughput per pin: 200 MT/s
- Asynchronous I/O performance
 - Up to asynchronous timing mode 5
 - tRC/tWC: 20ns (MIN)
 - Up to asynchronous timing mode 5
 - Read/write throughput per pin: 50 MT/s
- Array performance
 - Read page: 75µs (MAX)
 - Program page: 1300µs (TYP)
 - Erase block: 3.8ms (TYP)
- Operating Voltage Range
 - VCC: 2.7–3.6V
 - VCCQ: 1.7–1.95V, 2.7–3.6V
- Command set: ONFI NAND Flash Protocol
- Advanced Command Set
 - Program cache
 - Read cache sequential
 - Read cache random
 - One-time programmable (OTP) mode
 - Multi-plane commands
 - Multi-LUN operations
 - Read unique ID
 - Copyback
- First block (block address 00h) is valid when shipped from factory. For minimum required ECC, see Error Management (page 111).
- RESET (FFh) required as first command after power-on
- Operation status byte provides software method for detecting
 - Operation completion
 - Pass/fail condition
 - Write-protect status
- Data strobe (DQS) signals provide a hardware method for synchronizing data DQ in the synchronous interface
- Copyback operations supported within the plane from which data is read
- Quality and reliability
 - Data retention: JESD47G compliant; see qualification report
 - Endurance: 3000 PROGRAM/ERASE cycles
- Operating temperature:
 - Commercial: 0°C to +70°C
 - Industrial (IT): –40°C to +85°C
- Package
 - 52-pad LGA
 - 48-pin TSOP
 - 100-ball BGA

Notes:
1. The ONFI 2.2 specification is available at www.onfi.org.
2. BGA devices up to Synchronous timing mode 5. TSOP devices up to Synchronous timing mode 4.
Part Numbering Information

Micron NAND Flash devices are available in different configurations and densities. Verify valid part numbers by using Micron’s part catalog search at www.micron.com. To compare features and specifications by device type, visit www.micron.com/products. Contact the factory for devices not found.

Figure 1: Part Numbering

Micron Technology
NAND Flash
29F = NAND Flash memory

Density
64G = 64Gb
128G = 128Gb
256G = 256Gb
512G = 512Gb

Device Width
08 = 8 bits

Level
Bit/Cell
C = 2-bit

Classification
Die # of CE# # of R/B# I/O
B = 1 1 1 Common
E = 2 2 2 Separate
F = 2 2 2 Common
J = 4 2 2 Separate
K = 4 2 2 Separate
M = 4 4 4 Separate
U = 8 4 4 Separate

Operating Voltage Range
A = V_{CC}: 3.3V (2.7–3.6V), V_{CCQ}: 3.3V (2.7–3.6V)
C = V_{CC}: 3.3V (2.7–3.6V), V_{CCQ}: 1.8V (1.7–1.95V)

Design Revision
A = First revision

Production Status
Blank = Production
ES = Engineering sample

Reserved for Future Use
Blank

Wafer Process Applied
Blank = Polyimide Process Not Applied
Z = Polyimide Process Applied

Operating Temperature Range
Blank = Commercial (0°C to +70°C)
IT = Industrial (-40°C to +85°C)

Speed Grade (synchronous mode only)
-12 = 166 MT/s
-10 = 200 MT/s

Package Code
C5 = 52-pad VLGA 14mm x 18mm x 1.0mm
H1 = 100-ball VBGA 12mm x 18mm x 1.0mm
H2 = 100-ball TBGA 12mm x 18mm x 1.2mm
H3 = 100-ball LBGA 12mm x 18mm x 1.4mm
WP = 48-pin TSOP1 (CPL)

Interface
A = Async only
B = Sync/Async

Generation Feature Set
A = First set of device features

Note: 1. Pb-free package.
Contents

General Description ... 9
Asynchronous and Synchronous Signal Descriptions ... 9
Signal Assignments .. 11
Package Dimensions ... 15
Architecture .. 20
Device and Array Organization .. 21
Bus Operation – Asynchronous Interface .. 28
 Asynchronous Enable/Standby .. 28
 Asynchronous Bus Idle .. 28
 Asynchronous Commands .. 29
 Asynchronous Addresses .. 30
 Asynchronous Data Input ... 31
 Asynchronous Data Output ... 32
 Write Protect ... 33
 Ready/Busy# ... 33
Bus Operation – Synchronous Interface ... 38
 Synchronous Enable/Standby .. 39
 Synchronous Bus Idle/Driving .. 39
 Synchronous Commands ... 40
 Synchronous Addresses .. 41
 Synchronous DDR Data Input ... 42
 Synchronous DDR Data Output .. 43
 Write Protect ... 45
 Ready/Busy# ... 45
Device Initialization ... 46
Activating Interfaces ... 48
 Activating the Asynchronous Interface .. 48
 Activating the Synchronous Interface ... 48
Command Definitions .. 50
Reset Operations ... 52
 RESET (FFh) .. 52
 SYNOCHRONOUS RESET (FCh) ... 53
 RESET LUN (FAh) ... 54
Identification Operations .. 55
 READ ID (90h) ... 55
 READ ID Parameter Tables .. 56
 READ PARAMETER PAGE (ECCh) ... 57
 Parameter Page Data Structure Tables .. 58
 READ UNIQUE ID (EDh) ... 69
Configuration Operations ... 70
 SET FEATURES (EFh) ... 70
 GET FEATURES (EEh) ... 71
Status Operations ... 75
 READ STATUS (70h) .. 76
 READ STATUS ENHANCED (78h) ... 77
Column Address Operations .. 78
 CHANGE READ COLUMN (O5h-E0h) ... 78
 CHANGE READ COLUMN ENHANCED (06h-E0h) ... 79
 CHANGE WRITE COLUMN (85h) .. 80
 CHANGE ROW ADDRESS (85h) ... 81
List of Tables

Table 1: Asynchronous and Synchronous Signal Definitions ... 9
Table 2: Array Addressing for Logical Unit (LUN) .. 27
Table 3: Asynchronous Interface Mode Selection .. 28
Table 4: Synchronous Interface Mode Selection ... 38
Table 5: Command Set ... 50
Table 6: Read ID Parameters for Address 00h ... 56
Table 7: Read ID Parameters for Address 20h ... 56
Table 8: Parameter Page Data Structure .. 58
Table 9: Feature Address Definitions ... 70
Table 10: Feature Address 01h: Timing Mode .. 72
Table 11: Feature Addresses 10h and 80h: Programmable Output Drive Strength 73
Table 12: Feature Addresses 90h: Array Operation Mode ... 74
Table 13: Status Register Definition .. 75
Table 14: OTP Area Details .. 106
Table 15: Error Management Details .. 111
Table 16: Test Conditions for Input Slew Rate ... 118
Table 17: Test Conditions for Output Slew Rate ... 118
Table 18: Output Drive Strength Conditions (V_{CCQ} = 1.7–1.95V) .. 119
Table 19: Output Drive Strength Impedance Values (V_{CCQ} = 1.7–1.95V) .. 119
Table 20: Output Drive Strength Conditions (V_{CCQ} = 2.7–3.6V) ... 120
Table 21: Output Drive Strength Impedance Values (V_{CCQ} = 2.7–3.6V) .. 121
Table 22: Pull-Up and Pull-Down Output Impedance Mismatch ... 122
Table 23: Asynchronous Overshoot/Undershoot Parameters ... 123
Table 24: Synchronous Overshoot/Undershoot Parameters ... 124
Table 25: AC Characteristics: Asynchronous Command, Address, and Data .. 125
Table 26: AC Characteristics: Synchronous Command, Address, and Data ... 125
Table 27: Array Characteristics .. 126
List of Figures

Figure 1: Part Numbering .. 2
Figure 2: 48-Pin TSOP Type 1 (Top View) .. 11
Figure 3: 52-Pad LGA (Top View) ... 12
Figure 4: 100-Ball BGA (Ball-Down, Top View) ... 13
Figure 5: 48-Pin TSOP – Type 1 CPL (Package Code: WP) .. 15
Figure 6: 52-Pad VLGA .. 16
Figure 7: 100-Ball VBGA – 12mm x 18mm (Package Code: H1) .. 17
Figure 8: 100-Ball TBGA – 12mm x 18mm (Package Code: H2) .. 18
Figure 9: 100-Ball LBGA – 12mm x 18mm (Package Code: H3) .. 19
Figure 10: NAND Flash Die (LUN) Functional Block Diagram ... 20
Figure 11: Device Organization for Single-Die Package (TSOP/BGA) ... 21
Figure 12: Device Organization for Two-Die Package (TSOP) ... 21
Figure 13: Device Organization for Two-Die Package (BGA/LGA) .. 22
Figure 14: Device Organization for Four-Die Package (TSOP) ... 23
Figure 15: Device Organization for Four-Die Package with CE# and CE2# (BGA/LGA) 24
Figure 16: Device Organization for Four-Die Package with CE#, CE2#, CE3#, and CE4# (BGA/LGA) 25
Figure 17: Device Organization for Eight-Die Package (BGA/LGA) ... 26
Figure 18: Array Organization per Logical Unit (LUN) .. 27
Figure 19: Asynchronous Command Latch Cycle .. 29
Figure 20: Asynchronous Address Latch Cycle ... 30
Figure 21: Asynchronous Data Input Cycles .. 31
Figure 22: Asynchronous Data Output Cycles ... 32
Figure 23: Asynchronous Data Output Cycles (EDO Mode) ... 33
Figure 24: READ/BUSY# Open Drain ... 34
Figure 25: 1Fall and 1Rise ($V_{CCQ} = 2.7-3.6V$) .. 35
Figure 26: 1Fall and 1Rise ($V_{CCQ} = 1.7-1.95V$) ... 35
Figure 27: IOL vs Rp ($V_{CCQ} = 2.7-3.6V$) .. 36
Figure 28: IOL vs Rp ($V_{CCQ} = 1.7-1.95V$) .. 36
Figure 29: TC vs Rp ... 37
Figure 30: Synchronous Bus Idle/Driving Behavior ... 40
Figure 31: Synchronous Command Cycle .. 41
Figure 32: Synchronous Address Cycle ... 42
Figure 33: Synchronous DDR Data Input Cycles .. 43
Figure 34: Synchronous DDR Data Output Cycles ... 45
Figure 35: R/B# Power-On Behavior ... 46
Figure 36: Activating the Synchronous Interface .. 49
Figure 37: RESET (FFh) Operation ... 52
Figure 38: SYNCHRONOUS RESET (FCh) Operation .. 53
Figure 39: RESET LUN (FAh) Operation ... 54
Figure 40: READ ID (90h) with 00h Address Operation ... 55
Figure 41: READ ID (90h) with 20h Address Operation ... 55
Figure 42: READ PARAMETER (ECh) Operation .. 57
Figure 43: READ UNIQUE ID (EDh) Operation ... 69
Figure 44: SET FEATURES (EFh) Operation ... 71
Figure 45: GET FEATURES (EEh) Operation ... 71
Figure 46: READ STATUS (70h) Operation ... 77
Figure 47: READ STATUS ENHANCED (78h) Operation ... 77
Figure 48: CHANGE READ COLUMN (05h-E0h) Operation .. 78
Figure 49: CHANGE READ COLUMN ENHANCED (06h-E0h) Operation .. 79
Figure 50: CHANGE WRITE COLUMN (85h) Operation .. 80
Figure 51: CHANGE ROW ADDRESS (85h) Operation ... 82
Figure 52: READ PAGE (00h–30h) Operation ... 86
Figure 53: READ PAGE CACHE SEQUENTIAL (31h) Operation ... 87
Figure 54: READ PAGE CACHE RANDOM (00h–31h) Operation .. 89
Figure 55: READ PAGE CACHE LAST (3Fh) Operation ... 90
Figure 56: READ PAGE MULTI-PLANE (00h–32h) Operation .. 92
Figure 57: PROGRAM PAGE (80h–10h) Operation .. 94
Figure 58: PROGRAM PAGE CACHE (80h–15h) Operation (Start) .. 96
Figure 59: PROGRAM PAGE CACHE (80h–15h) Operation (End) ... 96
Figure 60: PROGRAM PAGE MULTI-PLANE (80h–11h) Operation .. 98
Figure 61: ERASE BLOCK (60h–D0h) Operation .. 99
Figure 62: ERASE BLOCK MULTI-PLANE (60h–D1h) Operation ... 100
Figure 63: COPYBACK READ (00h–35h) Operation .. 102
Figure 64: COPYBACK READ (00h–35h) with CHANGE READ COLUMN (05h–E0h) Operation 102
Figure 65: COPYBACK PROGRAM (85h–10h) Operation .. 103
Figure 66: COPYBACK PROGRAM (85h–10h) with CHANGE WRITE COLUMN (85h) Operation 103
Figure 67: COPYBACK PROGRAM MULTI-PLANE (85h–11h) Operation 104
Figure 68: PROGRAM OTP PAGE (80h–10h) Operation .. 106
Figure 69: PROGRAM OTP PAGE (80h–10h) with CHANGE WRITE COLUMN (85h) Operation 107
Figure 70: PROTECT OTP AREA (80h–10h) Operation .. 108
Figure 71: READ OTP PAGE (00h–30h) Operation ... 108
Figure 72: Overshoot ... 117
Figure 73: Undershoot ... 117
Figure 74: RESET Operation .. 130
Figure 75: RESET LUN Operation ... 130
Figure 76: READ STATUS Cycle ... 131
Figure 77: READ STATUS ENHANCED Cycle .. 131
Figure 78: READ PARAMETER PAGE ... 132
Figure 79: READ PAGE .. 132
Figure 80: READ PAGE Operation with CE# “Don’t Care” .. 133
Figure 81: CHANGE READ COLUMN ... 134
Figure 82: READ PAGE CACHE SEQUENTIAL .. 135
Figure 83: READ PAGE CACHE RANDOM .. 136
Figure 84: READ ID Operation ... 137
Figure 85: PROGRAM PAGE Operation .. 137
Figure 86: PROGRAM PAGE Operation with CE# “Don’t Care” .. 138
Figure 87: PROGRAM PAGE Operation with CHANGE WRITE COLUMN 138
Figure 88: PROGRAM PAGE CACHE ... 139
Figure 89: PROGRAM PAGE CACHE Ending on 15h .. 139
Figure 90: COPYBACK ... 140
Figure 91: ERASE BLOCK Operation .. 140
Figure 92: SET FEATURES Operation ... 141
Figure 93: READ ID Operation ... 142
Figure 94: GET FEATURES Operation ... 143
Figure 95: RESET (FCh) Operation .. 144
Figure 96: READ STATUS Cycle ... 145
Figure 97: READ STATUS ENHANCED Operation ... 146
Figure 98: READ PARAMETER PAGE Operation ... 147
Figure 99: READ PAGE Operation .. 148
Figure 100: CHANGE READ COLUMN .. 149
Figure 101: READ PAGE CACHE SEQUENTIAL (1 of 2) .. 150
Figure 102: READ PAGE CACHE SEQUENTIAL (2 of 2) .. 151
General Description

Micron NAND Flash devices include an asynchronous data interface for high-performance I/O operations. These devices use a highly multiplexed 8-bit bus (DQx) to transfer commands, address, and data. There are five control signals used to implement the asynchronous data interface: CE#, CLE, ALE, WE#, and RE#. Additional signals control hardware write protection (WP#) and monitor device status (R/B#).

This Micron NAND Flash device additionally includes a synchronous data interface for high-performance I/O operations. When the synchronous interface is active, WE# becomes CLK and RE# becomes W/R#. Data transfers include a bidirectional data strobe (DQS).

This hardware interface creates a low pin-count device with a standard pinout that remains the same from one density to another, enabling future upgrades to higher densities with no board redesign.

A target is the unit of memory accessed by a chip enable signal. A target contains one or more NAND Flash die. A NAND Flash die is the minimum unit that can independently execute commands and report status. A NAND Flash die, in the ONFI specification, is referred to as a logical unit (LUN). For further details, see Device and Array Organization.

Asynchronous and Synchronous Signal Descriptions

Table 1: Asynchronous and Synchronous Signal Definitions

<table>
<thead>
<tr>
<th>Asynchronous Signal¹</th>
<th>Synchronous Signal¹</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>ALE</td>
<td>Input</td>
<td>Address latch enable: Loads an address from DQx into the address register.</td>
</tr>
<tr>
<td>CE#</td>
<td>CE#</td>
<td>Input</td>
<td>Chip enable: Enables or disables one or more die (LUNs) in a target¹.</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
<td>Input</td>
<td>Command latch enable: Loads a command from DQx into the command register.</td>
</tr>
<tr>
<td>DQx</td>
<td>DQx</td>
<td>I/O</td>
<td>Data inputs/outputs: The bidirectional I/Os transfer address, data, and command information.</td>
</tr>
<tr>
<td>–</td>
<td>DQS</td>
<td>I/O</td>
<td>Data strobe: Provides a synchronous reference for data input and output.</td>
</tr>
<tr>
<td>RE#</td>
<td>W/R#</td>
<td>Input</td>
<td>Read enable and write/read: RE# transfers serial data from the NAND Flash to the host system when the asynchronous interface is active. When the synchronous interface is active, W/R# controls the direction of DQx and DQS.</td>
</tr>
<tr>
<td>WE#</td>
<td>CLK</td>
<td>Input</td>
<td>Write enable and clock: WE# transfers commands, addresses, and serial data from the host system to the NAND Flash when the asynchronous interface is active. When the synchronous interface is active, CLK latches command and address cycles.</td>
</tr>
<tr>
<td>WP#</td>
<td>WP#</td>
<td>Input</td>
<td>Write protect: Enables or disables array PROGRAM and ERASE operations.</td>
</tr>
<tr>
<td>R/B#</td>
<td>R/B#</td>
<td>Output</td>
<td>Ready/busy: An open-drain, active-low output that requires an external pull-up resistor. This signal indicates target array activity.</td>
</tr>
</tbody>
</table>
Table 1: Asynchronous and Synchronous Signal Definitions (Continued)

<table>
<thead>
<tr>
<th>Asynchronous Signal(^1)</th>
<th>Synchronous Signal(^1)</th>
<th>Type</th>
<th>Description(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>(V_{CC})</td>
<td>Supply</td>
<td>(V_{CC}): Core power supply</td>
</tr>
<tr>
<td>(V_{CCQ})</td>
<td>(V_{CCQ})</td>
<td>Supply</td>
<td>(V_{CCQ}): I/O power supply</td>
</tr>
<tr>
<td>(V_{SS})</td>
<td>(V_{SS})</td>
<td>Supply</td>
<td>(V_{SS}): Core ground connection</td>
</tr>
<tr>
<td>(V_{SSQ})</td>
<td>(V_{SSQ})</td>
<td>Supply</td>
<td>(V_{SSQ}): I/O ground connection</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>–</td>
<td>No connect: NCs are not internally connected. They can be driven or left unconnected.</td>
</tr>
<tr>
<td>DNU</td>
<td>DNU</td>
<td>–</td>
<td>Do not use: DNUs must be left unconnected.</td>
</tr>
<tr>
<td>RFU</td>
<td>RFU</td>
<td>–</td>
<td>Reserved for future use: RFUs must be left unconnected.</td>
</tr>
</tbody>
</table>

Notes:
1. See Device and Array Organization for detailed signal connections.
2. See Bus Operation – Asynchronous Interface (page 28) and Bus Operation – Synchronous Interface (page 38) for detailed asynchronous and synchronous interface signal descriptions.
Signal Assignments

Figure 2: 48-Pin TSOP Type 1 (Top View)

<table>
<thead>
<tr>
<th>Sync x8</th>
<th>Async x8</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>R/B2#</td>
<td>R/B2#</td>
</tr>
<tr>
<td>R/B#</td>
<td>R/B#</td>
</tr>
<tr>
<td>W/R#</td>
<td>RE#</td>
</tr>
<tr>
<td>CE#</td>
<td>CE#</td>
</tr>
<tr>
<td>CE2#</td>
<td>CE2#</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Notes:
1. CE2# and R/B2# are available on dual die and quad die packages. They are NC for other configurations.
2. These V_{CCQ} and V_{SSQ} pins are for compatibility with ONFI 2.2. If not supplying V_{CCQ} or V_{SSQ} to these pins, do not use them.
Figure 3: 52-Pad LGA (Top View)

Notes:
1. These signals are available on dual, quad, and octal die packages. They are NC for other configurations.
2. These signals are available on quad die four CE# or octal die packages. They are NC for other configurations.
Figure 4: 100-Ball BGA (Ball-Down, Top View)

Notes:
1. N/A: This signal is tri-stated when the asynchronous interface is active.
2. Signal names in parentheses are the signal names when the synchronous interface is active.
3. These signals are available on dual, quad, and octal die packages. They are NC for other configurations.
4. These signals are available on quad die four CE# or octal die packages. They are NC for other configurations.
Figure 5: 48-Pin TSOP – Type 1 CPL (Package Code: WP)

Note: 1. All dimensions are in millimeters.
Figure 6: 52-Pad VLGA

Note: 1. All dimensions are in millimeters.
Figure 7: 100-Ball VBGA – 12mm x 18mm (Package Code: H1)

Note: 1. All dimensions are in millimeters.
Figure 8: 100-Ball TBGA – 12mm x 18mm (Package Code: H2)

Note: 1. All dimensions are in millimeters.
Figure 9: 100-Ball LBGA – 12mm x 18mm (Package Code: H3)

Note: 1. All dimensions are in millimeters.
These devices use NAND Flash electrical and command interfaces. Data, commands, and addresses are multiplexed onto the same pins and received by I/O control circuits. The commands received at the I/O control circuits are latched by a command register and are transferred to control logic circuits for generating internal signals to control device operations. The addresses are latched by an address register and sent to a row decoder to select a row address, or to a column decoder to select a column address.

Data is transferred to or from the NAND Flash memory array, byte by byte, through a data register and a cache register.

The NAND Flash memory array is programmed and read using page-based operations and is erased using block-based operations. During normal page operations, the data and cache registers act as a single register. During cache operations, the data and cache registers operate independently to increase data throughput.

The status register reports the status of die (LUN) operations.

Figure 10: NAND Flash Die (LUN) Functional Block Diagram

Notes:
1. N/A: This signal is tri-stated when the asynchronous interface is active.
2. Some devices do not include the synchronous interface.
Device and Array Organization

Figure 11: Device Organization for Single-Die Package (TSOP/BGA)

<table>
<thead>
<tr>
<th>Async</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE#</td>
<td>CE#</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
</tr>
<tr>
<td>ALE</td>
<td>ALE</td>
</tr>
<tr>
<td>WE#</td>
<td>CLK</td>
</tr>
<tr>
<td>RE#</td>
<td>W/R#</td>
</tr>
<tr>
<td>DQ[7:0]</td>
<td>DQ[7:0]</td>
</tr>
<tr>
<td>N/A</td>
<td>DQS</td>
</tr>
<tr>
<td>WP#</td>
<td>WP#</td>
</tr>
</tbody>
</table>

Figure 12: Device Organization for Two-Die Package (TSOP)

<table>
<thead>
<tr>
<th>Async</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE#</td>
<td>CE#</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
</tr>
<tr>
<td>ALE</td>
<td>ALE</td>
</tr>
<tr>
<td>WE#</td>
<td>CLK</td>
</tr>
<tr>
<td>RE#</td>
<td>W/R#</td>
</tr>
<tr>
<td>DQ[7:0]</td>
<td>DQ[7:0]</td>
</tr>
<tr>
<td>N/A</td>
<td>DQS</td>
</tr>
<tr>
<td>WP#</td>
<td>WP#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Async</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE2#</td>
<td>CE2#</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
</tr>
<tr>
<td>ALE</td>
<td>ALE</td>
</tr>
<tr>
<td>WE#</td>
<td>CLK</td>
</tr>
<tr>
<td>RE#</td>
<td>W/R#</td>
</tr>
<tr>
<td>DQ[7:0]</td>
<td>DQ[7:0]</td>
</tr>
<tr>
<td>N/A</td>
<td>DQS</td>
</tr>
<tr>
<td>WP#</td>
<td>WP#</td>
</tr>
</tbody>
</table>
Figure 13: Device Organization for Two-Die Package (BGA/LGA)

Async	Sync
CE# | CE#
CLE-1 | CLE-1
ALE-1 | ALE-1
WE#-1 | CLK-1
RE#-1 | WR#-1
DQ[7:0]-1 | DQ[7:0]-1
N/A | DQS-1
WP#-1 | WP#-1

CE2# | CE2#
CLE-2 | CLE-2
ALE-2 | ALE-2
WE#-2 | CLK-2
RE#-2 | WR#-2
DQ[7:0]-2 | DQ[7:0]-2
N/A | DQS-2
WP#-2 | WP#-2

Target 1 | LUN 1 | R/B#
Target 2 | LUN 1 | R/B2#

Note: 1. LGA devices do not support the synchronous interface.
Figure 14: Device Organization for Four-Die Package (TSOP)

Async	Sync
CE# | CE#
CLE | CLE
ALE | ALE
WE# | CLK
RE# | W/R#
DQ[7:0] | DQ[7:0]
N/A | DQS
WP# | WP#

Target 1

LUN 1 | LUN 2

R/B#

Target 2

LUN 1 | LUN 2

R/B2#
Figure 15: Device Organization for Four-Die Package with CE# and CE2# (BGA/LGA)

Asynchronous (Async) and synchronous (Sync) signals for two targets within a four-die package with CE# and CE2# interfaces. The package diagram illustrates the connections for LUN 1 and LUN 2.

