NAND Flash Memory

Features

- Open NAND Flash Interface (ONFI) 1.0-compliant
- Single-level cell (SLC) technology
- Organization
 - Page size x8: 2112 bytes (2048 + 64 bytes)
 - Page size x16: 1056 words (1024 + 32 words)
 - Block size: 64 pages (128K + 4K bytes)
 - Plane size: 2 planes x 512 blocks per plane
 - Device size: 1Gb: 1024 blocks
- Asynchronous I/O performance
 - $t_{RC/WC}$: 20ns (3.3V), 25ns (1.8V)
- Array performance
 - Read page: 25µs
 - Program page: 200µs (TYP, 3.3V and 1.8V)
 - Erase block: 700µs (TYP)
- Command set: ONFI NAND Flash Protocol
- Advanced command set
 - Program page cache mode
 - Read page cache mode
 - One-time programmable (OTP) mode
 - Two-plane commands
 - Read unique ID
 - Internal data move
 - Block lock (1.8V only)
- Operation status byte provides software method for detecting
 - Operation completion
 - Pass/fail condition
 - Write-protect status
- Internal data move operations supported within the device from which data is read
- Ready/busy# (R/B#) signal provides a hardware method for detecting operation completion
- WP# signal: write protect entire device
- First block (block address 00h) is valid when shipped from factory with ECC. For minimum required ECC, see Error Management.
- Block 0 requires 1-bit ECC if PROGRAM/ERASE cycles are less than 1000
- RESET (FFh) required as first command after power-on
- Alternate method of device initialization (Nand_Init) after power up3 (contact factory)
- Quality and reliability
 - Data retention: JESD47 compliant; see qualification report
 - Endurance: 100,000 PROGRAM/ERASE cycles
- Operating Voltage Range
 - V_{CC}: 2.7–3.6V
 - V_{CC}: 1.7–1.95V
- Operating temperature:
 - Commercial (CT): –0ºC to +70ºC
 - Industrial (IT): –40ºC to +85ºC
- Package
 - 48-pin TSOP Type 1, CPL2

Notes:
1. The ONFI 1.0 specification is available at www.onfi.org.
2. CPL = Center parting line.
3. Available only in the 1.8V VFBGA package.
Part Numbering Information

Micron NAND Flash devices are available in different configurations and densities. Verify valid part numbers by using Micron’s part catalog search at www.micron.com. To compare features and specifications by device type, visit www.micron.com/products. Contact the factory for devices not found.

Figure 1: Marketing Part Number Chart

<table>
<thead>
<tr>
<th>Micron Technology</th>
<th>29F</th>
<th>1G</th>
<th>08</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>A</th>
<th>HC</th>
<th>IT</th>
<th>ES</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Family</td>
<td>29F = NAND Flash memory</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1G = 1Gb</td>
<td></td>
</tr>
<tr>
<td>Device Width</td>
<td>08 = 8-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 = 16-bit</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>A = SLC</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Mark</td>
<td>Die</td>
<td>nCE</td>
<td>RnB</td>
<td>I/O Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage Range</td>
<td>A = 3.3V (2.7–3.6V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = 1.8V (1.7–1.95V)</td>
<td></td>
</tr>
<tr>
<td>Feature Set</td>
<td>E = Feature set E</td>
<td></td>
</tr>
<tr>
<td>Design Revision</td>
<td>(shrink)</td>
<td></td>
</tr>
<tr>
<td>Production Status</td>
<td>Blank = Production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES = Engineering sample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS = Mechanical sample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QS = Qualification sample</td>
<td></td>
</tr>
<tr>
<td>Special Options</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = Product longevity program (PLP)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Blank = Commercial (0°C to +70°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT = Industrial (–40°C to +85°C)</td>
<td></td>
</tr>
<tr>
<td>Speed Grade</td>
<td>Blank</td>
<td></td>
</tr>
<tr>
<td>Package Code</td>
<td>WP = 48-pin TSOP Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HC = 63-ball VFBGA (10.5 x 13 x 1.0mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H4 = 63-ball VFBGA (9 x 11 x 1.0mm)</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>A = Async only</td>
<td></td>
</tr>
</tbody>
</table>

Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Description</td>
<td>8</td>
</tr>
<tr>
<td>Signal Descriptions and Assignments</td>
<td>8</td>
</tr>
<tr>
<td>Signal Assignments</td>
<td>9</td>
</tr>
<tr>
<td>Package Dimensions</td>
<td>12</td>
</tr>
<tr>
<td>Architecture</td>
<td>15</td>
</tr>
<tr>
<td>Device and Array Organization</td>
<td>16</td>
</tr>
<tr>
<td>Asynchronous Interface Bus Operation</td>
<td>19</td>
</tr>
<tr>
<td>Asynchronous Enable/Standby</td>
<td>19</td>
</tr>
<tr>
<td>Asynchronous Commands</td>
<td>19</td>
</tr>
<tr>
<td>Asynchronous Addresses</td>
<td>21</td>
</tr>
<tr>
<td>Asynchronous Data Input</td>
<td>22</td>
</tr>
<tr>
<td>Asynchronous Data Output</td>
<td>23</td>
</tr>
<tr>
<td>Write Protect#</td>
<td>24</td>
</tr>
<tr>
<td>Ready/Busy#</td>
<td>24</td>
</tr>
<tr>
<td>Device Initialization</td>
<td>29</td>
</tr>
<tr>
<td>Command Definitions</td>
<td>30</td>
</tr>
<tr>
<td>Reset Operations</td>
<td>33</td>
</tr>
<tr>
<td>RESET (FFh)</td>
<td>33</td>
</tr>
<tr>
<td>Identification Operations</td>
<td>34</td>
</tr>
<tr>
<td>READ ID (90h)</td>
<td>34</td>
</tr>
<tr>
<td>READ ID Parameter Tables</td>
<td>35</td>
</tr>
<tr>
<td>READ PARAMETER PAGE (ECh)</td>
<td>37</td>
</tr>
<tr>
<td>Parameter Page Data Structure Tables</td>
<td>38</td>
</tr>
<tr>
<td>READ UNIQUE ID (EDh)</td>
<td>41</td>
</tr>
<tr>
<td>Feature Operations</td>
<td>42</td>
</tr>
<tr>
<td>SET FEATURES (EFh)</td>
<td>42</td>
</tr>
<tr>
<td>GET FEATURES (EEh)</td>
<td>43</td>
</tr>
<tr>
<td>Status Operations</td>
<td>46</td>
</tr>
<tr>
<td>READ STATUS (70h)</td>
<td>46</td>
</tr>
<tr>
<td>READ STATUS ENHANCED (78h)</td>
<td>47</td>
</tr>
<tr>
<td>Column Address Operations</td>
<td>48</td>
</tr>
<tr>
<td>RANDOM DATA READ (05h-E0h)</td>
<td>48</td>
</tr>
<tr>
<td>RANDOM DATA READ TWO-PLANE (06h-E0h)</td>
<td>49</td>
</tr>
<tr>
<td>RANDOM DATA INPUT (85h)</td>
<td>50</td>
</tr>
<tr>
<td>PROGRAM FOR INTERNAL DATA INPUT (85h)</td>
<td>51</td>
</tr>
<tr>
<td>Read Operations</td>
<td>53</td>
</tr>
<tr>
<td>READ MODE (00h)</td>
<td>55</td>
</tr>
<tr>
<td>READ PAGE (00h-30h)</td>
<td>55</td>
</tr>
<tr>
<td>READ PAGE CACHE SEQUENTIAL (31h)</td>
<td>56</td>
</tr>
<tr>
<td>READ PAGE CACHE RANDOM (00h-31h)</td>
<td>57</td>
</tr>
<tr>
<td>READ PAGE CACHE LAST (3Fh)</td>
<td>59</td>
</tr>
<tr>
<td>READ PAGE TWO-PLANE 00h-00h-30h</td>
<td>60</td>
</tr>
<tr>
<td>Program Operations</td>
<td>62</td>
</tr>
<tr>
<td>PROGRAM PAGE (80h-10h)</td>
<td>63</td>
</tr>
<tr>
<td>PROGRAM PAGE CACHE (80h-15h)</td>
<td>63</td>
</tr>
<tr>
<td>PROGRAM PAGE TWO-PLANE (80h-11h)</td>
<td>66</td>
</tr>
<tr>
<td>Erase Operations</td>
<td>68</td>
</tr>
<tr>
<td>ERASE BLOCK (60h-D0h)</td>
<td>68</td>
</tr>
<tr>