Note: 1. LGA devices do not support the synchronous interface.
Figure 16: Device Organization for Four-Die Package with CE#, CE2#, CE3#, and CE4# (BGA/LGA)

Note: 1. LGA devices do not support the synchronous interface.
Figure 17: Device Organization for Eight-Die Package (BGA/LGA)

Note: 1. LGA devices do not support the synchronous interface.
Figure 18: Array Organization per Logical Unit (LUN)

Table 2: Array Addressing for Logical Unit (LUN)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ5</th>
<th>DQ4</th>
<th>DQ3</th>
<th>DQ2</th>
<th>DQ1</th>
<th>DQ0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0^2</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>CA13^3</td>
<td>CA12</td>
<td>CA11</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
</tr>
<tr>
<td>Third</td>
<td>PA7</td>
<td>PA6</td>
<td>PA5</td>
<td>PA4</td>
<td>PA3</td>
<td>PA2</td>
<td>PA1</td>
<td>PA0</td>
</tr>
<tr>
<td>Fourth</td>
<td>BA15</td>
<td>BA14</td>
<td>BA13</td>
<td>BA12</td>
<td>BA11</td>
<td>BA10</td>
<td>BA9</td>
<td>BA8^4</td>
</tr>
<tr>
<td>Fifth</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LA0^5</td>
<td>BA19</td>
<td>BA18</td>
<td>BA17</td>
<td>BA16</td>
</tr>
</tbody>
</table>

Notes:
1. CAx = column address, PAx = page address, BAx = block address, LAx = LUN address; the page address, block address, and LUN address are collectively called the row address.
2. When using the synchronous interface, CA0 is forced to 0 internally; one data cycle always returns one even byte and one odd byte.
3. Column addresses 8640 (21C0h) through 16,383 (3FFFh) are invalid, out of bounds, do not exist in the device, and cannot be addressed.
4. BA[8] is the plane-select bit:
 Plane 0: BA[8] = 0
 Plane 1: BA[8] = 1
5. LA0 is the LUN-select bit. It is present only when two LUNs are shared on the target; otherwise, it should be held LOW.
 LUN 0: LA0 = 0
 LUN 1: LA0 = 1
Bus Operation – Asynchronous Interface

The asynchronous interface is active when the NAND Flash device powers on. The I/O bus, DQ[7:0], is multiplexed sharing data I/O, addresses, and commands. The DQS signal, if present, is tri-stated when the asynchronous interface is active.

Asynchronous interface bus modes are summarized below.

Table 3: Asynchronous Interface Mode Selection

<table>
<thead>
<tr>
<th>Mode</th>
<th>CE#</th>
<th>CLE</th>
<th>ALE</th>
<th>WE#</th>
<th>RE#</th>
<th>DQS</th>
<th>DQx</th>
<th>WP#</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0V/V_{CCQ}²</td>
<td>2</td>
</tr>
<tr>
<td>Bus idle</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Command input</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>input H</td>
</tr>
<tr>
<td>Address input</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>input H</td>
</tr>
<tr>
<td>Data input</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>input H</td>
</tr>
<tr>
<td>Data output</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>output X</td>
</tr>
<tr>
<td>Write protect</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. DQS is tri-stated when the asynchronous interface is active.
2. WP# should be biased to CMOS LOW or HIGH for standby.
3. Mode selection settings for this table: H = Logic level HIGH; L = Logic level LOW; X = V_{IH} or V_{IL}.

Asynchronous Enable/Standby

A chip enable (CE#) signal is used to enable or disable a target. When CE# is driven LOW, all of the signals for that target are enabled. With CE# LOW, the target can accept commands, addresses, and data I/O. There may be more than one target in a NAND Flash package. Each target is controlled by its own chip enable; the first target (Target 0) is controlled by CE#; the second target (if present) is controlled by CE2#, etc.

A target is disabled when CE# is driven HIGH, even when the target is busy. When disabled, all of the target’s signals are disabled except CE#, WP#, and R/B#. This functionality is also known as CE# "Don’t Care". While the target is disabled, other devices can utilize the disabled NAND signals that are shared with the NAND Flash.

A target enters low-power standby when it is disabled and is not busy. If the target is busy when it is disabled, the target enters standby after all of the die (LUNs) complete their operations. Standby helps reduce power consumption.

Asynchronous Bus Idle

A target’s bus is idle when CE# is LOW, WE# is HIGH, and RE# is HIGH.

During bus idle, all of the signals are enabled except DQS, which is not used when the asynchronous interface is active. No commands, addresses, and data are latched into the target; no data is output.
Asynchronous Commands

An asynchronous command is written from DQ[7:0] to the command register on the rising edge of WE# when CE# is LOW, ALE is LOW, CLE is HIGH, and RE# is HIGH.

Commands are typically ignored by die (LUNs) that are busy (RDY = 0); however, some commands, including READ STATUS (70h) and READ STATUS ENHANCED (78h), are accepted by die (LUNs) even when they are busy.

Figure 19: Asynchronous Command Latch Cycle
Asynchronous Addresses

An asynchronous address is written from DQ[7:0] to the address register on the rising edge of WE# when CE# is LOW, ALE is HIGH, CLE is LOW, and RE# is HIGH.

Bits that are not part of the address space must be LOW (see Device and Array Organization). The number of cycles required for each command varies. Refer to the command descriptions to determine addressing requirements (see Command Definitions).

Addresses are typically ignored by die (LUNs) that are busy (RDY = 0); however, some addresses are accepted by die (LUNs) even when they are busy; for example, address cycles that follow the READ STATUS ENHANCED (78h) command.

Figure 20: Asynchronous Address Latch Cycle
Asynchronous Data Input

Data is written from DQ[7:0] to the cache register of the selected die (LUN) on the rising edge of WE# when CE# is LOW, ALE is LOW, CLE is LOW, and RE# is HIGH.

Data input is ignored by die (LUNs) that are not selected or are busy (RDY = 0).

Figure 21: Asynchronous Data Input Cycles
Asynchronous Data Output

Data can be output from a die (LUN) if it is in a READY state. Data output is supported following a READ operation from the NAND Flash array. Data is output from the cache register of the selected die (LUN) to DQ[7:0] on the falling edge of RE# when CE# is LOW, ALE is LOW, CLE is LOW, and WE# is HIGH.

If the host controller is using a t\textsubscript{RC} of 30ns or greater, the host can latch the data on the rising edge of RE# (see Figure 22 for proper timing). If the host controller is using a t\textsubscript{RC} of less than 30ns, the host can latch the data on the next falling edge of RE# (see Figure 23 (page 33) for extended data output (EDO) timing).

Using the READ STATUS ENHANCED (78h) command prevents data contention following an interleaved die (multi-LUN) operation. After issuing the READ STATUS ENHANCED (78h) command, to enable data output, issue the READ MODE (00h) command.

Data output requests are typically ignored by a die (LUN) that is busy (RDY = 0); however, it is possible to output data from the status register even when a die (LUN) is busy by first issuing the READ STATUS (70h) or READ STATUS ENHANCED (78h) command.

Figure 22: Asynchronous Data Output Cycles
Write Protect

The write protect# (WP#) signal enables or disables PROGRAM and ERASE operations to a target. When WP# is LOW, PROGRAM and ERASE operations are disabled. When WP# is HIGH, PROGRAM and ERASE operations are enabled.

It is recommended that the host drive WP# LOW during power-on until Vcc and Vccq are stable to prevent inadvertent PROGRAM and ERASE operations (see (page 0) for additional details).

WP# must be transitioned only when the target is not busy and prior to beginning a command sequence. After a command sequence is complete and the target is ready, WP# can be transitioned. After WP# is transitioned, the host must wait tWW before issuing a new command.

The WP# signal is always an active input, even when CE# is HIGH. This signal should not be multiplexed with other signals.

Ready/Busy#

The ready/busy# (R/B#) signal provides a hardware method of indicating whether a target is ready or busy. A target is busy when one or more of its die (LUNs) are busy (RDY = 0). A target is ready when all of its die (LUNs) are ready (RDY = 1). Because each die (LUN) contains a status register, it is possible to determine the independent status of each die (LUN) by polling its status register instead of using the R/B# signal (see Status Operations for details regarding die (LUN) status).

This signal requires a pull-up resistor, Rp, for proper operation. R/B# is HIGH when the target is ready, and transitions LOW when the target is busy. The signal’s open-drain
Driver enables multiple R/B# outputs to be OR-tied. Typically, R/B# is connected to an interrupt pin on the system controller (see Figure 24 (page 34)).

The combination of Rp and capacitive loading of the R/B# circuit determines the rise time of the R/B# signal. The actual value used for Rp depends on the system timing requirements. Large values of Rp cause R/B# to be delayed significantly. Between the 10- to 90-percent points on the R/B# waveform, the rise time is approximately two time constants (TC).

\[TC = R \times C \]

Where \(R = \text{Rp} \) (resistance of pull-up resistor), and \(C = \text{total capacitive load} \).

The fall time of the R/B# signal is determined mainly by the output impedance of the R/B# signal and the total load capacitance. Approximate Rp values using a circuit load of 100pF are provided in Figure 29 (page 37).

The minimum value for Rp is determined by the output drive capability of the R/B# signal, the output voltage swing, and Vccq.

\[Rp = \frac{V_{cc} \text{ (MAX)} - V_o \text{ (MAX)}}{I_{OL} + \sum il} \]

Where \(\sum il \) is the sum of the input currents of all devices tied to the R/B# pin.

Figure 24: READ/BUSY# Open Drain
Figure 25: \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) (\(V_{\text{CCQ}} = 2.7-3.6\text{V} \))

Notes:
1. \(t_{\text{FALL}} \) is \(V_{\text{OH(DC)}} \) to \(V_{\text{OL(AC)}} \) and \(t_{\text{RISE}} \) is \(V_{\text{OL(DC)}} \) to \(V_{\text{OH(AC)}} \).
2. \(t_{\text{RISE}} \) dependent on external capacitance and resistive loading and output transistor impedance.
3. \(t_{\text{FALL}} \) primarily dependent on external pull-up resistor and external capacitive loading.
4. \(t_{\text{FALL}} \approx 10\text{ns} \) at 3.3V.
5. See TC values in Figure 29 (page 37) for approximate Rp value and TC.

Figure 26: \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) (\(V_{\text{CCQ}} = 1.7-1.95\text{V} \))

Notes:
1. \(t_{\text{FALL}} \) is \(V_{\text{OH(DC)}} \) to \(V_{\text{OL(AC)}} \) and \(t_{\text{RISE}} \) is \(V_{\text{OL(DC)}} \) to \(V_{\text{OH(AC)}} \).
2. \(t_{\text{RISE}} \) primarily dependent on external pull-up resistor and external capacitive loading.
3. \(t_{\text{FALL}} \approx 7\text{ns} \) at 1.8V.
4. See TC values in Figure 29 (page 37) for TC and approximate Rp value.
Figure 27: IOL vs Rp (V_{CCQ} = 2.7-3.6V)

Figure 28: IOL vs Rp (V_{CCQ} = 1.7-1.95V)
Figure 29: TC vs Rp

T(ns) vs Rp (Ω)

- I_{OL} at V_{CCQ} (MAX)
- RC = TC
- C = 100pF
Bus Operation – Synchronous Interface

These NAND Flash devices have two interfaces—a synchronous interface for fast data I/O transfer and an asynchronous interface that is backward compatible with existing NAND Flash devices.

The NAND Flash command protocol for both the asynchronous and synchronous interfaces is identical. However, there are some differences between the asynchronous and synchronous interfaces when issuing command, address, and data I/O cycles using the NAND Flash signals.

When the synchronous interface is activated on a target (see Activating Interfaces), the target is capable of high-speed DDR data transfers. Existing signals are redefined for high-speed DDR I/O. The WE# signal becomes CLK. DQS is enabled. The RE# signal becomes W/R#. CLK provides a clock reference to the NAND Flash device.

DQS is a bidirectional data strobe. During data output, DQS is driven by the NAND Flash device. During data input, DQS is controlled by the host controller while inputting data on DQ[7:0].

The direction of DQS and DQ[7:0] is controlled by the W/R# signal. When the W/R# signal is latched HIGH, the controller is driving the DQ bus and DQS. When the W/R# is latched LOW, the NAND Flash is driving the DQ bus and DQS.

The synchronous interface bus modes are summarized below.

Table 4: Synchronous Interface Mode Selection

<table>
<thead>
<tr>
<th>Mode</th>
<th>CE#</th>
<th>CLE</th>
<th>ALE</th>
<th>CLK</th>
<th>W/R#</th>
<th>DQS</th>
<th>DQ[7:0]</th>
<th>WP#</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0V/V_{CCQ}</td>
<td>1, 2</td>
</tr>
<tr>
<td>Bus idle</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bus driving</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td>output</td>
<td>output</td>
<td></td>
</tr>
<tr>
<td>Command input</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>X</td>
<td>input</td>
</tr>
<tr>
<td>Address input</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>X</td>
<td>input</td>
</tr>
<tr>
<td>Data input</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>input</td>
<td>H</td>
</tr>
<tr>
<td>Data output</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>See Note 5</td>
<td>output</td>
</tr>
<tr>
<td>Write protect</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Undefined</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>output</td>
<td>output</td>
</tr>
<tr>
<td>Undefined</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>output</td>
<td>output</td>
</tr>
</tbody>
</table>

Notes:
1. CLK can be stopped when the target is disabled, even when R/B# is LOW.
2. WP# should be biased to CMOS LOW or HIGH for standby.
3. Commands and addresses are latched on the rising edge of CLK.
4. During data input to the device, DQS is the “clock” that latches the data in the cache register.
5. During data output from the NAND Flash device, DQS is an output generated from CLK after tDQSCK delay.
6. Mode selection settings for this table: H = Logic level HIGH; L = Logic level LOW; X = V_{IH} or V_{IL}.

Synchronous Enable/Standby

In addition to the description found in Asynchronous Enable/Standby (page 28), the following requirements also apply when the synchronous interface is active.

Before enabling a target, CLK must be running and ALE and CLE must be LOW. When CE# is driven LOW, all of the signals for the selected target are enabled. The target is not enabled until tCS completes; the target’s bus is then idle.

Prior to disabling a target, the target’s bus must be idle. A target is disabled when CE# is driven HIGH, even when it is busy. All of the target’s signals are disabled except CE#, WP#, and R/B#. After the target is disabled, CLK can be stopped.

A target enters low-power standby when it is disabled and is not busy. If the target is busy when it is disabled, the target enters standby after all of the die (LUNs) complete their operations.

Synchronous Bus Idle/Driving

A target’s bus is idle or driving when CLK is running, CE# is LOW, ALE is LOW, and CLE is LOW.

The bus is idle when W/R# transitions HIGH and is latched by CLK. During the bus idle mode, all signals are enabled; DQS and DQ[7:0] are inputs. No commands, addresses, or data are latched into the target; no data is output. When entering the bus idle mode, the host must wait a minimum of tCAD before changing the bus mode. In the bus idle mode, the only valid bus modes supported are: bus driving, command, address, and DDR data input.

The bus is driving when W/R# transitions LOW and is latched by CLK. During the bus driving mode, all signals are enabled; DQS is LOW and DQ[7:0] is driven LOW or HIGH, but no valid data is output. Following the bus driving mode, the only valid bus modes supported are bus idle and DDR data output.
Figure 30: Synchronous Bus Idle/Driving Behavior

![Diagram showing synchronous bus idle/driving behavior](image)

Note:
1. Only the selected die (LUN) drives DQS and DQ[7:0]. During an interleaved die (multi-LUN) operation, the host must use the READ STATUS ENHANCED (78h) to prevent data output contention.

Synchronous Commands

A command is written from DQ[7:0] to the command register on the rising edge of CLK when CE# is LOW, ALE is LOW, CLE is HIGH, and W/R# is HIGH.

After a command is latched—and prior to issuing the next command, address, or data I/O—the bus must go to bus idle mode on the next rising edge of CLK, except when the clock period, t_{CAD}, is greater than t_{CAD}.

Commands are typically ignored by die (LUNs) that are busy (RDY = 0); however, some commands, such as READ STATUS (70h) and READ STATUS ENHANCED (78h), are accepted by die (LUNs), even when they are busy.
Figure 31: Synchronous Command Cycle

![Synchronous Command Cycle Diagram]

Note:
1. When CE# remains LOW, \(t_{CAD} \) begins at the rising edge of the clock from which the command cycle is latched for subsequent command, address, data input, or data output cycle(s).

Synchronous Addresses

A synchronous address is written from DQ[7:0] to the address register on the rising edge of CLK when CE# is LOW, ALE is HIGH, CLE is LOW, and W/R# is HIGH.

After an address is latched—and prior to issuing the next command, address, or data I/O—the bus must go to bus idle mode on the next rising edge of CLK, except when the clock period, \(t_{CK} \), is greater than \(t_{CAD} \).

Bits not part of the address space must be LOW (see Device and Array Organization). The number of address cycles required for each command varies. Refer to the command descriptions to determine addressing requirements.

Addresses are typically ignored by die (LUNs) that are busy (RDY = 0); however, some addresses such as address cycles that follow the READ STATUS ENHANCED (78h) command, are accepted by die (LUNs), even when they are busy.
Synchronous DDR Data Input

To enter the DDR data input mode, the following conditions must be met:

- CLK is running
- CE# is LOW
- W/R# is HIGH
- tCAD is met
- DQS is LOW
- ALE and CLE are HIGH on the rising edge of CLK

Upon entering the DDR data input mode after tDQSS, data is written from DQ[7:0] to the cache register on each and every rising and falling edge of DQS (center-aligned) when CLK is running and the DQS to CLK skew meets tDSH and tDSS, CE# is LOW, W/R# is HIGH, and ALE and CLE are HIGH on the rising edge of CLK.

To exit DDR data input mode, the following conditions must be met:

- CLK is running and the DQS to CLK skew meets tDSH and tDSS
- CE# is LOW
- W/R# is HIGH
- ALE and CLE are latched LOW on the rising edge of CLK

Note: 1. When CE# remains LOW, tCAD begins at the rising edge of the clock from which the command cycle is latched for subsequent command, address, data input, or data output cycle(s).
The final two data bytes of the data input sequence are written to DQ[7:0] to the cache register on the rising and falling edges of DQS after the last cycle in the data input sequence in which ALE and CLE are latched HIGH.

DQS is held LOW for tWPST (after the final falling edge of DQS)

Following tWPST, the bus enters bus idle mode and tCAD begins on the next rising edge of CLK. After tCAD starts, the host can disable the target if desired.

Data input is ignored by die (LUNs) that are not selected or are busy.

Figure 33: Synchronous DDR Data Input Cycles

Notes:
1. When CE# remains LOW, tCAD begins at the first rising edge of the clock after tWPST completes.
2. tDSH (MIN) generally occurs during tDQSS (MIN).
3. tDSS (MIN) generally occurs during tDQSS (MAX).

Synchronous DDR Data Output

Data can be output from a die (LUN) if it is ready. Data output is supported following a READ operation from the NAND Flash array.

To enter the DDR data output mode, the following conditions must be met:

- CLK is running
- CE# is LOW
- The host has released the DQ[7:0] bus and DQS
- W/R# is latched LOW on the rising edge of CLK to enable the selected die (LUN) to take ownership of the DQ[7:0] bus and DQS within tWRCK
- tCAD is met
- ALE and CLE are HIGH on the rising edge of CLK
Upon entering the DDR data output mode, DQS will toggle HIGH and LOW with a delay of \(t_{DQSCK} \) from the respective rising and falling edges of CLK. DQ[7:0] will output data edge-aligned to the rising and falling edges of DQS, with the first transition delayed by no more than \(t_{AC} \).

DDR data output mode continues as long as CLK is running, CE# is LOW, W/R# is LOW, and ALE and CLE are HIGH on the rising edge of CLK.

To exit DDR data output mode, the following conditions must be met:

- CLK is running
- CE# is LOW
- W/R# is LOW
- ALE and CLE are latched LOW on the rising edge of CLK

The final two data bytes are output on DQ[7:0] on the final rising and falling edges of DQS. The final rising and falling edges of DQS occur \(t_{DQSCK} \) after the last cycle in the data output sequence in which ALE and CLE are latched HIGH. After \(t_{CKWR} \), the bus enters bus idle mode and \(t_{CAD} \) begins on the next rising edge of CLK. Once \(t_{CAD} \) starts the host can disable the target if desired.

Data output requests are typically ignored by a die (LUN) that is busy \((RDY = 0)\); however, it is possible to output data from the status register even when a die (LUN) is busy by issuing the READ STATUS (70h) or READ STATUS ENHANCED (78h) command.
Figure 34: Synchronous DDR Data Output Cycles

Notes:
1. When CE# remains LOW, CAD begins at the rising edge of the clock after CKWR for subsequent command or data output cycle(s).
2. See Figure 31 (page 41) for details of W/R# behavior.
3. AC is the DQ output window relative to CLK and is the long-term component of DQ skew.
4. For W/R# transitioning HIGH, DQ[7:0] and DQS go to tri-state.
5. For W/R# transitioning LOW, DQ[7:0] drives current state and DQS goes LOW.
6. After final data output, DQ[7:0] is driven until W/R# goes HIGH, but is not valid.

Write Protect

See Write Protect (page 33).

Ready/Busy#

See Ready/Busy# (page 33).
Device Initialization

Some NAND Flash devices do not support V_{CCQ}. For these devices all references to V_{CCQ} are replaced with V_{CC}.

Micron NAND Flash devices are designed to prevent data corruption during power transitions. V_{CC} is internally monitored. (The WP# signal supports additional hardware protection during power transitions.) When ramping V_{CC} and V_{CCQ}, use the following procedure to initialize the device:

1. Ramp V_{CC}.
2. Ramp V_{CCQ}. V_{CCQ} must not exceed V_{CC}.
3. The host must wait for R/B# to be valid and HIGH before issuing RESET (FFh) to any target (see Figure 35). The R/B# signal becomes valid when 50μs has elapsed since the beginning the V_{CC} ramp, and 10μs has elapsed since V_{CCQ} reaches V_{CCQ} (MIN) and V_{CC} reaches V_{CC} (MIN).
4. If not monitoring R/B#, the host must wait at least 100μs after V_{CCQ} reaches V_{CCQ} (MIN) and V_{CC} reaches V_{CC} (MIN). If monitoring R/B#, the host must wait until R/B# is HIGH.
5. The asynchronous interface is active by default for each target. Each LUN draws less than an average of I_{ST} measured over intervals of 1ms until the RESET (FFh) command is issued.
6. The RESET (FFh) command must be the first command issued to all targets (CE#s) after the NAND Flash device is powered on. Each target will be busy for ‘POR after a RESET command is issued. The RESET busy time can be monitored by polling R/B# or issuing the READ STATUS (70h) command to poll the status register.
7. The device is now initialized and ready for normal operation.

At power-down, V_{CCQ} must go LOW, either before, or simultaneously with, V_{CC} going LOW.

Figure 35: R/B# Power-On Behavior

Note: 1. Disregard V_{CCQ} for devices that use only V_{CC}.

To initialize a discovered target, the following steps shall be taken. The initialization process should be followed for each connected CE# signal, including performing the READ PARAMETER PAGE (ECh) command for each target. Each chip enable corre-
sponds to a unique target with its own independent properties that the host shall observe and subsequently use.

The host should issue the READ PARAMETER PAGE (ECh) command. This command returns information that includes the capabilities, features, and operating parameters of the device. When the information is read from the device, the host shall check the CRC to ensure that the data was received correctly and without error prior to taking action on that data.

If the CRC of the first parameter page read is not valid, the host should read redundant parameter page copies. The host can determine whether a redundant parameter page is present or not by checking if the first four bytes contain at least two bytes of the parameter page signature. If the parameter page signature is present, then the host should read the entirety of that redundant parameter page. The host should then check the CRC of that redundant parameter page. If the CRC is correct, the host may take action based on the contents of that redundant parameter page. If the CRC is incorrect, then the host should attempt to read the next redundant parameter page by the same procedure.

The host should continue reading redundant parameter pages until the host is able to accurately reconstruct the parameter page contents. The host may use bit-wise majority or other ECC techniques to recover the contents of the parameter page from the parameter page copies present. When the host determines that a parameter page signature is not present, then all parameter pages have been read.

After successfully retrieving the parameter page, the host has all information necessary to successfully communicate with that target. If the host has not previously mapped defective block information for this target, the host should next map out all defective blocks in the target. The host may then proceed to utilize the target, including erase and program operations.
Activating Interfaces

After performing the steps under Device Initialization (page 46), the asynchronous interface is active for all targets on the device.

Each target’s interface is independent of other targets, so the host is responsible for changing the interface for each target.

If the host and NAND Flash device, through error, are no longer using the same interface, then steps under Activating the Asynchronous Interface are performed to resynchronize the interfaces.

Activating the Asynchronous Interface

To activate the asynchronous NAND interface, once the synchronous interface is active, the following steps are repeated for each target:

1. The host pulls CE# HIGH, disables its input to CLK, and enables its asynchronous interface.
2. The host pulls CE# LOW and issues the RESET (FFh) command, using an asynchronous command cycle.
3. R/B# goes LOW for t_{RST}.
4. After t_{ITC}, and during t_{RST}, the device enters the asynchronous NAND interface.
 READ STATUS (70h) and READ STATUS ENHANCED (78h) are the only commands that can be issued.
5. After t_{RST}, R/B# goes HIGH. Timing mode feature address (01h), subfeature parameter P1 is set to 00h, indicating that the asynchronous NAND interface is active and that the device is set to timing mode 0.

 For further details, see Reset Operations.

Activating the Synchronous Interface

To activate the synchronous NAND Flash interface, the following steps are repeated for each target:

1. Issue the SET FEATURES (EFh) command.
2. Write address 01h, which selects the timing mode.
3. Write P1 with 1Xh, where "X" is the timing mode used in the synchronous interface (see Configuration Operations).
4. Write P2–P4 as 00h-00h-00h.
5. R/B# goes LOW for t_{ITC}. The host should pull CE# HIGH. During t_{ITC}, the host should not issue any type of command, including status commands, to the NAND Flash device.
6. After t_{ITC}, R/B# goes HIGH and the synchronous interface is enabled. Before pulling CE# LOW, the host should enable the clock.
Figure 36: Activating the Synchronous Interface

Note: 1. TM = Timing mode.
Command Definitions

<table>
<thead>
<tr>
<th>Command Definition</th>
<th>Command</th>
<th>Number of Valid Address Cycles</th>
<th>Data Input Cycles</th>
<th>Command Cycle #2</th>
<th>Valid While Selected LUN is Busy<sup>1</sup></th>
<th>Valid While Other LUNs are Busy<sup>2</sup></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>FFh</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SYNCHRONOUS RESET</td>
<td>FCh</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RESET LUN</td>
<td>FAh</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Identification Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ ID</td>
<td>90h</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>READ PARAMETER PAGE</td>
<td>ECh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ UNIQUE ID</td>
<td>EDh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GET FEATURES</td>
<td>EEh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SET FEATURES</td>
<td>EFh</td>
<td>1</td>
<td>4</td>
<td>–</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Status Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ STATUS</td>
<td>70h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ STATUS ENHANCED</td>
<td>78h</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Column Address Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANGE READ COLUMN</td>
<td>05h</td>
<td>2</td>
<td>–</td>
<td>E0h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANGE READ COLUMN ENHANCED</td>
<td>06h</td>
<td>5</td>
<td>–</td>
<td>E0h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANGE WRITE COLUMN</td>
<td>85h</td>
<td>2</td>
<td>Optional</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHANGE ROW ADDRESS</td>
<td>85h</td>
<td>5</td>
<td>Optional</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Read Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ MODE</td>
<td>00h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ PAGE</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>30h</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>READ PAGE MULTI-PLANE</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>32h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ PAGE CACHE SEQUENTIAL</td>
<td>31h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>READ PAGE CACHE RANDOM</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>31h</td>
<td>Yes</td>
<td>6,7</td>
<td></td>
</tr>
<tr>
<td>READ PAGE CACHE LAST</td>
<td>3Fh</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Program Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>10h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE MULTI-PLANE</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>11h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Command Set (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Cycle #1</th>
<th>Number of Valid Address Cycles</th>
<th>Data Input Cycles</th>
<th>Command Cycle #2</th>
<th>Valid While Selected LUN is Busy<sup>1</sup></th>
<th>Valid While Other LUNs are Busy<sup>2</sup></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM PAGE CACHE</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>15h</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Erase Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE BLOCK</td>
<td>60h</td>
<td>3</td>
<td>–</td>
<td>D0h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE BLOCK MULTI-PLANE</td>
<td>60h</td>
<td>3</td>
<td>–</td>
<td>D1h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyback Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPYBACK READ</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>35h</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>COPYBACK PROGRAM</td>
<td>85h</td>
<td>5</td>
<td>Optional</td>
<td>10h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPYBACK PROGRAM MULTI-PLANE</td>
<td>85h</td>
<td>5</td>
<td>Optional</td>
<td>11h</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Busy means RDY = 0.
2. These commands can be used for interleaved die (multi-LUN) operations (see Interleaved Die (Multi-LUN) Operations (page 110)).
3. The READ ID (90h) and GET FEATURES (EEh) output identical data on rising and falling DQS edges.
4. The SET FEATURES (EFh) command requires data transition prior to the rising edge of CLK, with identical data for the rising and falling edges.
5. Command cycle #2 of 11h is conditional. See CHANGE ROW ADDRESS (85h) for more details.
6. This command can be preceded by up to one READ PAGE MULTI-PLANE (00h-32h) command to accommodate a maximum simultaneous two-plane array operation.
7. Issuing a READ PAGE CACHE-series (31h, 00h-31h, 00h-32h, 3Fh) command when the array is busy (RDY = 1, ARDY = 0) is supported if the previous command was a READ PAGE (00h-30h) or READ PAGE CACHE-series command; otherwise, it is prohibited.
8. Issuing a PROGRAM PAGE CACHE (80h-15h) command when the array is busy (RDY = 1, ARDY = 0) is supported if the previous command was a PROGRAM PAGE CACHE (80h-15h) command; otherwise, it is prohibited.
Reset Operations

RESET (FFh)

The RESET (FFh) command is used to put a target into a known condition and to abort command sequences in progress. This command is accepted by all die (LUNs), even when they are busy.

When FFh is written to the command register, the target goes busy for \(t_{RST} \). During \(t_{RST} \), the selected target (CE#) discontinues all array operations on all die (LUNs). All pending single- and multi-plane operations are cancelled. If this command is issued while a PROGRAM or ERASE operation is occurring on one or more die (LUNs), the data may be partially programmed or erased and is invalid. The command register is cleared and ready for the next command. The data register and cache register contents are invalid.

RESET must be issued as the first command to each target following power-up (see Device Initialization). Use of the READ STATUS ENHANCED (78h) command is prohibited during the power-on RESET. To determine when the target is ready, use READ STATUS (70h).

If the RESET (FFh) command is issued when the synchronous interface is enabled, the target’s interface is changed to the asynchronous interface and the timing mode is set to 0. The RESET (FFh) command can be issued asynchronously when the synchronous interface is active, meaning that CLK does not need to be continuously running when CE# is transitioned LOW and FFh is latched on the rising edge of CLK. After this command is latched, the host should not issue any commands during \(t_{ITC} \). After \(t_{ITC} \), and during or after \(t_{RST} \), the host can poll each LUN’s status register.

If the RESET (FFh) command is issued when the asynchronous interface is active, the target’s asynchronous timing mode remains unchanged. During or after \(t_{RST} \), the host can poll each LUN’s status register.

Figure 37: RESET (FFh) Operation
SYNCHRONOUS RESET (FCh)

When the synchronous interface is active, the SYNCHRONOUS RESET (FCh) command is used to put a target into a known condition and to abort command sequences in progress. This command is accepted by all die (LUNs), even when they are BUSY.

When FCh is written to the command register, the target goes busy for \(t_{\text{RST}} \). During \(t_{\text{RST}} \), the selected target (CE#) discontinues all array operations on all die (LUNs). All pending single- and multi-plane operations are cancelled. If this command is issued while a PROGRAM or ERASE operation is occurring on one or more die (LUNs), the data may be partially programmed or erased and is invalid. The command register is cleared and ready for the next command. The data register and cache register contents are invalid and the synchronous interface remains active.

During or after \(t_{\text{RST}} \), the host can poll each LUN’s status register.

SYNCHRONOUS RESET is only accepted while the synchronous interface is active. Its use is prohibited when the asynchronous interface is active.

Figure 38: SYNCHRONOUS RESET (FCh) Operation

![Figure 38: SYNCHRONOUS RESET (FCh) Operation](image)
The RESET LUN (FAh) command is used to put a particular LUN on a target into a known condition and to abort command sequences in progress. This command is accepted by only the LUN addressed by the RESET LUN (FAh) command, even when that LUN is busy.

When FAh is written to the command register, the addressed LUN goes busy for t\text{RST}. During t\text{RST}, the selected LUN discontinues all array operations. All pending single- and multi-plane operations are canceled. If this command is issued while a PROGRAM or ERASE operation is occurring on the addressed LUN, the data may be partially programmed or erased and is invalid. The command register is cleared and ready for the next command. The data register and cache register contents are invalid.

If the RESET LUN (FAh) command is issued when the synchronous interface is enabled, the target's interface remains in synchronous mode.

If the RESET LUN (FAh) command is issued when the asynchronous interface is enabled, the target's interface remains in asynchronous mode.

During or after t\text{RST}, the host can poll each LUN's status register.

The RESET LUN (FAh) command is prohibited when not in the default array operation mode.

The RESET LUN (FAh) command can only be issued to a target (CE#) after the RESET (FFh) command has been issued as the first command to a target following power-up.

Figure 39: RESET LUN (FAh) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>FAh</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td>R/B#</td>
<td></td>
<td>t\text{RST}</td>
<td></td>
<td>t\text{WB}</td>
</tr>
</tbody>
</table>
Identification Operations

READ ID (90h)

The READ ID (90h) command is used to read identifier codes programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing 90h to the command register puts the target in read ID mode. The target stays in this mode until another valid command is issued.

When the 90h command is followed by a 00h address cycle, the target returns a 5-byte identifier code that includes the manufacturer ID, device configuration, and part-specific information.

When the 90h command is followed by a 20h address cycle, the target returns the 4-byte ONFI identifier code.

After the 90h and address cycle are written to the target, the host enables data output mode to read the identifier information. When the asynchronous interface is active, one data byte is output per RE# toggle. When the synchronous interface is active, one data byte is output per rising edge of DQS when ALE and CLE are HIGH; the data byte on the falling edge of DQS is identical to the data byte output on the previous rising edge of DQS.

Figure 40: READ ID (90h) with 00h Address Operation

Figure 41: READ ID (90h) with 20h Address Operation

Note: 1. See the READ ID Parameter tables for byte definitions.
Table 6: Read ID Parameters for Address 00h

<table>
<thead>
<tr>
<th>Device</th>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
<th>Byte 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT29F64G08CBAAA</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F64G08CBAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F64G08CBCAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F128G08CEAAA</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F128G08CECAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F128G08CFAAA</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F128G08CFAAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CJAAA</td>
<td>2Ch</td>
<td>A8h</td>
<td>05h</td>
<td>CBh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CJAB</td>
<td>2Ch</td>
<td>A8h</td>
<td>05h</td>
<td>CBh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CKAAA</td>
<td>2Ch</td>
<td>A8h</td>
<td>05h</td>
<td>CBh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CKCAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CMAAA</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F256G08CMCAB</td>
<td>2Ch</td>
<td>88h</td>
<td>04h</td>
<td>4Bh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F512G08CUAAA</td>
<td>2Ch</td>
<td>A8h</td>
<td>05h</td>
<td>CBh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>MT29F512G08CUCAB</td>
<td>2Ch</td>
<td>A8h</td>
<td>05h</td>
<td>CBh</td>
<td>A9h</td>
<td>00h</td>
<td>00h</td>
<td>00h</td>
</tr>
</tbody>
</table>

Note: 1. h = hexadecimal.

Table 7: Read ID Parameters for Address 20h

<table>
<thead>
<tr>
<th>Device</th>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>4Fh</td>
<td>4Eh</td>
<td>46h</td>
<td>49h</td>
<td>XXh</td>
</tr>
</tbody>
</table>

Notes: 1. h = hexadecimal.
2. XXh = Undefined.
READ PARAMETER PAGE (ECh)

The READ PARAMETER PAGE (ECh) command is used to read the ONFI parameter page programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing ECh to the command register puts the target in read parameter page mode. The target stays in this mode until another valid command is issued.

When the ECh command is followed by an 00h address cycle, the target goes busy for \(t_R \). If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode. Use of the READ STATUS ENHANCED (78h) command is prohibited while the target is busy and during data output.

After \(t_R \) completes, the host enables data output mode to read the parameter page. When the asynchronous interface is active, one data byte is output per RE# toggle. When the synchronous interface is active, one data byte is output for each rising or falling edge of DQS.

A minimum of three copies of the parameter page are stored in the device. Each parameter page is 256 bytes. If desired, the CHANGE READ COLUMN (05h-E0h) command can be used to change the location of data output. Use of the CHANGE READ COLUMN ENHANCED (06h-E0h) command is prohibited.

The READ PARAMETER PAGE (ECh) output data can be used by the host to configure its internal settings to properly use the NAND Flash device. Parameter page data is static per part, however the value can be changed through the product cycle of NAND Flash. The host should interpret the data and configure itself accordingly.

Figure 42: READ PARAMETER (ECh) Operation

![Diagram of READ PARAMETER (ECh) Operation](image-url)
Parameter Page Data Structure Tables

Table 8: Parameter Page Data Structure

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revision information and features block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>Parameter page signature</td>
<td>MT29F64G08CBAAA</td>
<td>D8h, 01h</td>
</tr>
<tr>
<td></td>
<td>Byte 0: 4Fh, “O”</td>
<td>MT29F128G08CEAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 1: 4Eh, “N”</td>
<td>MT29F128G08CFAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 2: 46h, “F”</td>
<td>MT29F256G08CMAAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 3: 49h, “I”</td>
<td>MT29F256G08CJAAA</td>
<td>DAh, 01h</td>
</tr>
<tr>
<td>4–5</td>
<td>Revision number</td>
<td>MT29F256G08CKAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit[15:5]: Reserved (0)</td>
<td>MT29F512G08CUAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: 1 = supports ONFI version 2.2</td>
<td>MT29F64G08CBAB</td>
<td>F8h, 01h</td>
</tr>
<tr>
<td></td>
<td>Bit 3: 1 = supports ONFI version 2.1</td>
<td>MT29F128G08CECAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = supports ONFI version 2.0</td>
<td>MT29F128G08CFABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = supports ONFI version 1.0</td>
<td>MT29F256G08CMABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Reserved (0)</td>
<td>MT29F256G08CJABC</td>
<td>FAh, 01h</td>
</tr>
<tr>
<td>6–7</td>
<td>Features supported</td>
<td>MT29F512G08CUCAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit[15:9]: Reserved (0)</td>
<td>MT29F256G08CUCAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: 1 = supports program page register clear enhancement</td>
<td>MT29F64G08CBAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: 1 = supports extended parameter page</td>
<td>MT29F128G08CEAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: 1 = supports interleaved (multi-plane) read operations</td>
<td>MT29F128G08CFAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: 1 = supports synchronous interface</td>
<td>MT29F256G08CMAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: 1 = supports odd-to-even page copyback</td>
<td>MT29F256G08CJAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: 1 = supports interleaved (multi-plane) program and erase operations</td>
<td>MT29F256G08CKAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = supports non-sequential page programming</td>
<td>MT29F512G08CUAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = supports multiple LUN operations</td>
<td>MT29F64G08CBAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = supports 16-bit data bus width</td>
<td>MT29F128G08CECAB</td>
<td></td>
</tr>
<tr>
<td>8–9</td>
<td>Optional commands supported</td>
<td>MT29F128G08CFABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit[15:10]: Reserved (0)</td>
<td>MT29F256G08CMABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 9: 1 = supports Reset LUN command</td>
<td>MT29F256G08CJABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 8: 1 = supports small data move</td>
<td>MT29F512G08CUCAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 7: 1 = supports CHANGE ROW ADDRESS</td>
<td>MT29F64G08CBAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 6: 1 = supports CHANGE READ COLUMN ENHANCED</td>
<td>MT29F128G08CECAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 5: 1 = supports READ UNIQUE ID</td>
<td>MT29F128G08CFABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: 1 = supports COPYBACK</td>
<td>MT29F256G08CMABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3: 1 = supports READ STATUS ENHANCED</td>
<td>MT29F256G08CJABC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = supports GET FEATURES and SET FEATURES</td>
<td>MT29F512G08CUCAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = supports read cache commands</td>
<td>MT29F64G08CBAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = supports PROGRAM PAGE CACHE</td>
<td>MT29F128G08CECAB</td>
<td></td>
</tr>
<tr>
<td>10–11</td>
<td>Reserved (0)</td>
<td>MT29F256G08CJABC</td>
<td></td>
</tr>
</tbody>
</table>

Micron Confidential and Proprietary

64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND Identification Operations

© 2009 Micron Technology, Inc. All rights reserved.
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–13</td>
<td>Extended parameter page length</td>
<td>–</td>
<td>03h, 00h</td>
</tr>
<tr>
<td>14</td>
<td>Number of parameter pages</td>
<td>–</td>
<td>03h</td>
</tr>
<tr>
<td>15–31</td>
<td>Reserved (0)</td>
<td>–</td>
<td>All 00h</td>
</tr>
</tbody>
</table>

Manufacturer information block

<p>| 32–43 | Device manufacturer (12 ASCII characters) | Micron | 4Dh, 49h, 43h, 52h, 4Fh, 4Eh, 20h, 20h, 20h, 20h, 20h |
| | | | 4Dh, 49h, 43h, 4Fh, 4Eh, 20h, 20h, 20h, 20h |
| 44–63 | Device model (20 ASCII characters) | | 4Dh, 49h, 43h, 52h, 4Fh, 4Eh, 20h, 20h, 20h |
| | | | 4Dh, 49h, 43h, 4Fh, 4Eh, 20h, 20h, 20h |
| | | MT29F64G08CBAABWP | 4Dh, 54h, 32h, 39h, 46h, 36h, 34h, 47h, 30h, 38h, 43h, 42h, 41h, 41h, 42h, 57h, 50h, 20h, 20h |
| | | MT29F64G08CBAABWP | 4Dh, 54h, 32h, 39h, 46h, 36h, 34h, 47h, 30h, 38h, 43h, 42h, 41h, 41h, 42h, 57h, 50h, 20h, 20h |
| | | MT29F128G08CFAAWP | 4Dh, 54h, 32h, 39h, 46h, 31h, 32h, 38h, 47h, 30h, 38h, 43h, 46h, 41h, 41h, 41h, 57h, 50h, 20h, 20h |
| | | MT29F128G08CFAABWP | 4Dh, 54h, 32h, 39h, 46h, 31h, 32h, 38h, 47h, 30h, 38h, 43h, 46h, 41h, 41h, 42h, 57h, 50h, 20h, 20h |
| | | MT29F256G08CJAAAWP | 4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 4Ah, 41h, 41h, 41h, 57h, 50h, 20h, 20h |
| | | MT29F256G08CJAAABWP | 4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 4Ah, 41h, 41h, 42h, 57h, 50h, 20h, 20h |
| | | MT29F256G08CJAAABWP | 4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 4Ah, 41h, 41h, 42h, 57h, 50h, 20h, 20h |</p>
<table>
<thead>
<tr>
<th>Byte range</th>
<th>Description</th>
<th>Device 1</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>44–63</td>
<td>Device model (20 ASCII characters)</td>
<td>MT29F128G08CEAAAC5</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 32h, 38h, 47h, 30h, 38h, 43h, 45h, 41h, 41h, 43h, 35h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKAAAC5</td>
<td>4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 48h, 41h, 41h, 43h, 35h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td>4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 4Dh, 41h, 41h, 43h, 35h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAAC5</td>
<td>4Dh, 54h, 32h, 39h, 46h, 35h, 31h, 32h, 47h, 30h, 38h, 43h, 55h, 41h, 41h, 43h, 35h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBCABH1</td>
<td>4Dh, 54h, 32h, 39h, 46h, 36h, 34h, 47h, 30h, 38h, 43h, 42h, 43h, 41h, 42h, 48h, 31h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 32h, 38h, 47h, 30h, 38h, 43h, 45h, 43h, 41h, 42h, 48h, 31h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 48h, 43h, 41h, 42h, 48h, 32h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCABH2</td>
<td>4Dh, 54h, 32h, 39h, 46h, 32h, 35h, 36h, 47h, 30h, 38h, 43h, 4Dh, 43h, 41h, 42h, 48h, 32h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>4Dh, 54h, 32h, 39h, 46h, 35h, 31h, 32h, 47h, 30h, 38h, 43h, 55h, 43h, 41h, 42h, 48h, 33h, 20h, 20h</td>
</tr>
</tbody>
</table>
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>JEDEC manufacturer ID</td>
<td>–</td>
<td>2Ch</td>
</tr>
<tr>
<td>65–66</td>
<td>Date code</td>
<td>–</td>
<td>00h, 00h</td>
</tr>
<tr>
<td>67–79</td>
<td>Reserved (0)</td>
<td>–</td>
<td>All 00h</td>
</tr>
</tbody>
</table>