<td>ERASE BLOCK TWO-PLANE (60h-D1h)</td>
<td>69</td>
</tr>
<tr>
<td>Internal Data Move Operations</td>
<td>70</td>
</tr>
</tbody>
</table>
List of Figures
Figure 1: Marketing Part Number Chart ... 2
Figure 2: 48-Pin TSOP – Type 1, CPL (Top View) .. 9
Figure 3: 63-Ball VFBGA, x8 (Balls Down, Top View) ... 10
Figure 4: 63-Ball VFBGA, x16 (Balls Down, Top View) .. 11
Figure 5: 48-Pin TSOP – Type 1, CPL ... 12
Figure 6: 63-Ball VFBGA (HC) 10.5mm x 13mm .. 13
Figure 7: 63-Ball VFBGA (H4) 9mm x 11mm .. 14
Figure 8: NAND Flash Die (LUN) Functional Block Diagram 15
Figure 9: Device Organization for Single-Die Package (TSOP/BGA) 16
Figure 10: Array Organization – x8 .. 16
Figure 11: Array Organization – x16 ... 18
Figure 12: Asynchronous Command Latch Cycle ... 20
Figure 13: Asynchronous Address Latch Cycle ... 21
Figure 14: Asynchronous Data Input Cycles .. 22
Figure 15: Asynchronous Data Output Cycles ... 23
Figure 16: Asynchronous Data Output Cycles (EDO Mode) 24
Figure 17: READ/BUSY# Open Drain ... 25
Figure 18: 1Fall and 1Rise (3.3V_{CC}) ... 26
Figure 19: 1Fall and 1Rise (1.8V_{CC}) ... 26
Figure 20: I_{OL} vs. Rp (V_{CC} = 3.3V_{CC}) .. 27
Figure 21: I_{OL} vs. Rp (1.8V_{CC}) ... 27
Figure 22: TC vs. Rp .. 28
Figure 23: R/B# Power-On Behavior ... 29
Figure 24: RESET (FFh) Operation ... 33
Figure 25: READ ID (90h) with 00h Address Operation 34
Figure 26: READ ID (90h) with 20h Address Operation 34
Figure 27: READ PARAMETER (ECh) Operation .. 37
Figure 28: READ UNIQUE ID (EDh) Operation ... 41
Figure 29: SET FEATURES (EFh) Operation ... 43
Figure 30: GET FEATURES (EEh) Operation ... 43
Figure 31: READ STATUS (70h) Operation ... 47
Figure 32: READ STATUS ENHANCED (78h) Operation 47
Figure 33: RANDOM DATA READ (05h-E0h) Operation 48
Figure 34: RANDOM DATA READ TWO-PLANE (06h-E0h) Operation 49
Figure 35: RANDOM DATA INPUT (85h) Operation .. 50
Figure 36: PROGRAM FOR INTERNAL DATA INPUT (85h) Operation 52
Figure 37: READ PAGE (00h-30h) Operation .. 56
Figure 38: READ PAGE CACHE SEQUENTIAL (31h) Operation 57
Figure 39: READ PAGE CACHE RANDOM (00h-31h) Operation 58
Figure 40: READ PAGE CACHE LAST (3Fh) Operation 59
Figure 41: READ PAGE TWO-PLANE (00h-00h-30h) Operation 61
Figure 42: PROGRAM PAGE (80h-10h) Operation .. 63
Figure 43: PROGRAM PAGE CACHE (80h–15h) Operation (Start) 65
Figure 44: PROGRAM PAGE CACHE (80h–15h) Operation (End) 65
Figure 45: PROGRAM PAGE TWO-PLANE (80h–11h) Operation 67
Figure 46: ERASE BLOCK (60h-D0h) Operation ... 68
Figure 47: ERASE BLOCK TWO-PLANE (60h–D1h) Operation 69
Figure 48: READ FOR INTERNAL DATA MOVE (00h-35h) Operation 71
Figure 49: READ FOR INTERNAL DATA MOVE (00h-35h) with RANDOM DATA READ (05h-E0h) Operation 71
Figure 50: PROGRAM FOR INTERNAL DATA MOVE (85h-10h) 72