Memory organization block

80–83	Number of data bytes per page	–	00h, 20h, 00h, 00h
84–85	Number of spare bytes per page	–	C0h, 01h
86–91	Reserved (0)	–	All 00h
92–95	Number of pages per block	–	00h, 01h, 00h, 00h
96–99	Number of blocks per LUN	–	00h, 10h, 00h, 00h
100	Number of LUNs per chip enable	MT29F64G08CBAAA	01h
		MT29F64G08CBAAB	
		MT29F64G08CBCAB	
		MT29F128G08CEAAA	
		MT29F128G08CECAB	
		MT29F128G08CFAAA	
		MT29F128G08CFAAB	
		MT29F256G08CMAAA	
		MT29F256G08CMCAB	
		MT29F256G08CJAAA	02h
		MT29F256G08CJAAB	
		MT29F256G08CKAAA	
		MT29F256G08CKCAB	
		MT29F512G08CUAAA	
		MT29F512G08CUCAB	
101	Number of address cycles	–	23h
	Bit[7:4]: Column address cycles	–	
	Bit[3:0]: Row address cycles	–	
102	Number of bits per cell	–	02h
103–104	Bad blocks maximum per LUN	–	64h, 00h
105–106	Block endurance	–	03h, 03h
107	Guaranteed valid blocks at beginning of target	–	01h
108–109	Block endurance for guaranteed valid blocks	–	00h, 00h
110	Number of programs per page	–	01h
111	Reserved (0)	–	00h
112	Number of bits ECC correctability	–	FFh
113	Number of interleaved address bits	–	01h
	Bit[7:4]: Reserved (0)	–	
	Bit[3:0]: Number of interleaved address bits	–	
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>Interleaved operation attributes</td>
<td>–</td>
<td>1Eh</td>
</tr>
<tr>
<td></td>
<td>Bit[7:6]: Reserved (0)</td>
<td>MT29F64G08CBAAAWP</td>
<td>06h</td>
</tr>
<tr>
<td></td>
<td>Bit 5: Reserved</td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 4: 1 = supports read cache</td>
<td>MT29F128G08CFAAAAWP</td>
<td>05h</td>
</tr>
<tr>
<td></td>
<td>Bit 3: Address restrictions for cache operations</td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = supports program cache</td>
<td>MT29F256G08CJAAAWP</td>
<td>09h</td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = no block address restrictions</td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: Overlapped/concurrent interleaving support</td>
<td>MT29F128G08CEAAAC5</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>MT29F256G08CKAAAC5</td>
<td>0Ah</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>MT29F256G08CECABH1</td>
<td>06h</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>MT29F128G08CMCABH2</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>MT29F512G08CUUCABH3</td>
<td>08h</td>
</tr>
<tr>
<td>129–130</td>
<td>Timing mode support</td>
<td>–</td>
<td>3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td>Bit[15:6]: Reserved (0)</td>
<td>MT29F64G08CBCAH1</td>
<td>10h</td>
</tr>
<tr>
<td></td>
<td>Bit 5: 1 = supports timing mode 5</td>
<td>MT29F64G08CUBAH1</td>
<td>27h</td>
</tr>
<tr>
<td></td>
<td>Bit 4: 1 = supports timing mode 4</td>
<td>MT29F256G08CKCABH2</td>
<td>0Ah</td>
</tr>
<tr>
<td></td>
<td>Bit 3: 1 = supports timing mode 3</td>
<td>MT29F256G08CMCABH2</td>
<td>05h</td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = supports timing mode 2</td>
<td>MT29F512G08CUUCABH3</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = supports timing mode 1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = supports timing mode 0, shall be 1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>131–132</td>
<td>Reserved (0)</td>
<td>–</td>
<td>All 00h</td>
</tr>
<tr>
<td>133–134</td>
<td>(^\text{t})PROG Maximum PROGRAM PAGE time (µs)</td>
<td>–</td>
<td>28h, 0Ah</td>
</tr>
<tr>
<td>135–136</td>
<td>(^\text{t})BERS Maximum BLOCK ERASE time (µs)</td>
<td>–</td>
<td>10h, 27h</td>
</tr>
<tr>
<td>137–138</td>
<td>(^\text{t})R Maximum PAGE READ time (µs)</td>
<td>–</td>
<td>48h, 00h</td>
</tr>
<tr>
<td>139–140</td>
<td>(^\text{t})CCS Minimum change column setup time (ns)</td>
<td>–</td>
<td>C8h, 00h</td>
</tr>
</tbody>
</table>
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
</table>
| 141–142 | Source synchronous timing mode support
Bit[15:6]: Reserved (0)
Bit 5: 1 = supports timing mode 5
Bit 4: 1 = supports timing mode 4
Bit 3: 1 = supports timing mode 3
Bit 2: 1 = supports timing mode 2
Bit 1: 1 = supports timing mode 1
Bit 0: 1 = supports timing mode 0 | MT29F64G08CBAAAWP
MT29F128G08CFAAAWP
MT29F256G08CJAAAWP
MT29F128G08CEAAAC5
MT29F256G08CKAAAC5
MT29F256G08CMAAAC5
MT29F512G08CUAAAC5
MT29F64G08CBABWP
MT29F128G08CFABWP
MT29F256G08CJABWP
MT29F64G08CBCABH1
MT29F128G08CECABH1
MT29F256G08CKCABH2
MT29F256G08CMCABH2
MT29F512G08CUCABH3 | 00h, 00h
1Fh, 00h
3Fh, 00h |
| 143 | Source synchronous features
Bit[7:3]: Reserved (0)
Bit 2: 1 = devices support CLK stopped for data input
Bit 1: 1 = typical capacitance values present
Bit 0: 0 = use \(t_{CAD\ MIN} \) value | MT29F64G08CBAAAWP
MT29F128G08CFAAAWP
MT29F256G08CJAAAWP
MT29F128G08CEAAAC5
MT29F256G08CKAAAC5
MT29F256G08CMAAAC5
MT29F512G08CUAAAC5
MT29F64G08CBABWP
MT29F128G08CFABWP
MT29F256G08CJABWP
MT29F64G08CBCABH1
MT29F128G08CECABH1
MT29F256G08CKCABH2
MT29F256G08CMCABH2
MT29F512G08CUCABH3 | 00h
02h |
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>144–145</td>
<td>CLK input pin capacitance, typical</td>
<td>MT29F64G08CBAAAWP</td>
<td>00h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CEAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td>27h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td>21h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJABWP</td>
<td>38h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08BCABH1</td>
<td>30h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>49h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCABH2</td>
<td>24h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>3Ch, 00h</td>
</tr>
<tr>
<td>146–147</td>
<td>I/O pin capacitance, typical</td>
<td>MT29F64G08CBAAAWP</td>
<td>00h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CEAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td>2Eh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td>23h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJABWP</td>
<td>49h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08BCABH1</td>
<td>2Ch, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>4Ch, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCABH2</td>
<td>26h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>43h, 00h</td>
</tr>
<tr>
<td>Byte</td>
<td>Description</td>
<td>Device</td>
<td>Values</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>148–149</td>
<td>Input capacitance, typical</td>
<td>MT29F64G08CBAAAWP</td>
<td>00h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAAAWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CEAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAAC5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td>2Dh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td>24h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td>3Dh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBCABH1</td>
<td>25h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>40h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCAABH2</td>
<td>20h, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>37h, 00h</td>
</tr>
<tr>
<td>150</td>
<td>Input pin capacitance, maximum</td>
<td>MT29F64G08CBAAAWP</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAAAWP</td>
<td>05h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAAAWP</td>
<td>07h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKAAAC5</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td>05h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAAC5</td>
<td>07h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBCABH1</td>
<td>05h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>08h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCAABH2</td>
<td>04h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>07h</td>
</tr>
<tr>
<td>151</td>
<td>Driver strength support</td>
<td>--</td>
<td>07h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:3]: Reserved (0)</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2: 1 = Supports overdrive (2 drive strength)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = Supports overdrive (1 drive strength)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = Supports driver strength settings</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>152–153</td>
<td>tR maximum interleaved (multi-plane) page read time (µs)</td>
<td>–</td>
<td>48h, 00h</td>
</tr>
<tr>
<td>154–155</td>
<td>tADL program page register clear enhancement value (ns)</td>
<td>–</td>
<td>46h, 00h</td>
</tr>
</tbody>
</table>
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>156–163</td>
<td>Reserved (0)</td>
<td>–</td>
<td>All 00h</td>
</tr>
</tbody>
</table>

Vendor block

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>164–165</td>
<td>Vendor-specific revision number</td>
<td>–</td>
<td>01h, 00h</td>
</tr>
<tr>
<td>166</td>
<td>TWO-PLANE PAGE READ support</td>
<td>–</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:1]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = Support for TWO-PLANE PAGE READ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Read cache support</td>
<td>–</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:1]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 0 = Does not support Micron-specific read cache function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>READ UNIQUE ID support</td>
<td>–</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:1]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 0 = Does not support Micron-specific READ UNIQUE ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Programmable DQ output impedance support</td>
<td>–</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:1]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 0 = No support for programmable DQ output impedance by B8h command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Number of programmable DQ output impedance settings</td>
<td>–</td>
<td>04h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:3]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit [2:0] = Number of programmable DQ output impedance settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Programmable DQ output impedance feature address</td>
<td>–</td>
<td>10h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:0] = Programmable DQ output impedance feature address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Programmable R/B# pull-down strength support</td>
<td>–</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:1]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 1 = Support programmable R/B# pull-down strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Programmable R/B# pull-down strength feature address</td>
<td>–</td>
<td>81h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:0] = Feature address used with programmable R/B# pull-down strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Number of programmable R/B# pull-down strength settings</td>
<td>–</td>
<td>04h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:3]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit[2:0] = Number of programmable R/B# pull-down strength settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>OTP mode support</td>
<td>–</td>
<td>02h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:2]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1: 1 = Supports Get/Set Features command set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0: 0 = Does not support A5h/A0h/AFh OTP command set</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Micron Confidential and Proprietary

64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND Identification Operations

© 2009 Micron Technology, Inc. All rights reserved.
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>OTP page start</td>
<td>–</td>
<td>02h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:0] = Page where OTP page space begins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>OTP DATA PROTECT address</td>
<td>–</td>
<td>01h</td>
</tr>
<tr>
<td></td>
<td>Bit[7:0] = Page address to use when issuing OTP DATA PROTECT command</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Number of OTP pages</td>
<td>–</td>
<td>1Eh</td>
</tr>
<tr>
<td></td>
<td>Bit[15:5]: Reserved (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit[4:0] = Number of OTP pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>OTP Feature Address</td>
<td>–</td>
<td>90h</td>
</tr>
<tr>
<td>180–252</td>
<td>Reserved (0)</td>
<td>–</td>
<td>All 00h</td>
</tr>
<tr>
<td>253</td>
<td>Parameter page revision</td>
<td>MT29F64G08CBAABWP</td>
<td>04h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Parameter Page Data Structure (Continued)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Device</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>254–255</td>
<td>Integrity CRC</td>
<td>MT29F64G08CBAAAWP</td>
<td>39h, 13h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBAABWP</td>
<td>EFh, 82h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAAAWP</td>
<td>1Bh, F3h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CFAABWP</td>
<td>77h, DFh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAAAWP</td>
<td>E5h, F8h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CJAABWP</td>
<td>EFh, 82h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CEAAAC5</td>
<td>0Eh, 79h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CCKAAAC5</td>
<td>8Ah, 02h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMAAAC5</td>
<td>24h, 07h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUAAAC5</td>
<td>0Eh, 22h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F64G08CBCABH1</td>
<td>7Eh, C7h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F128G08CECABH1</td>
<td>B8h, 2Ch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CKCABH2</td>
<td>A1h, 3Ch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F256G08CMCABH2</td>
<td>35h, D6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F512G08CUCABH3</td>
<td>1Dh, 1Ch</td>
</tr>
</tbody>
</table>

Redundant parameter pages

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>256–511</td>
<td>Value of bytes 0–255</td>
<td>–</td>
</tr>
<tr>
<td>512–767</td>
<td>Value of bytes 0–255</td>
<td>–</td>
</tr>
</tbody>
</table>

Extended parameter pages

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>768–769</td>
<td>Extended parameter page Integrity CRC</td>
<td>–</td>
</tr>
<tr>
<td>770–773</td>
<td>Extended parameter page signature</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Byte 0: 45h, “E”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 1: 50h, “P”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 2: 50h, “P”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byte 3: 53h, “S”</td>
<td></td>
</tr>
<tr>
<td>774–783</td>
<td>Reserved (0)</td>
<td>–</td>
</tr>
<tr>
<td>784</td>
<td>Section 0 type</td>
<td>–</td>
</tr>
<tr>
<td>785</td>
<td>Section 0 length</td>
<td>–</td>
</tr>
<tr>
<td>786–799</td>
<td>Reserved (0)</td>
<td>–</td>
</tr>
<tr>
<td>800</td>
<td>Number of bits ECC correctability</td>
<td>–</td>
</tr>
<tr>
<td>801</td>
<td>ECC codeword size</td>
<td>–</td>
</tr>
<tr>
<td>802–803</td>
<td>Bad blocks maximum per LUN</td>
<td>–</td>
</tr>
<tr>
<td>804–805</td>
<td>Block endurance</td>
<td>–</td>
</tr>
<tr>
<td>806–815</td>
<td>Reserved (0)</td>
<td>–</td>
</tr>
<tr>
<td>816–863</td>
<td>Value of bytes 768-815</td>
<td>–</td>
</tr>
<tr>
<td>864–911</td>
<td>Value of bytes 768-815</td>
<td>–</td>
</tr>
</tbody>
</table>
READ UNIQUE ID (EDh)

The READ UNIQUE ID (EDh) command is used to read a unique identifier programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing EDh to the command register puts the target in read unique ID mode. The target stays in this mode until another valid command is issued.

When the EDh command is followed by a 00h address cycle, the target goes busy for tR. If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode.

After tR completes, the host enables data output mode to read the unique ID. When the asynchronous interface is active, one data byte is output per RE# toggle. When the synchronous interface is active, two data bytes are output, one byte for each rising or falling edge of DQS.

Sixteen copies of the unique ID data are stored in the device. Each copy is 32 bytes. The first 16 bytes of a 32-byte copy are unique data, and the second 16 bytes are the complement of the first 16 bytes. The host should XOR the first 16 bytes with the second 16 bytes. If the result is 16 bytes of FFh, then that copy of the unique ID data is correct. In the event that a non-FFh result is returned, the host can repeat the XOR operation on a subsequent copy of the unique ID data. If desired, the CHANGE READ COLUMN (05h-E0h) command can be used to change the data output location. Use of the CHANGE READ COLUMN ENHANCED (06h-E0h) command is prohibited.

Figure 43: READ UNIQUE ID (EDh) Operation
Configuration Operations

The SET FEATURES (EFh) and GET FEATURES (EEh) commands are used to modify the target’s default power-on behavior. These commands use a one-byte feature address to determine which subfeature parameters will be read or modified. Each feature address (in the 00h to FFh range) is defined in Table 9. The SET FEATURES (EFh) command writes subfeature parameters (P1-P4) to the specified feature address. The GET FEATURES command reads the subfeature parameters (P1-P4) at the specified feature address.

Unless otherwise specified, the values of the feature addresses do not change when RESET (FFh, FCh) is issued by the host.

Table 9: Feature Address Definitions

<table>
<thead>
<tr>
<th>Feature Address</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Reserved</td>
</tr>
<tr>
<td>01h</td>
<td>Timing mode</td>
</tr>
<tr>
<td>02h–0Fh</td>
<td>Reserved</td>
</tr>
<tr>
<td>10h</td>
<td>Programmable output drive strength</td>
</tr>
<tr>
<td>11h–7Fh</td>
<td>Reserved</td>
</tr>
<tr>
<td>80h</td>
<td>Programmable output drive strength</td>
</tr>
<tr>
<td>81h</td>
<td>Programmable RB# pull-down strength</td>
</tr>
<tr>
<td>82h–8Fh</td>
<td>Reserved</td>
</tr>
<tr>
<td>90h</td>
<td>Array operation mode</td>
</tr>
<tr>
<td>91h–FFh</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

SET FEATURES (EFh)

The SET FEATURES (EFh) command writes the subfeature parameters (P1-P4) to the specified feature address to enable or disable target-specific features. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing EFh to the command register puts the target in the set features mode. The target stays in this mode until another command is issued.

The EFh command is followed by a valid feature address as specified in Table 9. The host waits for tADL before the subfeature parameters are input. When the asynchronous interface is active, one subfeature parameter is latched per rising edge of WE#. When the synchronous interface is active, one subfeature parameter is latched per rising edge of DQS. The data on the falling edge of DQS should be identical to the subfeature parameter input on the previous rising edge of DQS. The device is not required to wait for the repeated data byte before beginning internal actions.

After all four subfeature parameters are input, the target goes busy for tFEAT. The READ STATUS (70h) command can be used to monitor for command completion.

Feature address 01h (timing mode) operation is unique. If SET FEATURES is used to modify the interface type, the target will be busy for tITC. See Activating Interfaces (page 48) for details.
GET FEATURES (EEh)

The GET FEATURES (EEh) command reads the subfeature parameters (P1-P4) from the specified feature address. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing EEh to the command register puts the target in get features mode. The target stays in this mode until another valid command is issued.

When the EEh command is followed by a feature address, the target goes busy for \(t_{FEAT} \). If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode. During and prior to data output, use of the READ STATUS ENHANCED (78h) command is prohibited.

After \(t_{FEAT} \) completes, the host enables data output mode to read the subfeature parameters. When the asynchronous interface is active, one data byte is output per RE# toggle. When the synchronous interface is active, one subfeature parameter is output per DQS toggle on rising or falling edge of DQS.

Figure 45: GET FEATURES (EEh) Operation
Table 10: Feature Address 01h: Timing Mode

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ5</th>
<th>DQ4</th>
<th>DQ3</th>
<th>DQ2</th>
<th>DQ1</th>
<th>DQ0</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Timing mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 0 (default)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x0h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>Mode 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x1h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x2h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x3h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x4h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x5h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asynchronous (default)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0xh</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Synchronous DDR</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1xh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2xh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program command clears all</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cache registers on a target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program command clears only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>addressed LUN cache register</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on a target</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Asynchronous timing mode 0 is the default, power-on value.
2. If the synchronous interface is active, a RESET (FFh) command will change the timing mode and data interface bits of feature address 01h to their default values. If the asynchronous interface is active, a RESET (FFh) command will not change the values of the timing mode or data interface bits to their default valued.
Table 11: Feature Addresses 10h and 80h: Programmable Output Drive Strength

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>Options</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ5</th>
<th>DQ4</th>
<th>DQ3</th>
<th>DQ2</th>
<th>DQ1</th>
<th>DQ0</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Output drive strength</td>
<td>Overdrive 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overdrive 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nominal (default)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Underdrive</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03h</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. See Output Drive Impedance section for details.

Table 12: Feature Addresses 81h: Programmable R/B# Pull-Down Strength

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>Options</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ5</th>
<th>DQ4</th>
<th>DQ3</th>
<th>DQ2</th>
<th>DQ1</th>
<th>DQ0</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>R/B# pull-down strength</td>
<td>Full (default)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three-quarter</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-half</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-quarter</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03h</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. This feature address is used to change the default R/B# pull-down strength. Its strength should be selected based on the expected loading of R/B#. Full strength is the default, power-on value.
<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ5</th>
<th>DQ4</th>
<th>DQ3</th>
<th>DQ2</th>
<th>DQ1</th>
<th>DQ0</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Array Operation Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTP Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>01h</td>
<td>1</td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Reserved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. See One-Time Programmable (OTP) Operations for details.
2. A RESET (FFh) command will cause the bits of the array operation mode to change to their default values.
Status Operations

Each die (LUN) provides its status independently of other die (LUNs) on the same target through its 8-bit status register.

After the READ STATUS (70h) or READ STATUS ENHANCED (78h) command is issued, status register output is enabled. The contents of the status register are returned on DQ[7:0] for each data output request.

When the asynchronous interface is active and status register output is enabled, changes in the status register are seen on DQ[7:0] as long as CE# and RE# are LOW; it is not necessary to toggle RE# to see the status register update.

When the synchronous interface is active and status register output is enabled, changes in the status register are seen on DQ[7:0] as long as CE# and W/R# are LOW and ALE and CLE are HIGH. DQS also toggles while ALE and CLE are HIGH.

While monitoring the status register to determine when a data transfer from the Flash array to the data register (tR) is complete, the host must issue the READ MODE (00h) command to disable the status register and enable data output (see READ MODE (00h) (page 85)).

The READ STATUS (70h) command returns the status of the most recently selected die (LUN). To prevent data contention during or following an interleaved die (multi-LUN) operation, the host must enable only one die (LUN) for status output by using the READ STATUS ENHANCED (78h) command (see Interleaved Die (Multi-LUN) Operations (page 110)).

<table>
<thead>
<tr>
<th>SR Bit</th>
<th>Definition</th>
<th>Independent per Plane</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>WP#</td>
<td>–</td>
<td>Write Protect: 0 = Protected 1 = Not protected In the normal array mode, this bit indicates the value of the WP# signal. In OTP mode this bit is set to 0 if a PROGRAM OTP PAGE operation is attempted and the OTP area is protected.</td>
</tr>
<tr>
<td>6</td>
<td>RDY</td>
<td>–</td>
<td>Ready/Busy I/O: 0 = Busy 1 = Ready This bit indicates that the selected die (LUN) is not available to accept new commands, address, or data I/O cycles with the exception of RESET (FFh), SYNCHRONOUS RESET (FCh), READ STATUS (70h), and READ STATUS ENHANCED (78h). This bit applies only to the selected die (LUN).</td>
</tr>
<tr>
<td>5</td>
<td>ARDY</td>
<td>–</td>
<td>Ready/Busy Array: 0 = Busy 1 = Ready This bit goes LOW (busy) when an array operation is occurring on any plane of the selected die (LUN). It goes HIGH when all array operations on the selected die (LUN) finish. This bit applies only to the selected die (LUN).</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
</tbody>
</table>
Table 14: Status Register Definition (Continued)

<table>
<thead>
<tr>
<th>SR Bit</th>
<th>Definition</th>
<th>Independent per Plane¹</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
<tr>
<td>1</td>
<td>FAILC</td>
<td>Yes</td>
<td>Pass/Fail (N–1): 0 = Pass 1 = Fail This bit is set if the previous operation on the selected die (LUN) failed. This bit is valid only when RDY (SR bit 6) is 1. It applies to PROGRAM-, and COPYBACK PROGRAM-series operations (80h-10h, 80h-15h, 85h-10h). This bit is not valid following an ERASE-series or READ-series operation.</td>
</tr>
<tr>
<td>0</td>
<td>FAIL</td>
<td>Yes</td>
<td>Pass/Fail (N): 0 = Pass 1 = Fail This bit is set if the most recently finished operation on the selected die (LUN) failed. This bit is valid only when ARDY (SR bit 5) is 1. It applies to PROGRAM-, ERASE-, and COPYBACK PROGRAM-series operations (80h-10h, 80h-15h, 60h-D0h, 85h-10h). This bit is not valid following a READ-series operation.</td>
</tr>
</tbody>
</table>

Note: 1. After a multi-plane operation begins, the FAILC and FAIL bits are ORed together for the active planes when the READ STATUS (70h) command is issued. After the READ STATUS ENHANCED (78h) command is issued, the FAILC and FAIL bits reflect the status of the plane selected.

READ STATUS (70h)

The READ STATUS (70h) command returns the status of the last-selected die (LUN) on a target. This command is accepted by the last-selected die (LUN) even when it is busy (RDY = 0).

If there is only one die (LUN) per target, the READ STATUS (70h) command can be used to return status following any NAND command.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select the die (LUN) that should report status. In this situation, using the READ STATUS (70h) command will result in bus contention, as two or more die (LUNs) could respond until the next operation is issued. The READ STATUS (70h) command can be used following all single die (LUN) operations.

If following a multi-plane operation, regardless of the number of LUNs per target, the READ STATUS (70h) command indicates an error occurred (FAIL = 1), use the READ STATUS ENHANCED (78h) command—once for each plane—to determine which plane operation failed.
READ STATUS ENHANCED (78h)

The READ STATUS ENHANCED (78h) command returns the status of the addressed die (LUN) on a target even when it is busy (RDY = 0). This command is accepted by all die (LUNs), even when they are BUSY (RDY = 0).

Writing 78h to the command register, followed by three row address cycles containing the page, block, and LUN addresses, puts the selected die (LUN) into read status mode. The selected die (LUN) stays in this mode until another valid command is issued. Die (LUNs) that are not addressed are deselected to avoid bus contention.

The selected LUN’s status is returned when the host requests data output. The RDY and ARDY bits of the status register are shared for all of the planes of the selected die (LUN). The FAILC and FAIL bits are specific to the plane specified in the row address.

The READ STATUS ENHANCED (78h) command also enables the selected die (LUN) for data output. To begin data output following a READ-series operation after the selected die (LUN) is ready (RDY = 1), issue the READ MODE (00h) command, then begin data output. If the host needs to change the cache register that will output data, use the CHANGE READ COLUMN ENHANCED (06h-E0h) command after the die (LUN) is ready (see CHANGE READ COLUMN ENHANCED (06h-E0h)).