1Gb x8, x16: NAND Flash Memory
Figure 51: PROGRAM FOR INTERNAL DATA MOVE (85h-10h) with RANDOM DATA INPUT (85h) 72
Figure 52: Flash Array Protected: Invert Area Bit = 0 .. 74
Figure 53: Flash Array Protected: Invert Area Bit = 1 .. 74
Figure 54: UNLOCK Operation .. 75
Figure 55: LOCK Operation .. 76
Figure 56: LOCK TIGHT Operation .. 77
Figure 57: PROGRAM/ERASE Issued to Locked Block .. 78
Figure 58: BLOCK LOCK READ STATUS .. 78
Figure 59: BLOCK LOCK Flowchart .. 79
Figure 60: OTP DATA PROGRAM (After Entering OTP Operation Mode) .. 82
Figure 61: OTP DATA PROGRAM Operation with RANDOM DATA INPUT (After Entering OTP Operation Mode) 83
Figure 62: OTP DATA PROTECT Operation (After Entering OTP Protect Mode) 84
Figure 63: OTP DATA READ .. 85
Figure 64: OTP DATA READ with RANDOM DATA READ Operation ... 86
Figure 65: Overshoot .. 92
Figure 66: Undershoot ... 92
Figure 67: RESET Operation .. 102
Figure 68: READ STATUS Cycle .. 102
Figure 69: READ STATUS ENHANCED Cycle .. 103
Figure 70: READ PARAMETER PAGE .. 103
Figure 71: READ PAGE .. 104
Figure 72: READ PAGE Operation with CE# “Don’t Care” .. 105
Figure 73: RANDOM DATA READ ... 106
Figure 74: READ PAGE CACHE SEQUENTIAL .. 107
Figure 75: READ PAGE CACHE RANDOM .. 108
Figure 76: READ ID Operation .. 109
Figure 77: PROGRAM PAGE Operation ... 109
Figure 78: PROGRAM PAGE Operation with CE# “Don’t Care” ... 110
Figure 79: PROGRAM PAGE Operation with RANDOM DATA INPUT ... 110
Figure 80: PROGRAM PAGE CACHE .. 111
Figure 81: PROGRAM PAGE CACHE Ending on 15h .. 111
Figure 82: INTERNAL DATA MOVE .. 112
Figure 83: ERASE BLOCK Operation ... 112
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Asynchronous Signal Definitions</td>
<td>8</td>
</tr>
<tr>
<td>Table 2</td>
<td>Array Addressing (x8)</td>
<td>16</td>
</tr>
<tr>
<td>Table 3</td>
<td>Array Addressing (x16)</td>
<td>18</td>
</tr>
<tr>
<td>Table 4</td>
<td>Asynchronous Interface Mode Selection</td>
<td>19</td>
</tr>
<tr>
<td>Table 5</td>
<td>Command Set</td>
<td>30</td>
</tr>
<tr>
<td>Table 6</td>
<td>Two-Plane Command Set</td>
<td>32</td>
</tr>
<tr>
<td>Table 7</td>
<td>READ ID Parameters for Address 00h</td>
<td>35</td>
</tr>
<tr>
<td>Table 8</td>
<td>READ ID Parameters for Address 20h</td>
<td>36</td>
</tr>
<tr>
<td>Table 9</td>
<td>Parameter Page Data Structure</td>
<td>38</td>
</tr>
<tr>
<td>Table 10</td>
<td>Feature Address Definitions</td>
<td>42</td>
</tr>
<tr>
<td>Table 11</td>
<td>Feature Address 90h – Array Operation Mode</td>
<td>42</td>
</tr>
<tr>
<td>Table 12</td>
<td>Feature Addresses 01h: Timing Mode</td>
<td>44</td>
</tr>
<tr>
<td>Table 13</td>
<td>Feature Addresses 80h: Programmable I/O Drive Strength</td>
<td>45</td>
</tr>
<tr>
<td>Table 14</td>
<td>Feature Addresses 81h: Programmable R/B# Pull-Down Strength</td>
<td>45</td>
</tr>
<tr>
<td>Table 15</td>
<td>Status Register Definition</td>
<td>46</td>
</tr>
<tr>
<td>Table 16</td>
<td>Block Lock Address Cycle Assignments</td>
<td>75</td>
</tr>
<tr>
<td>Table 17</td>
<td>Block Lock Status Register Bit Definitions</td>
<td>78</td>
</tr>
<tr>
<td>Table 18</td>
<td>Error Management Details</td>
<td>88</td>
</tr>
<tr>
<td>Table 19</td>
<td>Output Drive Strength Conditions (V<sub>CCQ</sub> = 1.7–1.95V)</td>
<td>89</td>
</tr>
<tr>
<td>Table 20</td>
<td>Output Drive Strength Impedance Values (V<sub>CCQ</sub> = 1.7–1.95V)</td>
<td>89</td>
</tr>
<tr>
<td>Table 21</td>
<td>Output Drive Strength Conditions (V<sub>CCQ</sub> = 2.7–3.6V)</td>
<td>90</td>
</tr>
<tr>
<td>Table 22</td>
<td>Output Drive Strength Impedance Values (V<sub>CCQ</sub> = 2.7–3.6V)</td>
<td>90</td>
</tr>
<tr>
<td>Table 23</td>
<td>Pull-Up and Pull-Down Output Impedance Mismatch</td>
<td>91</td>
</tr>
<tr>
<td>Table 24</td>
<td>Asynchronous Overshoot/Undershoot Parameters</td>
<td>92</td>
</tr>
<tr>
<td>Table 25</td>
<td>Test Conditions for Output Slew Rate</td>
<td>93</td>
</tr>
<tr>
<td>Table 26</td>
<td>Output Slew Rate (V<sub>CCQ</sub> = 1.7–1.95V)</td>
<td>93</td>
</tr>
<tr>
<td>Table 27</td>
<td>Output Slew Rate (V<sub>CCQ</sub> = 2.7–3.6V)</td>
<td>93</td>
</tr>
<tr>
<td>Table 28</td>
<td>Absolute Maximum Ratings</td>
<td>94</td>
</tr>
<tr>
<td>Table 29</td>
<td>Recommended Operating Conditions</td>
<td>94</td>
</tr>
<tr>
<td>Table 30</td>
<td>Valid Blocks</td>
<td>94</td>
</tr>
<tr>
<td>Table 31</td>
<td>Capacitance</td>
<td>95</td>
</tr>
<tr>
<td>Table 32</td>
<td>Test Conditions</td>
<td>95</td>
</tr>
<tr>
<td>Table 33</td>
<td>AC Characteristics: Command, Data, and Address Input (3.3V)</td>
<td>96</td>
</tr>
<tr>
<td>Table 34</td>
<td>AC Characteristics: Command, Data, and Address Input (1.8V)</td>
<td>96</td>
</tr>
<tr>
<td>Table 35</td>
<td>AC Characteristics: Normal Operation (3.3V)</td>
<td>97</td>
</tr>
<tr>
<td>Table 36</td>
<td>AC Characteristics: Normal Operation (1.8V)</td>
<td>97</td>
</tr>
<tr>
<td>Table 37</td>
<td>DC Characteristics and Operating Conditions (3.3V)</td>
<td>99</td>
</tr>
<tr>
<td>Table 38</td>
<td>DC Characteristics and Operating Conditions (1.8V)</td>
<td>100</td>
</tr>
<tr>
<td>Table 39</td>
<td>ProgramErase Characteristics</td>
<td>101</td>
</tr>
</tbody>
</table>
General Description