Use of the READ STATUS ENHANCED (78h) command is prohibited during the power-on RESET (FFh) command and when OTP mode is enabled. It is also prohibited following some of the other reset, identification, and configuration operations. See individual operations for specific details.
Column Address Operations

The column address operations affect how data is input to and output from the cache registers within the selected die (LUNs). These features provide host flexibility for managing data, especially when the host internal buffer is smaller than the number of data bytes or words in the cache register.

When the asynchronous interface is active, column address operations can address any byte in the selected cache register.

When the synchronous interface is active, column address operations are aligned to word boundaries (CA0 is forced to 0), because as data is transferred on DQ[7:0] in two-byte units.

CHANGE READ COLUMN (05h-E0h)

The CHANGE READ COLUMN (05h-E0h) command changes the column address of the selected cache register and enables data output from the last selected die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during CACHE READ operations (RDY = 1; ARDY = 0).

Writing 05h to the command register, followed by two column address cycles containing the column address, followed by the E0h command, puts the selected die (LUN) into data output mode. After the E0h command cycle is issued, the host must wait at least 1CCS before requesting data output. The selected die (LUN) stays in data output mode until another valid command is issued.

In devices with more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be issued prior to issuing the CHANGE READ COLUMN (05h-E0h). In this situation, using the CHANGE READ COLUMN (05h-E0h) command without the READ STATUS ENHANCED (78h) command will result in bus contention, as two or more die (LUNs) could output data.

Figure 48: CHANGE READ COLUMN (05h-E0h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>Dn</td>
<td>Dn+1</td>
<td>05h</td>
<td>C1</td>
<td>C2</td>
<td>E0h</td>
<td>Dk</td>
</tr>
<tr>
<td>SR[6]</td>
<td></td>
<td></td>
<td>1RHW</td>
<td></td>
<td>1CCS</td>
<td></td>
<td>Dk+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dk+2</td>
</tr>
</tbody>
</table>
CHANGE READ COLUMN ENHANCED (06h-E0h)

The CHANGE READ COLUMN ENHANCED (06h-E0h) command enables data output on the addressed die’s (LUN’s) cache register at the specified column address. This command is accepted by a die (LUN) when it is ready (RDY = 1; ARDY = 1).

Writing 06h to the command register, followed by two column address cycles and three row address cycles, followed by E0h, enables data output mode on the address LUN’s cache register at the specified column address. After the E0h command cycle is issued, the host must wait at least t_CCS before requesting data output. The selected die (LUN) stays in data output mode until another valid command is issued.

Following a multi-plane read page operation, the CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to select the cache register to be enabled for data output. After data output is complete on the selected plane, the command can be issued again to begin data output on another plane.

In devices with more than one die (LUN) per target, after all of the die (LUNs) on the target are ready (RDY = 1), the CHANGE READ COLUMN ENHANCED (06h-E0h) command can be used following an interleaved die (multi-LUN) read operation. Die (LUNs) that are not addressed are deselected to avoid bus contention.

In devices with more than one die (LUN) per target, during interleaved die (multi-LUN) operations where more than one or more die (LUNs) are busy (RDY = 1; ARDY = 0 or RDY = 0; ARDY = 0), the READ STATUS ENHANCED (78h) command must be issued to the die (LUN) to be selected prior to issuing the CHANGE READ COLUMN ENHANCED (06h-E0h). In this situation, using the CHANGE READ COLUMN ENHANCED (06h-E0h) command without the READ STATUS ENHANCED (78h) command will result in bus contention, as two or more die (LUNs) could output data.

If there is a need to update the column address without selecting a new cache register or LUN, the CHANGE READ COLUMN (05h-E0h) command can be used instead.

Figure 49: CHANGE READ COLUMN ENHANCED (06h-E0h) Operation
The CHANGE WRITE COLUMN (85h) command changes the column address of the selected cache register and enables data input on the last-selected die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during cache program operations (RDY = 1; ARDY = 0).

Writing 85h to the command register, followed by two column address cycles containing the column address, puts the selected die (LUN) into data input mode. After the second address cycle is issued, the host must wait at least tCCS before inputting data. The selected die (LUN) stays in data input mode until another valid command is issued. Though data input mode is enabled, data input from the host is optional. Data input begins at the column address specified.

The CHANGE WRITE COLUMN (85h) command is allowed after the required address cycles are specified, but prior to the final command cycle (10h, 11h, 15h) of the following commands while data input is permitted: PROGRAM PAGE (80h-10h), PROGRAM PAGE MULTI-PLANE (80h-11h), PROGRAM PAGE CACHE (80h-15h), COPYBACK PROGRAM (85h-10h), and COPYBACK PROGRAM MULTI-PLANE (85h-11h).

In devices that have more than one die (LUN) per target, the CHANGE WRITE COLUMN (85h) command can be used with other commands that support interleaved die (multi-LUN) operations.

Figure 50: CHANGE WRITE COLUMN (85h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>D_IN</th>
<th>D_IN</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>D_IN</th>
<th>D_IN</th>
<th>D_IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>Dn</td>
<td>Dn+1</td>
<td>85h</td>
<td>C1</td>
<td>C2</td>
<td>Dk</td>
<td>Dk+1</td>
<td>Dk+2</td>
</tr>
<tr>
<td>RDY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As defined for PAGE (CACHE) PROGRAM

As defined for PAGE (CACHE) PROGRAM
The CHANGE ROW ADDRESS (85h) command changes the row address (block and page) where the cache register contents will be programmed in the NAND Flash array. It also changes the column address of the selected cache register and enables data input on the specified die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during cache programming operations (RDY = 1; ARDY = 0).

Write 85h to the command register. Then write two column address cycles and three row address cycles. This updates the page and block destination of the selected LUN and puts the cache register into data input mode. After the fifth address cycle is issued the host must wait at least 1 CCS before inputting data. The selected LUN stays in data input mode until another valid command is issued. Though data input mode is enabled, data input from the host is optional. Data input begins at the column address specified.

The CHANGE ROW ADDRESS (85h) command is allowed after the required address cycles are specified, but prior to the final command cycle (10h, 11h, 15h) of the following commands while data input is permitted: PROGRAM PAGE (80h-10h), PROGRAM PAGE MULTI-PLANE (80h-11h), PROGRAM PAGE CACHE (80h-15h), COPYBACK PROGRAM (85h-10h), and COPYBACK PROGRAM MULTI-PLANE (85h-11h). When used with these commands, the LUN address and plane select bits are required to be identical to the LUN address and plane select bits originally specified.

The CHANGE ROW ADDRESS (85h) command enables the host to modify the original page and block address for the data in the cache register to a new page and block address.

In devices that have more than one die (LUN) per target, the CHANGE ROW ADDRESS (85h) command can be used with other commands that support interleaved die (multi-LUN) operations.

The CHANGE ROW ADDRESS (85h) command can be used with the CHANGE READ COLUMN (05h-E0h) or CHANGE READ COLUMN ENHANCED (06h-E0h) commands to read and modify cache register contents in small sections prior to programming cache register contents to the NAND Flash array. This capability can reduce the amount of buffer memory used in the host controller.

To modify the cache register contents in small sections, first issue a PAGE READ (00h-30h) or COPYBACK READ (00h-35h) operation. When data output is enabled, the host can output a portion of the cache register contents. To modify the cache register contents, issue the 85h command, the column and row addresses, and input the new data. The host can re-enable data output by issuing the 11h command, waiting 1 DBSY, and then issuing the CHANGE READ COLUMN (05h-E0h) or CHANGE READ COLUMN ENHANCED (06h-E0h) command. It is possible toggle between data output and data input multiple times. After the final CHANGE ROW ADDRESS (85h) operation is complete, issue the 10h command to program the cache register to the NAND Flash array.
Figure 51: CHANGE ROW ADDRESS (85h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>DQ[7:0]</th>
<th>RDY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dn</td>
<td>Dn + 1</td>
</tr>
<tr>
<td>Command</td>
<td>Dn</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As defined for PAGE (CACHE) PROGRAM

As defined for PAGE (CACHE) PROGRAM

Micron Confidential and Proprietary
64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND
Column Address Operations

© 2009 Micron Technology, Inc. All rights reserved.
Read Operations

Read operations are used to copy data from the NAND Flash array of one or more of the planes to their respective cache registers and to enable data output from the cache registers to the host through the DQ bus.

Read Operations

The READ PAGE (00h-30h) command, when issued by itself, reads one page from the NAND Flash array to its cache register and enables data output for that cache register.

During data output the following commands can be used to read and modify the data in the cache registers: CHANGE READ COLUMN (05h-E0h) and CHANGE ROW ADDRESS (85h).

Read Cache Operations

To increase data throughput, the READ PAGE CACHE-series (31h, 00h-31h) commands can be used to output data from the cache register while concurrently copying a page from the NAND Flash array to the data register.

To begin a read page cache sequence, begin by reading a page from the NAND Flash array to its corresponding cache register using the READ PAGE (00h-30h) command. R/B# goes LOW during tR and the selected die (LUN) is busy (RDY = 0, ARDY = 0). After tR (R/B# is HIGH and RDY = 1, ARDY = 1), issue either of these commands:

- READ PAGE CACHE SEQUENTIAL (31h)—copies the next sequential page from the NAND Flash array to the data register
- READ PAGE CACHE RANDOM (00h-31h)—copies the page specified in this command from the NAND Flash array (any plane) to its corresponding data register

After the READ PAGE CACHE-series (31h, 00h-31h) command has been issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the next page begins copying data from the array to the data register. After tRCBSY, R/B# goes HIGH and the die’s (LUN’s) status register bits indicate the device is busy with a cache operation (RDY = 1, ARDY = 0). The cache register becomes available and the page requested in the READ PAGE CACHE operation is transferred to the data register. At this point, data can be output from the cache register, beginning at column address 0. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data output by the die (LUN).

After outputting the desired number of bytes from the cache register, either an additional READ PAGE CACHE-series (31h, 00h-31h) operation can be started or the READ PAGE CACHE LAST (3Fh) command can be issued.

If the READ PAGE CACHE LAST (3Fh) command is issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the data register is copied into the cache register. After tRCBSY, R/B# goes HIGH and RDY = 1 and ARDY = 1, indicating that the cache register is available and that the die (LUN) is ready. Data can then be output from the cache register, beginning at column address 0. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data being output.

For READ PAGE CACHE-series (31h, 00h-31h, 3Fh), during the die (LUN) busy time, tRCBSY, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and RESET (FFh, FCh). When RDY = 1 and ARDY = 0, the only valid commands during READ PAGE CACHE-series (31h, 00h-31h) operations are status opera-
tions (70h, 78h), READ MODE (00h), READ PAGE CACHE-series (31h, 00h-31h), CHANGE READ COLUMN (05h-E0h), and RESET (FFh, FCh).

Multi-Plane Read Operations

Multi-plane read page operations improve data throughput by copying data from more than one plane simultaneously to the specified cache registers. This is done by prepending one or more READ PAGE MULTI-PLANE (00h-32h) commands in front of the READ PAGE (00h-30h) command.

When the die (LUN) is ready, the CHANGE READ COLUMN ENHANCED (06h-E0h) command determines which plane outputs data. During data output, the following commands can be used to read and modify the data in the cache registers: CHANGE READ COLUMN (05h-E0h) and CHANGE ROW ADDRESS (85h). See Multi-Plane Operations for details.

Multi-Plane Read Cache Operations

Multi-plane read cache operations can be used to output data from more than one cache register while concurrently copying one or more pages from the NAND Flash array to the data register. This is done by prepending READ PAGE MULTI-PLANE (00h-32h) commands in front of the PAGE READ CACHE RANDOM (00h-31h) command.

To begin a multi-plane read page cache sequence, begin by issuing a MULTI-PLANE READ PAGE operation using the READ PAGE MULTI-PLANE (00h-32h) and READ PAGE (00h-30h) commands. R/B# goes LOW during tR and the selected die (LUN) is busy (RDY = 0, ARDY = 0). After tR (R/B# is HIGH and RDY = 1, ARDY = 1), issue either of these commands:

- READ PAGE CACHE SEQUENTIAL (31h)—copies the next sequential page from the previously addressed planes from the NAND Flash array to the data registers.
- READ PAGE MULTI-PLANE (00h-32h) commands, if desired, followed by the READ PAGE CACHE RANDOM (00h-31h) command—copies the pages specified from the NAND Flash array to the corresponding data registers.

After the READ PAGE CACHE-series (31h, 00h-31h) command has been issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the next pages begin copying data from the array to the data registers. After tRCBSY, R/B# goes HIGH and the LUN’s status register bits indicate the device is busy with a cache operation (RDY = 1, ARDY = 0). The cache registers become available and the pages requested in the READ PAGE CACHE operation are transferred to the data registers. Issue the CHANGE READ COLUMN ENHANCED (06h-E0h) command to determine which cache register will output data. After data is output, the CHANGE READ COLUMN ENHANCED (06h-E0h) command can be used to output data from other cache registers. After a cache register has been selected, the CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data output.

After outputting data from the cache registers, either an additional MULTI-PLANE READ CACHE-series (31h, 00h-31h) operation can be started or the READ PAGE CACHE LAST (3Fh) command can be issued.

If the READ PAGE CACHE LAST (3Fh) command is issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the data registers are copied into the cache registers. After tRCBSY, R/B# goes HIGH and RDY = 1 and ARDY = 1, indicating that the cache registers are available and that the die (LUN) is ready. Issue the
CHANGE READ COLUMN ENHANCED (06h-E0h) command to determine which cache register will output data. After data is output, the CHANGE READ COLUMN ENHANCED (06h-E0h) command can be used to output data from other cache registers. After a cache register has been selected, the CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data output.

For READ PAGE CACHE-series (31h, 00h-31h, 3Fh), during the die (LUN) busy time, 1RCBSY, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and RESET (FFh, FCh). When RDY = 1 and ARDY = 0, the only valid commands during READ PAGE CACHE-series (31h, 00h-31h) operations are status operations (70h, 78h), READ MODE (00h), multi-plane read cache-series (31h, 00h-32h, 00h-31h), CHANGE READ COLUMN (05h-E0h, 06h-E0h), and RESET (FFh, FCh).

See Multi-Plane Operations for additional multi-plane addressing requirements.

READ MODE (00h)

The READ MODE (00h) command disables status output and enables data output for the last-selected die (LUN) and cache register after a READ operation (00h-30h, 00h-35h) has been monitored with a status operation (70h, 78h). This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 3Fh, 00h-31h) operations (RDY = 1 and ARDY = 0).

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) prior to issuing the READ MODE (00h) command. This prevents bus contention.
READ PAGE (00h-30h)

The READ PAGE (00h–30h) command copies a page from the NAND Flash array to its respective cache register and enables data output. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To read a page from the NAND Flash array, write the 00h command to the command register, write five address cycles to the address registers, and conclude with the 30h command. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for tR as data is transferred.

To determine the progress of the data transfer, the host can monitor the target's R/B# signal or, alternatively, the status operations (70h, 78h) can be used. If the status operations are used to monitor the LUN's status, when the die (LUN) is ready (RDY = 1, ARDY = 1), the host disables status output and enables data output by issuing the READ MODE (00h) command. When the host requests data output, output begins at the column address specified.

During data output the CHANGE READ COLUMN (05h-E0h) command can be issued.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) prior to the issue of the READ MODE (00h) command. This prevents bus contention.

The READ PAGE (00h-30h) command is used as the final command of a multi-plane read operation. It is preceded by one or more READ PAGE MULTI-PLANE (00h-32h) commands. Data is transferred from the NAND Flash array for all of the addressed planes to their respective cache registers. When the die (LUN) is ready (RDY = 1, ARDY = 1), data output is enabled for the cache register linked to the plane addressed in the READ PAGE (00h-30h) command. When the host requests data output, output begins at the column address last specified in the READ PAGE (00h-30h) command. The CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to enable data output in the other cache registers. See Multi-Plane Operations for additional multi-plane addressing requirements.

Figure 52: READ PAGE (00h-30h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>00h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>30h</td>
<td>Dn</td>
<td>Dn+1</td>
<td>Dn+2</td>
</tr>
</tbody>
</table>

RDY

tWB

Micron Confidential and Proprietary

64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND Read Operations

Figure 52: READ PAGE (00h-30h) Operation
READ PAGE CACHE SEQUENTIAL (31h)

The READ PAGE CACHE SEQUENTIAL (31h) command reads the next sequential page within a block into the data register while the previous page is output from the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue this command, write 31h to the command register. After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is busy with a cache operation (RDY = 1, ARDY = 0), indicating that the cache register is available and that the specified page is copying from the NAND Flash array to the data register. At this point, data can be output from the cache register beginning at column address 0. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data being output from the cache register.

The READ PAGE CACHE SEQUENTIAL (31h) command can be used to cross block boundaries. If the READ PAGE CACHE SEQUENTIAL (31h) command is issued after the last page of a block is read into the data register, the next page read will be the next logical block in the plane which the 31h command was issued. Do not issue the READ PAGE CACHE SEQUENTIAL (31h) to cross die (LUN) boundaries. Instead, issue the READ PAGE CACHE LAST (3Fh) command.

If the READ PAGE CACHE SEQUENTIAL (31h) command is issued after a MULTI-PLANE READ PAGE operation (00h-32h, 00h-30h), the next sequential pages are read into the data registers while the previous pages can be output from the cache registers. After the die (LUN) is ready (RDY = 1, ARDY = 0), the CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to select which cache register outputs data.

Figure 53: READ PAGE CACHE SEQUENTIAL (31h) Operation
READ PAGE CACHE RANDOM (00h-31h)

The READ PAGE CACHE RANDOM (00h-31h) command reads the specified block and page into the data register while the previous page is output from the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue this command, write 00h to the command register, then write five address cycles to the address register, and conclude by writing 31h to the command register. The column address in the address specified is ignored. The die (LUN) address must match the same die (LUN) address as the previous READ PAGE (00h-30h) command or, if applicable, the previous READ PAGE CACHE RANDOM (00h-31h) command. There is no restriction on the plane address.

After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is busy with a cache operation (RDY = 1, ARDY = 0), indicating that the cache register is available and that the specified page is copying from the NAND Flash array to the data register. At this point, data can be output from the cache register beginning at column address 0. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data being output from the cache register.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command followed by the READ MODE (00h) command must be used to select only one die (LUN) and prevent bus contention.

If a MULTI-PLANE CACHE RANDOM (00h-32h, 00h-31h) command is issued after a MULTI-PLANE READ PAGE operation (00h-32h, 00h-30h), then the addressed pages are read into the data registers while the previous pages can be output from the cache registers. After the die (LUN) is ready (RDY = 1, ARDY = 0), the CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to select which cache register outputs data.
Figure 54: READ PAGE CACHE RANDOM (00h-31h) Operation

Cycle type

Command Address x5 Command Command Address x5 Command Command

DQ[7:0] 00h Page Address M 30h 00h Page Address P 31h 00h

RDY tWB tRR tRCBSY

Page M

Cycle type

Command Address x5 Command

DQ[7:0] Dn 00h Page Address P 31h D0

RDY tWB tRCBSY tRR

Page N
The READ PAGE CACHE LAST (3Fh) command ends the read page cache sequence and copies a page from the data register to the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue the READ PAGE CACHE LAST (3Fh) command, write 3Fh to the command register. After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is ready (RDY = 1, ARDY = 1). At this point, data can be output from the cache register, beginning at column address 0. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address of the data being output from the cache register.

In devices that have more than one LUN per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command followed by the READ MODE (00h) command must be used to select only one die (LUN) and prevent bus contention.

If the READ PAGE CACHE LAST (3Fh) command is issued after a MULTI-PLANE READ PAGE CACHE operation (31h; 00h-32h, 00h-30h), the die (LUN) goes busy until the pages are copied from the data registers to the cache registers. After the die (LUN) is ready (RDY = 1, ARDY = 1), the CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to select which cache register outputs data.

Figure 55: READ PAGE CACHE LAST (3Fh) Operation
The READ PAGE MULTI-PLANE (00h-32h) command queues a plane to transfer data from the NAND flash array to its cache register. This command can be issued one or more times. Each time a new plane address is specified, that plane is also queued for data transfer. The READ PAGE (00h-30h) command is issued to select the final plane and to begin the read operation for all previously queued planes. All queued planes will transfer data from the NAND Flash array to their cache registers.

To issue the READ PAGE MULTI-PLANE (00h-32h) command, write 00h to the command register, then write five address cycles to the address register, and conclude by writing 32h to the command register. The column address in the address specified is ignored.

After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tDBSY. After tDBSY, R/B# goes HIGH and the die (LUN) is ready (RDY = 1, ARDY = 1). At this point, the die (LUN) and block are queued for data transfer from the array to the cache register for the addressed plane. During tDBSY, the only valid commands are status operations (70h, 78h) and reset commands (FFh, FCh). Following tDBSY, to continue the MULTI-PLANE READ operation, the only valid commands are status operations (70h, 78h), READ PAGE MULTI-PLANE (00h-32h), READ PAGE (00h-30h), and READ PAGE CACHE RANDOM (00h-31h).

Additional READ PAGE MULTI-PLANE (00h-32h) commands can be issued to queue additional planes for data transfer.

If the READ PAGE (00h-30h) command is used as the final command of a MULTI-PLANE READ operation, data is transferred from the NAND Flash array for all of the addressed planes to their respective cache registers. When the die (LUN) is ready (RDY = 1, ARDY = 1), data output is enabled for the cache register linked to the last even plane addressed. When the host requests data output, it begins at the column address specified in the READ PAGE (00h-30h) command. To enable data output in the other cache registers, use the CHANGE READ COLUMN ENHANCED (06h-E0h) command. Additionally, the CHANGE READ COLUMN (05h-E0h) command can be used to change the column address within the currently selected plane.

If the READ PAGE CACHE SEQUENTIAL (31h) is used as the final command of a MULTI-PLANE READ CACHE operation, data is copied from the previously read operation from each plane to each cache register and then data is transferred from the NAND Flash array for all previously addressed planes to their respective data registers. When the die (LUN) is ready (RDY = 1, ARDY = 0), data output is enabled. The CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to determine which cache register outputs data first. To enable data output in the other cache registers, use the CHANGE READ COLUMN ENHANCED (06h-E0h) command. Additionally, the CHANGE READ COLUMN (05h-E0h) command can be used to change the column address within the currently selected plane.

If the READ PAGE CACHE RANDOM (00h-31h) command is used as the final command of a MULTI-PLANE READ CACHE operation, data is copied from the previously read operation from the data register to the cache register and then data is transferred from the NAND Flash array for all of the addressed planes to their respective data registers. When the die (LUN) is ready (RDY = 1, ARDY = 0), data output is enabled. The CHANGE READ COLUMN ENHANCED (06h-E0h) command is used to determine which cache register outputs data first. To enable data output in the other cache registers, use the CHANGE READ COLUMN ENHANCED (06h-E0h) command. Additionally, the CHANGE READ
COLUMN (05h-E0h) command can be used to change the column address within the currently selected plane.

See Multi-Plane Operations for additional multi-plane addressing requirements.

Figure 56: READ PAGE MULTI-PLANE (00h-32h) Operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td>32h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Address</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>C1</td>
<td>...</td>
</tr>
</tbody>
</table>

Cycle type

DQ[7:0]

RDY

- \(t_{WB} \)
- \(t_{DBSY} \)
Program Operations

Program operations are used to move data from the cache or data registers to the NAND array of one or more planes. During a program operation the contents of the cache and/or data registers are modified by the internal control logic.

Within a block, pages must be programmed sequentially from the least significant page address to the most significant page address (i.e. 0, 1, 2, 3, …). Programming pages out of order within a block is prohibited.

Program Operations

The PROGRAM PAGE (80h-10h) command, when not preceded by the PROGRAM PAGE MULTI-PLANE (80h-11h) command, programs one page from the cache register to the NAND Flash array. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that the operation has completed successfully.

Program Cache Operations

The PROGRAM PAGE CACHE (80h-15h) command can be used to improve program operation system performance. When this command is issued, the die (LUN) goes busy (RDY = 0, ARDY = 0) while the cache register contents are copied to the data register, and the die (LUN) is busy with a program cache operation (RDY = 1, ARDY = 0). While the contents of the data register are moved to the NAND Flash array, the cache register is available for an additional PROGRAM PAGE CACHE (80h-15h) or PROGRAM PAGE (80h-10h) command.

For PROGRAM PAGE CACHE-series (80h-15h) operations, during the die (LUN) busy times, tCBSY and tLPROG, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and reset (FFh, FCh). When RDY = 1 and ARDY = 0, the only valid commands during PROGRAM PAGE CACHE-series (80h-15h) operations are status operations (70h, 78h), PROGRAM PAGE CACHE (80h-15h), PROGRAM PAGE (80h-10h), CHANGE WRITE COLUMN (85h), CHANGE ROW ADDRESS (85h), and reset (FFh, FCh).

Multi-Plane Program Operations

The PROGRAM PAGE MULTI-PLANE (80h-11h) command can be used to improve program operation system performance by enabling multiple pages to be moved from the cache registers to different planes of the NAND Flash array. This is done by prepending one or more PROGRAM PAGE MULTI-PLANE (80h-11h) commands in front of the PROGRAM PAGE (80h-10h) command. See Multi-Plane Operations for details.

Multi-Plane Program Cache Operations

The PROGRAM PAGE MULTI-PLANE (80h-11h) command can be used to improve program cache operation system performance by enabling multiple pages to be moved from the cache registers to the data registers and, while the pages are being transferred from the data registers to different planes of the NAND Flash array, free the cache registers to receive data input from the host. This is done by prepending one or more PROGRAM PAGE MULTI-PLANE (80h-11h) commands in front of the PROGRAM PAGE CACHE (80h-15h) command. See Multi-Plane Operations for details.

PROGRAM PAGE (80h-10h)

The PROGRAM PAGE (80h-10h) command enables the host to input data to a cache register, and moves the data from the cache register to the specified block and page address in the array of the selected die (LUN). This command is accepted by the die (LUN)
when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) when it is busy with a PROGRAM PAGE CACHE (80h-15h) operation (RDY = 1, ARDY = 0).

To input a page to the cache register and move it to the NAND array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by a PROGRAM PAGE MULTI-PLANE (80h-11h) command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Then write five address cycles containing the column address and row address. Data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle the CHANGE WRITE COLUMN (85h) and CHANGE ROW ADDRESS (85h) commands may be issued. When data input is complete, write 10h to the command register. The selected LUN will go busy (RDY = 0, ARDY = 0) for tPROG as data is transferred.

To determine the progress of the data transfer, the host can monitor the target’s R/B# signal or, alternatively, the status operations (70h, 78h) may be used. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the status of the FAIL bit.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The PROGRAM PAGE (80h-10h) command is used as the final command of a multi-plane program operation. It is preceded by one or more PROGRAM PAGE MULTI-PLANE (80h-11h) commands. Data is transferred from the cache registers for all of the addressed planes to the NAND array. The host should check the status of the operation by using the status operations (70h, 78h). See Multi-Plane Operations for multi-plane addressing requirements.

Figure 57: PROGRAM PAGE (80h-10h) Operation
The PROGRAM PAGE CACHE (80h-15h) command enables the host to input data to a cache register; copies the data from the cache register to the data register; then moves the data register contents to the specified block and page address in the array of the selected die (LUN). After the data is copied to the data register, the cache register is available for additional PROGRAM PAGE CACHE (80h-15h) or PROGRAM PAGE (80h-10h) commands. The PROGRAM PAGE CACHE (80h-15h) command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) when busy with a PROGRAM PAGE CACHE (80h-15h) operation (RDY = 1, ARDY = 0).

To input a page to the cache register to move it to the NAND array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by a PROGRAM PAGE MULTI-PLANE (80h-11h) command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Then write five address cycles containing the column address and row address. Data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle the CHANGE WRITE COLUMN (85h) and CHANGE ROW ADDRESS (85h) commands may be issued. When data input is complete, write 15h to the command register. The selected LUN will go busy (RDY = 0, ARDY = 0) for tCBSY to allow the data register to become available from a previous program cache operation, to copy data from the cache register to the data register, and then to begin moving the data register contents to the specified page and block address.

To determine the progress of tCBSY, the host can monitor the target’s R/B# signal or, alternately, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is busy with a PROGRAM CACHE operation (RDY = 1, ARDY = 0), the host should check the status of the FAILC bit to see if a previous cache operation was successful.

If, after tCBSY, the host wants to wait for the program cache operation to complete, without issuing the PROGRAM PAGE (80h-10h) command, the host should monitor ARDY until it is 1. The host should then check the status of the FAIL and FAILC bits.

In devices with more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The PROGRAM PAGE CACHE (80h-15h) command is used as the final command of a multi-plane program cache operation. It is preceded by one or more PROGRAM PAGE MULTI-PLANE (80h-11h) commands. Data for all of the addressed planes is transferred from the cache registers to the corresponding data registers, then moved to the NAND Flash array. The host should check the status of the operation by using the status operations (70h, 78h). See Multi-Plane Operations for multi-plane addressing requirements.
Figure 58: PROGRAM PAGE CACHE (80h–15h) Operation (Start)

As defined for PAGE CACHE PROGRAM

Figure 59: PROGRAM PAGE CACHE (80h–15h) Operation (End)
The PROGRAM PAGE MULTI-PLANE (80h-11h) command enables the host to input data to the addressed plane’s cache register and queue the cache register to ultimately be moved to the NAND Flash array. This command can be issued one or more times. Each time a new plane address is specified that plane is also queued for data transfer. To input data for the final plane and to begin the program operation for all previously queued planes, issue either the PROGRAM PAGE (80h-10h) command or the PROGRAM PAGE CACHE (80h-15h) command. All of the queued planes will move the data to the NAND Flash array. This command is accepted by the die (LUN) when it is ready (RDY = 1).

To input a page to the cache register and queue it to be moved to the NAND Flash array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by an 11h command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Write five address cycles containing the column address and row address; data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle, the CHANGE WRITE COLUMN (85h) and CHANGE ROW ADDRESS (85h) commands can be issued. When data input is complete, write 11h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for tDBSY.

To determine the progress of tDBSY, the host can monitor the target’s R/B# signal or, alternatively, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is ready (RDY = 1), additional PROGRAM PAGE MULTI-PLANE (80h-11h) commands can be issued to queue additional planes for data transfer. Alternatively, the PROGRAM PAGE (80h-10h) or PROGRAM PAGE CACHE (80h-15h) commands can be issued.

When the PROGRAM PAGE (80h-10h) command is used as the final command of a multi-plane program operation, data is transferred from the cache registers to the NAND Flash array for all of the addressed planes during tPROG. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the status of the FAIL bit for each of the planes to verify that programming completed successfully.

When the PROGRAM PAGE CACHE (80h-15h) command is used as the final command of a MULTI-PLANE PROGRAM CACHE operation, data is transferred from the cache registers to the data registers after the previous array operations finish. The data is then moved from the data registers to the NAND Flash array for all of the addressed planes. This occurs during tCBSY. After tCBSY, the host should check the status of the FAILC bit for each of the planes from the previous program cache operation, if any, to verify that programming completed successfully.

For the PROGRAM PAGE MULTI-PLANE (80h-11h), PROGRAM PAGE (80h-10h), and PROGRAM PAGE CACHE (80h-15h) commands, see Multi-Plane Operations for multi-plane addressing requirements.
Figure 60: PROGRAM PAGE MULTI-PLANE (80h–11h) Operation
Erase Operations

Erase operations are used to clear the contents of a block in the NAND Flash array to prepare its pages for program operations.

Erase Operations

The ERASE BLOCK (60h-D0h) command, when not preceded by the ERASE BLOCK MULTI-PLANE (60h-D1h) command, erases one block in the NAND Flash array. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that this operation completed successfully.

MULTI-PLANE ERASE Operations

The ERASE BLOCK MULTI-PLANE (60h-D1h) command can be used to further system performance of erase operations by allowing more than one block to be erased in the NAND array. This is done by prepending one or more ERASE BLOCK MULTI-PLANE (60h-D1h) commands in front of the ERASE BLOCK (60h-D0h) command. See Multi-Plane Operations for details.

ERASE BLOCK (60h-D0h)

The ERASE BLOCK (60h-D0h) command erases the specified block in the NAND Flash array. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To erase a block, write 60h to the command register. Then write three address cycles containing the row address; the page address is ignored. Conclude by writing D0h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for tBERS while the block is erased.

To determine the progress of an ERASE operation, the host can monitor the target’s R/B# signal, or alternatively, the status operations (70h, 78h) can be used. When the die (LUN) is ready (RDY = 1, ARDY = 1) the host should check the status of the FAIL bit.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The ERASE BLOCK (60h-D0h) command is used as the final command of a MULTI-PLANE ERASE operation. It is preceded by one or more ERASE BLOCK MULTI-PLANE (60h-D1h) commands. All of blocks in the addressed planes are erased. The host should check the status of the operation by using the status operations (70h, 78h). See Multi-Plane Operations for multi-plane addressing requirements.

Figure 61: ERASE BLOCK (60h-D0h) Operation
ERASE BLOCK MULTI-PLANE (60h-D1h)

The ERASE BLOCK MULTI-PLANE (60h-D1h) command queues a block in the specified plane to be erased in the NAND Flash array. This command can be issued one or more times. Each time a new plane address is specified, that plane is also queued for a block to be erased. To specify the final block to be erased and to begin the ERASE operation for all previously queued planes, issue the ERASE BLOCK (60h-D0h) command. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To queue a block to be erased, write 60h to the command register, then write three address cycles containing the row address; the page address is ignored. Conclude by writing D1h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for tDBSY.

To determine the progress of tDBSY, the host can monitor the target’s R/B# signal, or alternatively, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is ready (RDY = 1, ARDY = 1), additional ERASE BLOCK MULTI-PLANE (60h-D1h) commands can be issued to queue additional planes for erase. Alternatively, the ERASE BLOCK (60h-D0h) command can be issued to erase all of the queued blocks.

For multi-plane addressing requirements for the ERASE BLOCK MULTI-PLANE (60h-D1h) and ERASE BLOCK (60h-D0h) commands, see Multi-Plane Operations.

Figure 62: ERASE BLOCK MULTI-PLANE (60h–D1h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>60h</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>D1h</td>
<td>60h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>tDBSY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COPYBACK operations make it possible to transfer data within a plane from one page to another using the cache register. This is particularly useful for block management and wear leveling.

The COPYBACK operation is a two-step process consisting of a COPYBACK READ (00h-35h) and a COPYBACK PROGRAM (85h-10h) command. To move data from one page to another on the same plane, first issue the COPYBACK READ (00h-35h) command. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host can transfer the data to a new page by issuing the COPYBACK PROGRAM (85h-10h) command. When the die (LUN) is again ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that this operation completed successfully.

To prevent bit errors from accumulating over multiple COPYBACK operations, it is recommended that the host read the data out of the cache register after the COPYBACK READ (00h-35h) completes prior to issuing the COPYBACK PROGRAM (85h-10h) command. The CHANGE READ COLUMN (05h-E0h) command can be used to change the column address. The host should check the data for ECC errors and correct them. When the COPYBACK PROGRAM (85h-10h) command is issued, any corrected data can be input. The CHANGE ROW ADDRESS (85h) command can be used to change the column address.

It is not possible to use the COPYBACK operation to move data from one plane to another or from one die (LUN) to another. Instead, use a READ PAGE (00h-30h) or COPYBACK READ (00h-35h) command to read the data out of the NAND, and then use a PROGRAM PAGE (80h-10h) command with data input to program the data to a new plane or die (LUN).

Between the COPYBACK READ (00h-35h) and COPYBACK PROGRAM (85h-10h) commands, the following commands are supported: status operations (70h, 78h), and column address operations (05h-E0h, 06h-E0h, 85h). Reset operations (FFh, FCh) can be issued after COPYBACK READ (00h-35h), but the contents of the cache registers on the target are not valid.

In devices which have more than one die (LUN) per target, once the COPYBACK READ (00h-35h) is issued, interleaved die (multi-LUN) operations are prohibited until after the COPYBACK PROGRAM (85h-10h) command is issued.

Multi-Plane Copyback Operations

Multi-plane copyback read operations improve read data throughput by copying data simultaneously from more than one plane to the specified cache registers. This is done by prepending one or more READ PAGE MULTI-PLANE (00h-32h) commands in front of the COPYBACK READ (00h-35h) command.

The COPYBACK PROGRAM MULTI-PLANE (85h-11h) command can be used to further system performance of COPYBACK PROGRAM operations by enabling movement of multiple pages from the cache registers to different planes of the NAND Flash array. This is done by prepending one or more COPYBACK PROGRAM (85h-11h) commands in front of the COPYBACK PROGRAM (85h-10h) command. See Multi-Plane Operations for details.
COPYBACK READ (00h-35h)

The COPYBACK READ (00h-35h) command is functionally identical to the READ PAGE (00h-30h) command, except that 35h is written to the command register instead of 30h. See READ PAGE (00h-30h) (page 86) for further details.

Though it is not required, it is recommended that the host read the data out of the device to verify the data prior to issuing the COPYBACK PROGRAM (85h-10h) command to prevent the propagation of data errors.

Figure 63: COPYBACK READ (00h-35h) Operation

Figure 64: COPYBACK READ (00h-35h) with CHANGE READ COLUMN (05h-E0h) Operation
COPYBACK PROGRAM (85h–10h)

The COPYBACK PROGRAM (85h-10h) command is functionally identical to the PROGRAM PAGE (80h-10h) command, except that when 85h is written to the command register, cache register contents are not cleared. See PROGRAM PAGE (80h-10h) for further details.

Figure 65: COPYBACK PROGRAM (85h–10h) Operation

Cycle type: Command	Address	Address	Address	Address	Address	Command
DQ[7:0] | 85h | C1 | C2 | R1 | R2 | R3 | 10h
RDY |

Figure 66: COPYBACK PROGRAM (85h-10h) with CHANGE WRITE COLUMN (85h) Operation

Cycle type: Command	Address	Address	Address	Address	Address	Command
DQ[7:0] | 85h | C1 | C2 | R1 | R2 | R3 | Di | Di + 1
RDY |

COPYBACK READ MULTI-PLANE (00h-32h)

The COPYBACK READ MULTI-PLANE (00h-32h) command is functionally identical to the READ PAGE MULTI-PLANE (00h-32h) command, except that the 35h command is written as the final command. The complete command sequence for the COPYBACK READ PAGE MULTI-PLANE is 00h-32h-00h-35h. See READ PAGE MULTI-PLANE (00h-32h) (page 91) for further details.
COPYBACK PROGRAM MULTI-PLANE (85h-11h)

The COPYBACK PROGRAM MULTI-PLANE (85h-11h) command is functionally identical to the PROGRAM PAGE MULTI-PLANE (80h-11h) command, except that when 85h is written to the command register, cache register contents are not cleared. See PROGRAM PAGE MULTI-PLANE (80h-11h) for further details.

Figure 67: COPYBACK PROGRAM MULTI-PLANE (85h-11h) Operation
One-Time Programmable (OTP) Operations

This Micron NAND Flash device offers a protected, one-time programmable NAND Flash memory area. Each target has a an OTP area with a range of OTP pages (see Table 15 (page 106)); the entire range is guaranteed to be good. Customers can use the OTP area in any way they desire; typical uses include programming serial numbers or other data for permanent storage.

The OTP area leaves the factory in an erased state (all bits are 1). Programming an OTP page changes bits that are 1 to 0, but cannot change bits that are 0 to 1. The OTP area cannot be erased, even if it is not protected. Protecting the OTP area prevents further programming of the pages in the OTP area.

Enabling the OTP Operation Mode

The OTP area is accessible while the OTP operation mode is enabled. To enable OTP operation mode, issue the SET FEATURES (EFh) command to feature address 90h and write 01h to P1, followed by three cycles of 00h to P2 through P4.

When the target is in OTP operation mode, all subsequent PAGE READ (00h-30h) and PROGRAM PAGE (80h-10h) commands are applied to the OTP area.

ERASE commands are not valid while the target is in OTP operation mode.

Programming OTP Pages

Each page in the OTP area is programming using the PROGRAM OTP PAGE (80h-10h) command. Each page can be programmed more than once, in sections, up to the maximum number allowed (see NOP in Table 15 (page 106)). The pages in the OTP area must be programmed in ascending order.

If the host issues a PAGE PROGRAM (80h-10h) command to an address beyond the maximum page-address range, the target will be busy for OBSY and the WP# status register bit will be 0, meaning that the page is write-protected.

Protecting the OTP Area

To protect the OTP area, issue the OTP PROTECT (80h-10h) command to the OTP Protect Page. When the OTP area is protected it cannot be programmed further. It is not possible to unprotect the OTP area after it has been protected.

Reading OTP Pages

To read pages in the OTP area, whether the OTP area is protected or not, issue the PAGE READ (00h-30h) command.

If the host issues the PAGE READ (00h-30h) command to an address beyond the maximum page-address range, the data output will not be valid. To determine whether the target is busy during an OTP operation, either monitor R/B# or use the READ STATUS (70h) command. Use of the READ STATUS ENHANCED (78h) command is prohibited while the OTP operation is in progress.

Returning to Normal Array Operation Mode

To exit OTP operation mode and return to normal array operation mode, issue the SET FEATURES (EFh) command to feature address 90h and write 00h to P1 through P4.

If the RESET (FFh) command is issued while in OTP operation mode, the target will exit OTP operation mode and enter normal operating mode. If the synchronous interface is active, the target will exit OTP operation and enable the asynchronous interface.
If the SYNCHRONOUS RESET (FCh) command is issued while in the OTP operation mode, the target will exit OTP operation mode and the synchronous interface remains active.

Table 15: OTP Area Details

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of OTP pages</td>
<td>30</td>
</tr>
<tr>
<td>OTP protect page address</td>
<td>01h</td>
</tr>
<tr>
<td>OTP start page address</td>
<td>02h</td>
</tr>
<tr>
<td>Number of partial page programs (NOP) to each OTP page</td>
<td>4</td>
</tr>
</tbody>
</table>

PROGRAM OTP PAGE (80h-10h)

The PROGRAM OTP PAGE (80h-10h) command is used to write data to the pages within the OTP area. To program data in the OTP area, the target must be in OTP operation mode.

To use the PROGRAM OTP PAGE (80h-10h) command, issue the 80h command. Issue five address cycles including the column address, the page address within the OTP page range, and a block address of 0. Next, write the data to the cache register using data input cycles. After data input is complete, issue the 10h command. R/B# goes LOW for the duration of the array programming time, \(t_{PROG} \). The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. The RDY bit of the status register will reflect the state of R/B#. Use of the READ STATUS ENHANCED (78h) command is prohibited.

When the target is ready, read the FAIL bit of the status register to determine whether the operation passed or failed (see Status Operations).

The PROGRAM OTP PAGE (80h-10h) command also accepts the CHANGE WRITE COLUMN (85h) command during data input.

If a PROGRAM PAGE command is issued to the OTP area after the area has been protected, then R/B# goes LOW for \(t_{OBSY} \). After \(t_{OBSY} \), the status register is set to 60h.

Figure 68: PROGRAM OTP PAGE (80h-10h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Din</th>
<th>Din</th>
<th>Din</th>
<th>Address</th>
<th>Command</th>
<th>Address</th>
<th>Dout</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>80h</td>
<td>C1</td>
<td>C2</td>
<td>OTP Page</td>
<td>00h</td>
<td>00h</td>
<td>D1</td>
<td>...</td>
<td>Dn</td>
<td>10h</td>
<td>70h</td>
<td>Status</td>
</tr>
<tr>
<td>R/B#</td>
<td></td>
</tr>
</tbody>
</table>
Figure 69: PROGRAM OTP PAGE (80h-10h) with CHANGE WRITE COLUMN (85h) Operation

PROTECT OTP AREA (80h-10h)

The PROTECT OTP AREA (80h-10h) command is used to prevent further programming of the pages in the OTP area. The protect the OTP area, the target must be in OTP operation mode.

To protect all data in the OTP area, issue the 80h command. Issue five address cycles including the column address, OTP protect page address and block address; the column and block addresses are fixed to 0. Next, write 00h data for the first byte location and issue the 10h command.

R/B# goes LOW for the duration of the array programming time, tPROG. The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. The RDY bit of the status register will reflect the state of R/B#. Use of the READ STATUS ENHANCED (78h) command is prohibited.

When the target is ready, read the FAIL bit of the status register to determine if the operation passed or failed (see Status Operations).

If the PROTECT OTP AREA (80h-10h) command is issued after the OTP area has already been protected, R/B# goes LOW for tOBSY. After tOBSY, the status register is set to 60h.
Figure 70: PROTECT OTP AREA (80h-10h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Din</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Dout</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ[7:0]</td>
<td>80h</td>
<td>00h</td>
<td>00h</td>
<td>01h</td>
<td>00h</td>
<td>00h</td>
<td></td>
<td></td>
<td>10h</td>
<td>70h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/B#</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. OTP data is protected following a status confirmation.

READ OTP PAGE (00h-30h)

The READ OTP PAGE (00h-30h) command is used to read data from the pages in the OTP area. To read data in the OTP area, the target must be in OTP operation mode.

To use the READ OTP PAGE (00h-30h) command, issue the 00h command. Issue five address cycles including the column address, the page address within the OTP page range, and a block address of 0. Next, issue the 30h command. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for \(t_R \) as data is transferred.

To determine the progress of the data transfer, the host can monitor the target’s R/B# signal, or alternatively the READ STATUS (70h) command can be used. If the status operations are used to monitor the die’s (LUN’s) status, when the die (LUN) is ready (RDY = 1, ARDY = 1) the host disables status output and enables data output by issuing the READ MODE (00h) command. When the host requests data output, it begins at the column address specified.

Additional pages within the OTP area can be read by repeating the READ OTP PAGE (00h-30h) command.

The READ OTP PAGE (00h-30h) command is compatible with the CHANGE READ COLUMN (05h-E0h) command. Use of the READ STATUS ENHANCED (78h) and CHANGE READ COLUMN ENHANCED (06h-E0h) commands are prohibited.

Figure 71: READ OTP PAGE (00h-30h) Operation
Multi-Plane Operations

Each NAND Flash logical unit (LUN) is divided into multiple physical planes. Each plane contains a cache register and a data register independent of the other planes. The planes are addressed via the low-order block address bits. Specific details are provided in Device and Array Organization.

Multi-plane operations make better use of the NAND Flash arrays on these physical planes by performing concurrent READ, PROGRAM, or ERASE operations on multiple planes, significantly improving system performance. Multi-plane operations must be of the same type across the planes; for example, it is not possible to perform a PROGRAM operation on one plane with an ERASE operation on another.

When issuing MULTI-PLANE PROGRAM or ERASE operations, use the READ STATUS (70h) command and check whether the previous operation(s) failed. If the READ STATUS (70h) command indicates that an error occurred (FAIL = 1 and/or FAILC = 1), use the READ STATUS ENHANCED (78h) command—time for each plane—to determine which plane operation failed.

Multi-Plane Addressing

Multi-plane commands require an address per operational plane. For a given multi-plane operation, these addresses are subject to the following requirements:

- The LUN address bit(s) must be identical for all of the issued addresses.
- The plane select bit, BA[8], must be different for each issued address.
- The page address bits, PA[7:0], must be identical for each issued address.

The READ STATUS (70h) command should be used following MULTI-PLANE PROGRAM PAGE and ERASE BLOCK operations on a single die (LUN).
Interleaved Die (Multi-LUN) Operations

In devices that have more than one die (LUN) per target, it is possible to improve performance by interleaving operations between the die (LUNs). An interleaved die (multi-LUN) operation is one that individual die (LUNs) involved may be in any combination of busy or ready status during operations.

Interleaved die (multi-LUN) operations are prohibited following RESET (FFh, FCh), identification (90h, ECh, EDh), and configuration (EEh, EFh) operations until ARDY = 1 for all of the die (LUNs) on the target.

During an interleaved die (multi-LUN) operation, there are two methods to determine operation completion. The R/B# signal indicates when all of the die (LUNs) have finished their operations. R/B# remains LOW while any die (LUN) is busy. When R/B# goes HIGH, all of the die (LUNs) are idle and the operations are complete. Alternatively, the READ STATUS ENHANCED (78h) command can report the status of each die (LUN) individually.

If a die (LUN) is performing a cache operation, like PROGRAM PAGE CACHE (80h-15h), then the die (LUN) is able to accept the data for another cache operation when status register bit 6 is 1. All operations, including cache operations, are complete on a die when status register bit 5 is 1.

Use the READ STATUS ENHANCED (78h) command to monitor status for the addressed die (LUN). When multi-plane commands are used with interleaved die (multi-LUN) operations, the multi-plane commands must also meet the requirements, see Multi-Plane Operations for details. After the READ STATUS ENHANCED (78h) command has been issued, the READ STATUS (70h) command may be issued for the previously addressed die (LUN).

See Command Definitions for the list of commands that can be issued while other die (LUNs) are busy.

During an interleaved die (multi-LUN) operation that involves a PROGRAM-series (80h-10h, 80h-15h, 80h-11h) operation and a READ operation, the PROGRAM-series operation must be issued before the READ-series operation. The data from the READ-series operation must be output to the host before the next PROGRAM-series operation is issued. This is because the 80h command clears the cache register contents of all cache registers on all planes.

When issuing combinations of commands to multiple die (LUNs) (e.g. Reads to one die (LUN) and Programs to another die (LUN)) or Reads to one die (LUN) and Reads to another die (LUN), after the READ STATUS ENHANCED (78h) command is issued to the selected die (LUN) a CHANGE READ COLUMN (05h-E0h) or CHANGE READ COLUMN ENHANCED (06h-E0h) command shall be issued prior to any data output from the selected die (LUN).
Error Management

Each NAND Flash die (LUN) is specified to have a minimum number of valid blocks (NVB) of the total available blocks. This means the die (LUNs) could have blocks that are invalid when shipped from the factory. An invalid block is one that contains at least one page that has more bad bits than can be corrected by the minimum required ECC. Additional blocks can develop with use. However, the total number of available blocks per die (LUN) will not fall below NVB during the endurance life of the product.

Although NAND Flash memory devices could contain bad blocks, they can be used quite reliably in systems that provide bad-block management and error-correction algorithms. This type of software environment ensures data integrity.

Internal circuitry isolates each block from other blocks, so the presence of a bad block does not affect the operation of the rest of the NAND Flash array.

NAND Flash devices are shipped from the factory erased. The factory identifies invalid blocks before shipping by attempting to program the bad-block mark into every location in the first page of each invalid block. It may not be possible to program every location with the bad-block mark. However, the first spare area location in each bad block is guaranteed to contain the bad-block mark. This method is compliant with ONFI Factory Defect Mapping requirements. See the following table for the first spare area location and the bad-block mark.

System software should check the first spare area location on the first page of each block prior to performing any PROGRAM or ERASE operations on the NAND Flash device. A bad block table can then be created, enabling system software to map around these areas. Factory testing is performed under worst-case conditions. Because invalid blocks could be marginal, it may not be possible to recover this information if the block is erased.

Over time, some memory locations may fail to program or erase properly. In order to ensure that data is stored properly over the life of the NAND Flash device, the following precautions are required:

- Always check status after a PROGRAM or ERASE operation
- Under typical conditions, use the minimum required ECC (see table below)
- Use bad-block management and wear-leveling algorithms

The first block (physical block address 00h) for each CE# is guaranteed to be valid with ECC when shipped from the factory.

Table 16: Error Management Details

<table>
<thead>
<tr>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of valid blocks (NVB) per LUN</td>
<td>3996</td>
</tr>
<tr>
<td>Total available blocks per LUN</td>
<td>4096</td>
</tr>
<tr>
<td>First spare area location</td>
<td>Byte 8192</td>
</tr>
<tr>
<td>Bad-block mark</td>
<td>00h</td>
</tr>
<tr>
<td>Minimum required ECC</td>
<td>24-bit ECC per 1080 bytes of data</td>
</tr>
</tbody>
</table>
In MLC NAND Flash devices, each memory cell contains two bits of data. These bits are distributed across two NAND pages. Pages within a NAND block that share the same NAND memory cells are referred to as shared pages. If any program operation is interrupted (for example, power loss or reset), data in previously programmed shared pages can also be corrupted.

Table 17: Shared Pages

<table>
<thead>
<tr>
<th>Shared Pages</th>
<th>Shared Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>43</td>
<td>49</td>
</tr>
<tr>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td>58</td>
<td>64</td>
</tr>
<tr>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>Shared Pages</td>
<td>Shared Pages</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>62</td>
<td>190</td>
</tr>
<tr>
<td>63</td>
<td>191</td>
</tr>
<tr>
<td>66</td>
<td>194</td>
</tr>
<tr>
<td>67</td>
<td>195</td>
</tr>
<tr>
<td>70</td>
<td>198</td>
</tr>
<tr>
<td>71</td>
<td>199</td>
</tr>
<tr>
<td>74</td>
<td>202</td>
</tr>
<tr>
<td>75</td>
<td>203</td>
</tr>
<tr>
<td>78</td>
<td>206</td>
</tr>
<tr>
<td>79</td>
<td>207</td>
</tr>
<tr>
<td>82</td>
<td>210</td>
</tr>
<tr>
<td>83</td>
<td>211</td>
</tr>
<tr>
<td>86</td>
<td>214</td>
</tr>
<tr>
<td>87</td>
<td>215</td>
</tr>
<tr>
<td>90</td>
<td>218</td>
</tr>
<tr>
<td>91</td>
<td>219</td>
</tr>
<tr>
<td>94</td>
<td>222</td>
</tr>
<tr>
<td>95</td>
<td>223</td>
</tr>
<tr>
<td>98</td>
<td>226</td>
</tr>
<tr>
<td>99</td>
<td>227</td>
</tr>
<tr>
<td>102</td>
<td>230</td>
</tr>
<tr>
<td>103</td>
<td>231</td>
</tr>
<tr>
<td>106</td>
<td>234</td>
</tr>
<tr>
<td>107</td>
<td>235</td>
</tr>
<tr>
<td>110</td>
<td>238</td>
</tr>
<tr>
<td>111</td>
<td>239</td>
</tr>
<tr>
<td>114</td>
<td>242</td>
</tr>
<tr>
<td>115</td>
<td>243</td>
</tr>
<tr>
<td>118</td>
<td>246</td>
</tr>
<tr>
<td>119</td>
<td>247</td>
</tr>
<tr>
<td>122</td>
<td>250</td>
</tr>
<tr>
<td>123</td>
<td>251</td>
</tr>
</tbody>
</table>
Output Drive Impedance

Because NAND Flash is designed for use in systems that are typically point-to-point connections, an option to control the drive strength of the output buffers is provided. Drive strength should be selected based on the expected loading of the memory bus. There are four supported settings for the output drivers: overdrive 2, overdrive 1, nominal, and underdrive.

The nominal output drive strength setting is the power-on default value. The host can select a different drive strength setting using the SET FEATURES (EFh) command.

The output impedance range from minimum to maximum covers process, voltage, and temperature variations. Devices are not guaranteed to be at the nominal line.

Table 18: Output Drive Strength Conditions ($V_{CCQ} = 1.7–1.95V$)

<table>
<thead>
<tr>
<th>Range</th>
<th>Process</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Fast-Fast</td>
<td>1.95V</td>
<td>T_A (MIN)</td>
</tr>
<tr>
<td>Nominal</td>
<td>Typical-Typical</td>
<td>1.8V</td>
<td>+25°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>Slow-Slow</td>
<td>1.7V</td>
<td>T_A (MAX)</td>
</tr>
</tbody>
</table>

Table 19: Output Drive Strength Impedance Values ($V_{CCQ} = 1.7–1.95V$)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT} to V_{SSQ}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>7.5</td>
<td>13.5</td>
<td>34</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>9</td>
<td>18</td>
<td>31</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>11</td>
<td>23.5</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>11</td>
<td>23.5</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>9</td>
<td>18</td>
<td>31</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>7.5</td>
<td>13.5</td>
<td>34</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>10.5</td>
<td>19</td>
<td>47</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>13</td>
<td>25</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>16</td>
<td>32.5</td>
<td>61.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>16</td>
<td>32.5</td>
<td>61.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>13</td>
<td>25</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>10.5</td>
<td>19</td>
<td>47</td>
<td>ohms</td>
</tr>
<tr>
<td>Nominal</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>15</td>
<td>27</td>
<td>66.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>18</td>
<td>35</td>
<td>62.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>22</td>
<td>52</td>
<td>88</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>22</td>
<td>52</td>
<td>88</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>18</td>
<td>35</td>
<td>62.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>15</td>
<td>27</td>
<td>66.5</td>
<td>ohms</td>
</tr>
</tbody>
</table>
Table 19: Output Drive Strength Impedance Values ($V_{CCQ} = 1.7–1.95V$) (Continued)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT} to V_{SSQ}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underdrive</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>21.5</td>
<td>39</td>
<td>95</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>26</td>
<td>50</td>
<td>90</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>31.5</td>
<td>66.5</td>
<td>126.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>26</td>
<td>50</td>
<td>90</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>21.5</td>
<td>39</td>
<td>95</td>
<td>ohms</td>
</tr>
</tbody>
</table>

Table 20: Output Drive Strength Conditions ($V_{CCQ} = 2.7–3.6V$)

<table>
<thead>
<tr>
<th>Range</th>
<th>Process</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Fast-Fast</td>
<td>3.6V</td>
<td>T_A (MIN)</td>
</tr>
<tr>
<td>Nominal</td>
<td>Typical-Typical</td>
<td>3.3V</td>
<td>+25°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>Slow-Slow</td>
<td>2.7V</td>
<td>T_A (MAX)</td>
</tr>
</tbody>
</table>

Table 21: Output Drive Strength Impedance Values ($V_{CCQ} = 2.7–3.6V$)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT} to V_{SSQ}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>7.0</td>
<td>16.2</td>
<td>28.7</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>9.0</td>
<td>18.0</td>
<td>36.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>11.8</td>
<td>21.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>11.8</td>
<td>21.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>9.0</td>
<td>18.0</td>
<td>36.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>7.0</td>
<td>14.0</td>
<td>28.7</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>9.3</td>
<td>22.3</td>
<td>40.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>12.6</td>
<td>25.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>16.3</td>
<td>29.0</td>
<td>68.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>16.3</td>
<td>29.0</td>
<td>68.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>12.6</td>
<td>25.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>9.3</td>
<td>19.0</td>
<td>40.0</td>
<td>ohms</td>
</tr>
<tr>
<td>Nominal</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>12.8</td>
<td>32.0</td>
<td>58.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>18.0</td>
<td>35.0</td>
<td>70.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>23.0</td>
<td>40.0</td>
<td>95.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>23.0</td>
<td>40.0</td>
<td>95.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>18.0</td>
<td>35.0</td>
<td>70.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>12.8</td>
<td>32.0</td>
<td>58.0</td>
<td>ohms</td>
</tr>
</tbody>
</table>
Table 21: Output Drive Strength Impedance Values ($V_{CCQ} = 2.7–3.6V$) (Continued)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT} to V_{SSQ}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underdrive</td>
<td>Rpd</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>18.4</td>
<td>45.0</td>
<td>80.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>25.0</td>
<td>50.0</td>
<td>100.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>32.0</td>
<td>57.0</td>
<td>136.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>$V_{CCQ} \times 0.2$</td>
<td>32.0</td>
<td>57.0</td>
<td>136.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.5$</td>
<td>25.0</td>
<td>50.0</td>
<td>100.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CCQ} \times 0.8$</td>
<td>18.4</td>
<td>45.0</td>
<td>80.0</td>
<td>ohms</td>
</tr>
</tbody>
</table>

Table 22: Pull-Up and Pull-Down Output Impedance Mismatch

<table>
<thead>
<tr>
<th>Drive Strength</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>0</td>
<td>6.3</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>0</td>
<td>8.8</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Nominal</td>
<td>0</td>
<td>12.3</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Underdrive</td>
<td>0</td>
<td>17.5</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Notes:
1. Mismatch is the absolute value between pull-up and pull-down impedances. Both are measured at the same temperature and voltage.
2. Test conditions: $V_{CCQ} = V_{CCQ} (MIN)$, $V_{OUT} = V_{CCQ} \times 0.5$, $T_A = T_{OPER}$.
AC Overshoot/Undershoot Specifications

The supported AC overshoot and undershoot area depends on the timing mode selected by the host.

Table 23: Asynchronous Overshoot/Undershoot Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Timing Mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum peak amplitude provided for overshoot area</td>
<td>0 1 1 1 1 1</td>
<td>V</td>
</tr>
<tr>
<td>Maximum peak amplitude provided for undershoot area</td>
<td>1 0 1 1 1 1</td>
<td>V</td>
</tr>
<tr>
<td>Maximum overshoot area above (V_{CCQ})</td>
<td>3 3 3 3 3 3</td>
<td>V-ns</td>
</tr>
<tr>
<td>Maximum undershoot area below (V_{SSQ})</td>
<td>3 3 3 3 3 3</td>
<td>V-ns</td>
</tr>
</tbody>
</table>

Table 24: Synchronous Overshoot/Undershoot Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Timing Mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum peak amplitude provided for overshoot area</td>
<td>0 1 1 1 1 1</td>
<td>V</td>
</tr>
<tr>
<td>Maximum peak amplitude provided for undershoot area</td>
<td>1 0 1 1 1 1</td>
<td>V</td>
</tr>
<tr>
<td>Maximum overshoot area above (V_{CCQ})</td>
<td>3 3 3 2.25 1.8 1.5</td>
<td>V-ns</td>
</tr>
<tr>
<td>Maximum undershoot area below (V_{SSQ})</td>
<td>3 3 3 2.25 1.8 1.5</td>
<td>V-ns</td>
</tr>
</tbody>
</table>

Figure 72: Overshoot

![Overshoot Diagram]

Figure 73: Undershoot

![Undershoot Diagram]
Synchronous Input Slew Rate

Though all AC timing parameters are tested with a nominal input slew rate of 1 V/ns, it is possible to run the device at a slower slew rate. The input slew rates shown below are sampled, and not 100% tested. When using slew rates slower than the minimum values, timing must be derated by the host.

Table 25: Test Conditions for Input Slew Rate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising edge</td>
<td>V<sub>IL(DC)</sub> To V<sub>H(AC)</sub></td>
</tr>
<tr>
<td>Falling edge</td>
<td>V<sub>H(DC)</sub> To V<sub>IL(AC)</sub></td>
</tr>
<tr>
<td>Temperature range</td>
<td>T<sub>A</sub></td>
</tr>
</tbody>
</table>

Table 26: Input Slew Rate (V_{CCQ} = 1.7–1.95V)

<table>
<thead>
<tr>
<th>Command/ Address and DQ V/ns</th>
<th>CLK/DQS Slew Rate Derating V<sub>H(AC)/V</sub><sub>IL(AC)</sub> = 540mV, V<sub>H(DC)/V</sub><sub>IL(DC)</sub> = 360mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>hold</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 27: Input Slew Rate (V_{CCQ}= 2.7–3.6V)

<table>
<thead>
<tr>
<th>Command/ Address and DQ V/ns</th>
<th>CLK/DQS Slew Rate Derating V<sub>H(AC)/V</sub><sub>IL(AC)</sub> = 990mV, V<sub>H(DC)/V</sub><sub>IL(DC)</sub> = 660mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>hold</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>
Output Slew Rate

The output slew rate is tested using the following setup with only one die per DQ channel.

Table 28: Test Conditions for Output Slew Rate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OL(DC)})</td>
<td>(0.3 \times V_{CCQ})</td>
</tr>
<tr>
<td>(V_{OH(DC)})</td>
<td>(0.7 \times V_{CCQ})</td>
</tr>
<tr>
<td>(V_{OL(AC)})</td>
<td>(0.2 \times V_{CCQ})</td>
</tr>
<tr>
<td>(V_{OH(AC)})</td>
<td>(0.8 \times V_{CCQ})</td>
</tr>
<tr>
<td>Rising edge ((t_{RISE}))</td>
<td>(V_{OL(DC)}) to (V_{OH(AC)})</td>
</tr>
<tr>
<td>Falling edge ((t_{FALL}))</td>
<td>(V_{OH(DC)}) to (V_{OL(AC)})</td>
</tr>
<tr>
<td>Output capacitive load ((C_{LOAD}))</td>
<td>5pF</td>
</tr>
<tr>
<td>Temperature range</td>
<td>(T_A)</td>
</tr>
</tbody>
</table>

Table 29: Output Slew Rate (\(V_{CCQ} = 1.7–1.95V \))

<table>
<thead>
<tr>
<th>Output Drive Strength</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>1</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>0.85</td>
<td>5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Nominal</td>
<td>0.75</td>
<td>4</td>
<td>V/ns</td>
</tr>
<tr>
<td>Underdrive</td>
<td>0.6</td>
<td>4</td>
<td>V/ns</td>
</tr>
</tbody>
</table>

Table 30: Output Slew Rate (\(V_{CCQ} = 2.7–3.6V \))

<table>
<thead>
<tr>
<th>Output Drive Strength</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>1.5</td>
<td>10.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>1.5</td>
<td>9.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Nominal</td>
<td>1.2</td>
<td>7.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Underdrive</td>
<td>1.0</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
</tbody>
</table>
Electrical Specifications

Stresses greater than those listed can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods can affect reliability.

Table 31: Absolute Maximum Ratings by Device

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min¹</th>
<th>Max¹</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage input</td>
<td>V_{IN}</td>
<td>-0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>V_{CC}</td>
<td>-0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCQ} supply voltage</td>
<td>V_{CCQ}</td>
<td>-0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: 1. Voltage on any pin relative to V_{SS}.

Table 32: Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>T_A</td>
<td>0</td>
<td>−</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td>−40</td>
<td>−</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td>−</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>V_{CC}</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCQ} supply voltage</td>
<td>V_{CCQ}</td>
<td>1.7</td>
<td>1.8</td>
<td>1.95</td>
<td>V</td>
</tr>
<tr>
<td>V_{SS} supply voltage</td>
<td>V_{SS}</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{SS} ground voltage</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 33: Valid Blocks per LUN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid block number</td>
<td>NVB</td>
<td>3996</td>
<td>4096</td>
<td>Blocks</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1. Invalid blocks are block that contain one or more bad bits beyond ECC. The device may contain bad blocks upon shipment. Additional bad blocks may develop over time; however, the total number of available blocks will not drop below NVB during the endurance life of the device. Do not erase or program blocks marked invalid from the factory.
Table 34: Capacitance: 100-Ball BGA Package

Notes 1 and 2 apply to entire table

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Single Die/Dual Die Package</th>
<th>Quad Die Package</th>
<th>Octal Die Package</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance (CLK)</td>
<td>C<sub>CK</sub></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>Input capacitance (ALE, CLE, W/R#)</td>
<td>C<sub>IN</sub></td>
<td>2.7</td>
<td>3.7</td>
<td>4.7</td>
<td>4.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Input/output capacitance (DQ[7:0], DQS)</td>
<td>C<sub>IO</sub></td>
<td>3.4</td>
<td>4.4</td>
<td>5.4</td>
<td>6.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Input capacitance (CE#, WP#)</td>
<td>C<sub>OTHER</sub></td>
<td>−</td>
<td>−</td>
<td>5.8</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Delta clock capacitance</td>
<td>DC<sub>CK</sub></td>
<td>−</td>
<td>−</td>
<td>1.4</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Delta input capacitance</td>
<td>DC<sub>IN</sub></td>
<td>−</td>
<td>−</td>
<td>1.4</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Delta input/output capacitance</td>
<td>DC<sub>IO</sub></td>
<td>−</td>
<td>−</td>
<td>1.4</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Notes: 1. Verified in device characterization; not 100% tested.
2. Test conditions: T_A = 25ºC, f = 100 MHz, V_{IN} = 0V.
3. Values for C_{CK}, C_{IN} and C_{IO} (TYP) are estimates.

Table 35: Capacitance: 48-Pin TSOP Package

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Device</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance – ALE, CE#, CLE, RE#, WE#, WP#</td>
<td>C<sub>IN</sub></td>
<td>Single die package</td>
<td>8</td>
<td>pF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual die package</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad die package</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output capacitance – DQ[7:0], DQS</td>
<td>C<sub>IO</sub></td>
<td>Single die package</td>
<td>6</td>
<td>pF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual die package</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad die package</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. These parameters are verified in device characterization and are not 100% tested. Test conditions: T_C = 25ºC; f = 1 MHz; Vin = 0V.

Table 36: Capacitance: 52-Pad LGA Package

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Device</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance – ALE, CE#, CLE, RE#, WE#, WP#</td>
<td>C<sub>IN</sub></td>
<td>Dual die package</td>
<td>8</td>
<td>pF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad die package</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octal die package</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 36: Capacitance: 52-Pad LGA Package (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Device</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/output capacitance – DQ[7:0]</td>
<td>C_{IO}</td>
<td>Dual die package</td>
<td>8</td>
<td>pF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad die package</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Octal die package</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. These parameters are verified in device characterization and are not 100% tested. Test conditions: $T_C = 25^\circ C$; $f = 1$ MHz; $V_{in} = 0V$.

Table 37: Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising input transition</td>
<td>$V_{IL(\text{DC})}$ to $V_{IH(\text{AC})}$</td>
<td>1</td>
</tr>
<tr>
<td>Falling input transition</td>
<td>$V_{IH(\text{DC})}$ to $V_{IL(\text{AC})}$</td>
<td>1</td>
</tr>
<tr>
<td>Input rise and fall slew rates</td>
<td>1 V/ns</td>
<td>–</td>
</tr>
<tr>
<td>Input and output timing levels</td>
<td>$V_{CCQ}/2$</td>
<td>–</td>
</tr>
<tr>
<td>Output load: Nominal output drive strength</td>
<td>$C_L = 5pF$</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

Notes: 1. The receiver will effectively switch as a result of the signal crossing the AC input level; it will remain in that status as long as the signal does not ring back above (below) the DC input LOW (HIGH) level.
2. Transmission line delay is assumed to be very small.
3. This test setup applies to all package configurations.

Electrical Specifications – DC Characteristics and Operating Conditions (Asynchronous)

Table 38: DC Characteristics and Operating Conditions (Asynchronous Interface)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min1</th>
<th>Typ1</th>
<th>Max1</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array read current (active)</td>
<td></td>
<td>$I_{CC1,A}$</td>
<td>25</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Array program current (active)</td>
<td></td>
<td>$I_{CC2,A}$</td>
<td>25</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Erase current (active)</td>
<td></td>
<td>$I_{CC3,A}$</td>
<td>25</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I/O burst read current</td>
<td>$t_{RC} = t_{RC}$ (MIN); $I_{OUT} = 0mA$</td>
<td>$I_{CC4R,A}$</td>
<td>8</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I/O burst write current</td>
<td>$t_{WC} = t_{WC}$ (MIN)</td>
<td>$I_{CC4W,A}$</td>
<td>8</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Bus idle current</td>
<td></td>
<td>$I_{CC5,A}$</td>
<td>3</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current during first RESET command after power-on</td>
<td></td>
<td>I_{CC6}</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Standby current - V_{CC}</td>
<td>$CE# = V_{CCQ}$ - 0.2V; $WP# = 0V/V_{CCQ}$</td>
<td>I_{SB}</td>
<td>10</td>
<td>50</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Standby current - V_{CCQ}</td>
<td>$CE# = V_{CCQ}$ - 0.2V; $WP# = 0V/V_{CCQ}$</td>
<td>I_{SBQ}</td>
<td>3</td>
<td>10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Staggered power-up current</td>
<td>$t_{RISE} = 1$ns; $C_{LINE} = 0.1uF$</td>
<td>I_{ST}</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note: 1. All values are per die (LUN) unless otherwise specified.
Table 39: DC Characteristics and Operating Conditions (Synchronous Interface)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min 1</th>
<th>Typ 1</th>
<th>Max 1</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array read current (active)</td>
<td>CE# = VIL; ¹CK = ¹CK (MIN)</td>
<td>I_{CC1,S}</td>
<td>–</td>
<td>25</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Array program current (active)</td>
<td>¹CK = ¹CK (MIN)</td>
<td>I_{CC2,S}</td>
<td>–</td>
<td>25</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Erase current (active)</td>
<td>¹CK = ¹CK (MIN)</td>
<td>I_{CC3,S}</td>
<td>–</td>
<td>25</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>I/O burst read current</td>
<td>¹CK = ¹CK (MIN); I_{OUT} = 0mA</td>
<td>I_{CC4R,S}</td>
<td>–</td>
<td>20</td>
<td>27</td>
<td>mA</td>
</tr>
<tr>
<td>I/O burst write current</td>
<td>¹CK = ¹CK (MIN)</td>
<td>I_{CC4W,S}</td>
<td>–</td>
<td>20</td>
<td>27</td>
<td>mA</td>
</tr>
<tr>
<td>Bus idle current</td>
<td>¹CK = ¹CK (MIN)</td>
<td>I_{CC5,S}</td>
<td>–</td>
<td>5</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Standby current - VCC</td>
<td>CE# = VCCQ - 0.2V; WP# = 0V/VCCQ</td>
<td>I_{SB}</td>
<td>–</td>
<td>10</td>
<td>50</td>
<td>µA</td>
</tr>
<tr>
<td>Standby Current - VCCQ</td>
<td>CE# = VCCQ - 0.2V; WP# = 0V/VCCQ</td>
<td>I_{SBQ}</td>
<td>–</td>
<td>3</td>
<td>10</td>
<td>µA</td>
</tr>
</tbody>
</table>

Note: 1. All values are per die (LUN) unless otherwise specified.

Electrical Specifications – DC Characteristics and Operating Conditions (V_{CCQ})

Table 40: DC Characteristics and Operating Conditions (3.3V V_{CCQ})

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input high voltage</td>
<td>CE#, DQ[7:0], DQS, ALE, CLE, CLK (WE#), W/R# (RE#), WP#</td>
<td>V_{IH(AC)}</td>
<td>0.8 x V_{CCQ}</td>
<td>–</td>
<td>V_{CCQ} + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AC input low voltage</td>
<td>CE#, DQ[7:0], DQS, ALE, CLE, CLK (WE#), W/R# (RE#), WP#</td>
<td>V_{IL(AC)}</td>
<td>–0.3</td>
<td>–</td>
<td>0.2 x V_{CCQ}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC input high voltage</td>
<td>DQ[7:0], DQS, ALE, CLE, CLK (WE#), W/R# (RE#)</td>
<td>V_{IH(DC)}</td>
<td>0.7 x V_{CCQ}</td>
<td>–</td>
<td>V_{CCQ} + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC input low voltage</td>
<td>DQ[7:0], DQS, ALE, CLE, CLK (WE#), W/R# (RE#)</td>
<td>V_{IL(DC)}</td>
<td>–0.3</td>
<td>–</td>
<td>0.3 x V_{CCQ}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>Any input V_{IN} = 0V to V_{CCQ} (all other pins under test = 0V)</td>
<td>I_{LI}</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>DQ are disabled; V_{OUT} = 0V to V_{CCQ}</td>
<td>I_{LO}</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>Output low current (R/B#)</td>
<td>V_{OL} = 0.4V</td>
<td>I_{OL (R/B#)}</td>
<td>8</td>
<td>10</td>
<td>–</td>
<td>mA</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: 1. All leakage currents are per die (LUN). Two die (LUNs) have a maximum leakage current of ±20µA and four die (LUNs) have a maximum leakage current of ±40µA in the asynchronous interface.
2. DC characteristics may need to be relaxed if R/B# pull-down strength is not set to full strength. See Table 14 (page 75) for additional details.
Table 41: DC Characteristics and Operating Conditions (1.8V \(V_{CCQ} \))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input high voltage</td>
<td>CE#, DQ(7:0), DQS, ALE, CLE, CLK (WE#), W/R# (R/E#), WP#</td>
<td>(V_{IH(AC)})</td>
<td>0.8 × (V_{CCQ})</td>
<td>–</td>
<td>(V_{CCQ} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AC input low voltage</td>
<td></td>
<td>(V_{IL(AC)})</td>
<td>–0.3</td>
<td>0.2 × (V_{CCQ})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC input high voltage</td>
<td>DQ(7:0), DQS, ALE, CLE, CLK (WE#), W/R# (R/E#)</td>
<td>(V_{IH(DC)})</td>
<td>0.7 × (V_{CCQ})</td>
<td>–</td>
<td>(V_{CCQ} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DC input low voltage</td>
<td></td>
<td>(V_{IL(DC)})</td>
<td>–0.3</td>
<td>0.3 × (V_{CCQ})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>Any input (V_{IN} = 0) to (V_{CCQ}) (all other pins under test = 0V)</td>
<td>(I_{LI})</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>DQ are disabled; (V_{OUT} = 0) to (V_{CCQ})</td>
<td>(I_{LO})</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td>1</td>
</tr>
<tr>
<td>Output low current (R/B#)</td>
<td>(V_{OL} = 0.2) V</td>
<td>(I_{DL (R/B#)})</td>
<td>3</td>
<td>4</td>
<td>–</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. All leakage currents are per die (LUN). Two die (LUNs) have a maximum leakage current of ±20µA and four die (LUNs) have a maximum leakage current of ±40µA in the asynchronous interface.

Electrical Specifications – AC Characteristics and Operating Conditions (Asynchronous)

Table 42: AC Characteristics: Asynchronous Command, Address, and Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock period</td>
<td></td>
<td>Min</td>
<td>100</td>
<td>50</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≈10</td>
<td>≈20</td>
<td>≈28</td>
<td>≈33</td>
<td>≈40</td>
<td>≈50</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>ALE to data start</td>
<td>(^1)ADL</td>
<td>200</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>70</td>
<td>–</td>
</tr>
<tr>
<td>ALE hold time</td>
<td>(^1)ALH</td>
<td>20</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>ALE setup time</td>
<td>(^1)ALS</td>
<td>50</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>ALE to R/E# delay</td>
<td>(^1)AR</td>
<td>25</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>CE# access time</td>
<td>(^1)CEA</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>25</td>
</tr>
<tr>
<td>CE# hold time</td>
<td>(^1)CH</td>
<td>20</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>CE# HIGH to output High-Z</td>
<td>(^1)CHZ</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>50</td>
</tr>
<tr>
<td>CLE hold time</td>
<td>(^1)CLH</td>
<td>20</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>CLE to RE# delay</td>
<td>(^1)CLR</td>
<td>20</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>CLE setup time</td>
<td>(^1)CLS</td>
<td>50</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>CE# HIGH to output hold</td>
<td>(^1)COH</td>
<td>0</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>CE# setup time</td>
<td>(^1)CS</td>
<td>70</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>Data hold time</td>
<td>(^1)DH</td>
<td>20</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Data setup time</td>
<td>(^1)DS</td>
<td>40</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>Output High-Z to RE# LOW</td>
<td>(^1)IR</td>
<td>10</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

PDF: 09005ae83d32277a
L744_64Gb_128Gb_256Gb_AsynSinc_NAND.pdf rev. F 5/12 EN

124 Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.
Table 42: AC Characteristics: Asynchronous Command, Address, and Data (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE# cycle time</td>
<td>tRC</td>
<td>100</td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>RE# access time</td>
<td>tREA</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>RE# HIGH hold time</td>
<td>tREH</td>
<td>30</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>7</td>
<td>ns</td>
</tr>
<tr>
<td>RE# HIGH to output hold</td>
<td>tRHOH</td>
<td>0</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>RE# HIGH to WE# LOW</td>
<td>tRHW</td>
<td>200</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>RE# HIGH to output High-Z</td>
<td>tRHZ</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>RE# LOW to output hold</td>
<td>tRLOH</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>RE pulse width</td>
<td>tRP</td>
<td>50</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>17</td>
<td>–</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td>Ready to RE# LOW</td>
<td>tRR</td>
<td>40</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>WE# HIGH to R/B# LOW</td>
<td>tWB</td>
<td>–</td>
<td>200</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>WE# cycle time</td>
<td>tWC</td>
<td>100</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>WE# HIGH hold time</td>
<td>tWH</td>
<td>30</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>10</td>
<td>ns</td>
</tr>
<tr>
<td>WE# HIGH to RE# LOW</td>
<td>tWHR</td>
<td>120</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>WE# pulse width</td>
<td>tWP</td>
<td>50</td>
<td>–</td>
<td>25</td>
<td>–</td>
<td>17</td>
<td>–</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td>WP# transition to WE# LOW</td>
<td>tWW</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:
1. Timing for tADL begins in the address cycle, on the final rising edge of WE# and ends with the first rising edge of WE# for data input.
2. Data transition is measured ±200mV from steady-steady voltage with load. This parameter is sampled and not 100 percent tested.
3. AC characteristics may need to be relaxed if output drive strength is not set to at least nominal.
4. Do not issue a new command during tWB, even if R/B# or RDY is ready.
Table 43: AC Characteristics: Synchronous Command, Address, and Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock period</td>
<td></td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>=20</td>
<td>=33</td>
<td>=50</td>
<td>=67</td>
<td>=83</td>
<td>=100</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Access window of DQ[7:0] from CLK</td>
<td>^1AC</td>
<td>3</td>
<td>20</td>
<td>3</td>
<td>20</td>
<td>3</td>
<td>20</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>ALE to data loading time</td>
<td>^1ADL</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>70</td>
<td>–</td>
<td>70</td>
<td>–</td>
</tr>
<tr>
<td>ALE, CLE, W/R# hold</td>
<td>^1CALH</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>ALE, CLE, W/R# setup</td>
<td>^1CALS</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>DQ hold – command, address</td>
<td>^1CAH</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>DQ setup – command, address</td>
<td>^1CAS</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>CE# hold</td>
<td>^1CH</td>
<td>10</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Average CLK cycle time</td>
<td>^1CK (avg)</td>
<td>50</td>
<td>100</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Absolute CLK cycle time, from rising edge to rising edge</td>
<td>^1CK (abs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK cycle HIGH</td>
<td>^1CKH (abs)</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
</tr>
<tr>
<td>CLK cycle LOW</td>
<td>^1CKL (abs)</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
<td>0.43</td>
<td>0.57</td>
</tr>
<tr>
<td>Data output end to W/R# HIGH</td>
<td>^1CKWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data In hold</td>
<td>^1DH</td>
<td>5</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
<td>1.3</td>
<td>–</td>
</tr>
</tbody>
</table>

[^1]: Min = ^1CK (avg) + ^1JIT (per) MIN
[^2]: Max = ^1CK (avg) + ^1JIT (per) MAX
Table 43: AC Characteristics: Synchronous Command, Address, and Data (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQS, DQ[7:0] Driven by NAND</td>
<td>(^4)DQSD</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>DQS input high pulse width</td>
<td>(^4)DQSH</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>DQS input low pulse width</td>
<td>(^4)DQSL</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>DQS-DQ skew</td>
<td>(^4)DQSQ</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>1.7</td>
<td>–</td>
<td>1.3</td>
</tr>
<tr>
<td>Data input</td>
<td>(^4)DQSS</td>
<td>0.75</td>
<td>1.25</td>
<td>0.75</td>
<td>1.25</td>
<td>0.75</td>
<td>1.25</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td>Data In setup</td>
<td>(^4)DS</td>
<td>5</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
</tr>
<tr>
<td>DQS falling edge from CLK rising – hold</td>
<td>(^4)DSH</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
</tr>
<tr>
<td>DQS falling to CLK rising – set-up</td>
<td>(^4)DSS</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
</tr>
<tr>
<td>Data valid window</td>
<td>(^4)DVW</td>
<td>(^4)DVW = (^4)QH - (^4)DQSQ</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half clock period</td>
<td>(^4)HP</td>
<td>(^4)HP = Min((^4)CKH, (^4)CKL)</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The deviation of a given (^4)CK (abs) from a (^4)CK (avg)</td>
<td>(^4)JIT (per)</td>
<td>–0.7</td>
<td>0.7</td>
<td>–0.7</td>
<td>0.7</td>
<td>–0.7</td>
<td>0.7</td>
<td>–0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>DQ-DQS hold, DQS to first DQ to go nonvalid, per access</td>
<td>(^4)QH</td>
<td>(^4)QH = (^4)HP - (^4)QHS</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data hold skew factor</td>
<td>(^4)QHS</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>1.5</td>
</tr>
<tr>
<td>Data output to command, address, or data input</td>
<td>(^4)RHW</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
</tr>
<tr>
<td>Ready to data output</td>
<td>(^4)RR</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>CLK HIGH to R/B# LOW</td>
<td>(^4)WB</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 43: AC Characteristics: Synchronous Command, Address, and Data (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQS write pre-amble</td>
<td>WPRE</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>– tCK</td>
</tr>
<tr>
<td>DQS write post-amble</td>
<td>WPST</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>1.5</td>
<td>– tCK</td>
</tr>
<tr>
<td>W/R# LOW to data output cycle</td>
<td>WRCK</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>20</td>
<td>– ns</td>
</tr>
<tr>
<td>WP# transition to command cycle</td>
<td>WW</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>– ns</td>
</tr>
</tbody>
</table>

Notes: 1. Delay is from start of command to next command, address, or data cycle; start of address to next command, address, or data cycle; and end of data to start of next command, address, or data cycle.
2. This value is specified in the parameter page.
3. tCK(avg) is the average clock period over any consecutive 200-cycle window.
4. tCKH(abs) and tCKL(abs) include static offset and duty cycle jitter.
5. tDQSHZ begins when W/R# is latched HIGH by CLK. This parameter is not referenced to a specific voltage level; it specifies when the device outputs are no longer driving.
Electrical Specifications – Array Characteristics

Table 44: Array Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of partial page programs</td>
<td>NOP</td>
<td>–</td>
<td>1</td>
<td>Cycles</td>
<td>1</td>
</tr>
<tr>
<td>ERASE BLOCK operation time</td>
<td>tBERS</td>
<td>3.8</td>
<td>10</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Cache busy</td>
<td>tCBSY</td>
<td>35</td>
<td>2600</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Change column setup time to data in/out or next command</td>
<td>tCCS</td>
<td>–</td>
<td>200</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Dummy busy time</td>
<td>tDBSY</td>
<td>0.5</td>
<td>1</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Cache read busy time</td>
<td>tRCBSY</td>
<td>3</td>
<td>75</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Busy time for SET FEATURES and GET FEATURES operations</td>
<td>tFEAT</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td>2</td>
</tr>
<tr>
<td>Busy time for interface change</td>
<td>tITC</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>LAST PAGE PROGRAM operation time</td>
<td>tLPROG</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>Busy time for OTP DATA PROGRAM operation if OTP is protected</td>
<td>tOBSY</td>
<td>–</td>
<td>40</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Power-on reset time</td>
<td>tPOR</td>
<td>–</td>
<td>1</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE operation time</td>
<td>tPROG</td>
<td>1300</td>
<td>2600</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>READ PAGE operation time</td>
<td>tR</td>
<td>–</td>
<td>75</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Device reset time (Read/Program/Erase)</td>
<td>tRST</td>
<td>–</td>
<td>5/10/500</td>
<td>µs</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:
1. The pages in the OTP Block have an NOP of 4.
2. t_{ITC} (MAX) is the busy time when the interface changes from asynchronous to synchronous using the SET FEATURES (EFh) command or synchronous to asynchronous using the RESET (FFh) command. During the t_{ITC} time, any command, including READ STATUS (70h) and READ STATUS ENHANCED (78h), is prohibited.
3. $t_{LPROG} = t_{PROG} \text{ (last page)} + t_{PROG} \text{ (last page - 1)} - \text{command load time (last page)} - \text{address load time (last page)} - \text{data load time (last page)}$.
4. If RESET command is issued when the target is READY, the target goes busy for a maximum of 5µs.
Asynchronous Interface Timing Diagrams

Figure 74: RESET Operation

CLE

CE#

WE#

R/B#

DQ[7:0]

FFh

RESET command

Figure 75: RESET LUN Operation

CE#

CLE

WE#

ALE

DQ[7:0]

R/B#

FAh

Row add 1

Row add 2

Row add 3

\(t_{WC} \)

\(t_{CH} \)

\(t_{CLH} \)

\(t_{CS} \)

\(t_{CL} \)

\(t_{CLH} \)

\(t_{DS} \)

\(t_{DH} \)

\(t_{WP} \)

\(t_{WP} \)

\(t_{WC} \)

\(t_{CH} \)

\(t_{ALH} \)

\(t_{ALS} \)

\(t_{ALH} \)

\(t_{CS} \)

\(t_{RST} \)

Don't Care
Figure 76: READ STATUS Cycle

Figure 77: READ STATUS ENHANCED Cycle
Figure 78: READ PARAMETER PAGE

Figure 79: READ PAGE
Figure 80: READ PAGE Operation with CE# “Don’t Care”
Figure 81: CHANGE READ COLUMN

CLE

CE#

WE#

ALE

RE#

DQx

RDY

Column address M

05h

Col add 1

Col add 2

E0h

Dout N - 1

Dout N

Dout M

Dout M + 1

Micron Confidential and Proprietary

64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND
Asynchronous Interface Timing Diagrams

Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.
Figure 82: READ PAGE CACHE SEQUENTIAL

![Diagram showing the timing sequence for reading a page cache sequentially.](image-url)
Figure 83: READ PAGE CACHE RANDOM

CLE

CE#

WE#

ALE

RE#

DQx

RDY

Column address 00h
Page address M

Column address 00h
Page address N

Column address 00h
Page address M

Column address 0
Page address N

Don't Care
Figure 84: READ ID Operation

CLE
CE#
WE#
ALE
RE#
DQx

Address, 1 cycle

90h (00h or 20h)

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4

Figure 85: PROGRAM PAGE Operation

CLE
CE#
WE#
ALE
RE#
DQx

1 up to m byte serial Input

Don’t Care

70h
RDY

Don’t Care

tAR
tWHR
tREA

tWC
tADL

tWB

Status

tPROG

Don’t Care

10h
Figure 86: PROGRAM PAGE Operation with CE# “Don’t Care”

Figure 87: PROGRAM PAGE Operation with CHANGE WRITE COLUMN
Figure 88: PROGRAM PAGE CACHE

Figure 89: PROGRAM PAGE CACHE Ending on 15h
Figure 90: COPYBACK

Figure 91: ERASE BLOCK Operation
Figure 92: SET FEATURES Operation

Notes:

1. When CE# remains LOW, t_{CAD} begins at the rising edge of the clock from which the last data byte is input for the subsequent command or data input cycle(s).
2. t_{DSH} (MIN) generally occurs during t_{DQSS} (MIN).
3. t_{DSS} (MIN) generally occurs during t_{DQSS} (MAX).
4. The cycle that t_{CAD} is measured from may be an idle cycle (as shown), another command cycle, an address cycle, or a data cycle. The idle cycle is shown in this diagram for simplicity.
Figure 93: READ ID Operation
Figure 94: GET FEATURES Operation
Figure 95: RESET (FCh) Operation
Figure 96: READ STATUS Cycle
Figure 97: READ STATUS ENHANCED Operation
Figure 98: READ PARAMETER PAGE Operation

- CE#
- CLE
- ALE
- CLK
- W/R#
- DQS
- DQ[7:0]
- RDY
- tCS
- tCAD
- tWRCK
- tDQSD
- tREAD
- tDQSHZ
- tCKWR
- tCALH
- tSHW
- tCALS
- tWR
- tDQSCK
- tDQS

Driven
Don't Care

Micron Confidential and Proprietary
64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND
Synchronous Interface Timing Diagrams

Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2009 Micron Technology, Inc. All rights reserved.
Figure 99: READ PAGE Operation
Figure 100: CHANGE READ COLUMN

- CE#
- CLE
- ALE
- CLK
- W/R#
- DOS
- DQx
- RDY

- tCAD
- tCCS
- tDQSD
- tDQSCS
- tDQSHZ
- tRHW
- tDQSD
- tCALS
- tCALS

- Don't Care
- Driven
Figure 101: READ PAGE CACHE SEQUENTIAL (1 of 2)
Figure 102: READ PAGE CACHE SEQUENTIAL (2 of 2)
If data from a plane other than A is desired, a 06h-60h command sequence is required after 7tR and prior to taking W/R# LOW.

Don't Care
Driven

Micron Confidential and Proprietary
64Gb, 128Gb, 256Gb, 512Gb Asynchronous/Synchronous NAND
Synchronous Interface Timing Diagrams

Figure 105: Multi-Plane Read Page (1 of 2)
Figure 106: Multi-Plane Read Page (2 of 2)
Figure 107: PROGRAM PAGE Operation (1 of 2)

Figure 108: PROGRAM PAGE Operation (2 of 2)
Figure 109: CHANGE WRITE COLUMN

CE#
CLE
ALE
CLK
W/R#
DQS
DQx
RDY

Don't Care Driven
Figure 110: Multi-Plane Program Page
Figure 111: ERASE BLOCK

Figure 112: COPYBACK (1 of 3)
Figure 115: READ OTP PAGE
Figure 116: PROGRAM OTP PAGE (1 of 2)

Figure 117: PROGRAM OTP PAGE (2 of 2)
Figure 118: PROTECT OTP AREA

[Diagram showing the timing and control signals for protecting the OTP area in asynchronous/synchronous NAND interface.]
Revision History

Rev. F Production – 5/12
- Added polyimide wafer process option to part numbering
- Updated the Output Drive Strength Conditions table so that range labels (min & max) match the ONFI definition.
- Changed the Output Drive Strength Conditions table to show minimum temperature as $T_A (MIN)$ and maximum temperature as $T_A (MAX)$.
- Table Heading changed from “Output Drive Strength Test Conditions” to “Output Drive Strength Conditions”

Rev. E Production – 3/11
- Updated Output Drive Strength Impedance Values ($V_{CCQ} = 2.7-3.6V$) table
- Changed $t_{PROG\ MAX}$ from 2500µs to 2600µs

Rev. D Production – 12/10
- Noted Synchronous TSOP support to Synchronous timing mode 4
- Updated Read Parameter Page values
- Updated values for Output Drive Impedance for V_{CCQ} 3.3V
- Updated capacitance values for BGA/LGA/TSOP devices
- Changed I_{cc4r} and I_{cc4w} values for both Asynchronous and Synchronous operations
- Updated t_{WHR} for Synchronous mode of operation to 80ns for all timing modes
- Changed $t_{BERS\ TYP}$ from 3ms to 3.8ms

Rev. C – 7/10
- Added Synchronous TSOP device support
- Changed endurance from 5000 Program/Erase cycles to 3000 Program/Erase cycles
- Changed Data Retention statement from '10 years' to 'JESD47G compliant; see qualification report'
- Added Shared Pages section
- Added Output Slew Rate information to support Synchronous TSOP device
- Changed $t_{AC\ Min}$ from 10ns to 3ns
- Changed $t_{DQSD\ Max}$ from 20ns to 18ns
- Changed $t_{CBSY\ Typ}$ from 3µs to 35µs
- Changed $t_{PROG\ Max}$ from 2200µs to 2500µs
- Changed t_{R} and $t_{RCBSY\ Max}$ from 50µs to 75µs
- Change $t_{OBSY\ Max}$ from 30µs to 40µs

Rev. B – 2/10
- Corrected Part Numbering figure for Design Revision from "B" to "A"
- Corrected MT29F256G08CMAA part number in Read ID Parameter table
- Changed NOP limit for OTP operations from 8 to 4
- Corrected the first spare area location byte number in Error Management
- Added Input Slew Rate information
• Changed C_{CK} capacitance for SDP/DDP BGA devices

Rev. A – 11/09

• Initial release