Micron NAND Flash devices include an asynchronous data interface for high-performance I/O operations. These devices use a highly multiplexed 8-bit bus (I/Ox) to transfer commands, address, and data. There are five control signals used to implement the asynchronous data interface: CE#, CLE, ALE, WE#, and RE#. Additional signals control hardware write protection and monitor device status (R/B#).

This hardware interface creates a low pin-count device with a standard pinout that remains the same from one density to another, enabling future upgrades to higher densities with no board redesign.

A target is the unit of memory accessed by a chip enable signal. A target contains one or more NAND Flash die. A NAND Flash die is the minimum unit that can independently execute commands and report status. A NAND Flash die, in the ONFI specification, is referred to as a logical unit (LUN). There is at least one NAND Flash die per chip enable signal. For further details, see Device and Array Organization.

Signal Descriptions and Assignments

Table 1: Asynchronous Signal Definitions

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>Input</td>
<td>Address latch enable: Loads an address from I/O[7:0] into the address register.</td>
</tr>
<tr>
<td>CE#</td>
<td>Input</td>
<td>Chip enable: Enables or disables one or more die (LUNs) in a target.</td>
</tr>
<tr>
<td>CLE</td>
<td>Input</td>
<td>Command latch enable: Loads a command from I/O[7:0] into the command register.</td>
</tr>
<tr>
<td>RE#</td>
<td>Input</td>
<td>Read enable: Transfers serial data from the NAND Flash to the host system.</td>
</tr>
<tr>
<td>WE#</td>
<td>Input</td>
<td>Write enable: Transfers commands, addresses, and serial data from the host system to the NAND Flash.</td>
</tr>
<tr>
<td>WP#</td>
<td>Input</td>
<td>Write protect: Enables or disables array PROGRAM and ERASE operations.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Input</td>
<td>Lock: Enables the BLOCK LOCK function when LOCK is HIGH during power up. To disable BLOCK LOCK, connect LOCK to VSS during power up or leave it disconnected (internal pull-down).</td>
</tr>
<tr>
<td>I/O[7:0] (x8)</td>
<td>I/O</td>
<td>Data inputs/outputs: The bidirectional I/Os transfer address, data, and command information.</td>
</tr>
<tr>
<td>I/O[15:0] (x16)</td>
<td>I/O</td>
<td>Data inputs/outputs: The bidirectional I/Os transfer address, data, and command information.</td>
</tr>
<tr>
<td>R/B#</td>
<td>Output</td>
<td>Ready/busy: An open-drain, active-low output that requires an external pull-up resistor. This signal indicates target array activity.</td>
</tr>
<tr>
<td>VCC</td>
<td>Supply</td>
<td>VCC: Core power supply</td>
</tr>
<tr>
<td>VSS</td>
<td>Supply</td>
<td>VSS: Core ground connection</td>
</tr>
<tr>
<td>NC</td>
<td>–</td>
<td>No connect: NCs are not internally connected. They can be driven or left unconnected.</td>
</tr>
<tr>
<td>DNU</td>
<td>–</td>
<td>Do not use: DNUs must be left unconnected.</td>
</tr>
</tbody>
</table>

Notes: 1. See Device and Array Organization for detailed signal connections. 2. See Asynchronous Interface Bus Operation for detailed asynchronous interface signal descriptions.
Signal Assignments

Figure 2: 48-Pin TSOP – Type 1, CPL (Top View)

Notes:
1. These pins might not be bonded in the package; however, Micron recommends that the customer connect these pins to the designated external sources for ONFI compatibility.
2. For the 3V device, pin 38 is DNU. For the 1.8V device, pin 38 is LOCK.
Figure 3: 63-Ball VFPGA, x8 (Balls Down, Top View)

Notes:
1. For the 3V device, G5 changes to DNU. NO LOCK function is available on the 3.3V device.
2. These pins might not be bonded in the package; however, Micron recommends that the customer connect these pins to the designated external sources for ONFI compatibility.
Figure 4: 63-Ball VFBGA, x16 (Balls Down, Top View)

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. For the 3V device, G5 changes to DNU. NO LOCK function is available on the 3.3V device.
2. These pins might not be bonded in the package; however, Micron recommends that the customer connect these pins to the designated external sources for ONFI compatibility.
Package Dimensions

Figure 5: 48-Pin TSOP – Type 1, CPL

Note: 1. All dimensions are in millimeters.
Figure 6: 63-Ball VFBGA (HC) 10.5mm x 13mm

63X Ø0.45
Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu).
Dimensions apply to solder balls post-reflow on Ø0.4 SMD ball pads.

Note: 1. All dimensions are in millimeters.
Figure 7: 63-Ball VFBGA (H4) 9mm x 11mm

Note: 1. All dimensions are in millimeters.
These devices use NAND Flash electrical and command interfaces. Data, commands, and addresses are multiplexed onto the same pins and received by I/O control circuits. The commands received at the I/O control circuits are latched by a command register and are transferred to control logic circuits for generating internal signals to control device operations. The addresses are latched by an address register and sent to a row decoder to select a row address, or to a column decoder to select a column address.

Data is transferred to or from the NAND Flash memory array, byte by byte (x8) or word by word (x16), through a data register and a cache register.

The NAND Flash memory array is programmed and read using page-based operations and is erased using block-based operations. During normal page operations, the data and cache registers act as a single register. During cache operations, the data and cache registers operate independently to increase data throughput. The status register reports the status of die operations.

Figure 8: NAND Flash Die (LUN) Functional Block Diagram

Note: 1. The LOCK pin is used on the 1.8V device.
Device and Array Organization

Figure 9: Device Organization for Single-Die Package (TSOP/BGA)

Asynchronous (Async) and synchronous (Sync) signals for a Single-Die Package (TSOP/BGA) are shown.

<table>
<thead>
<tr>
<th>Asynchronous</th>
<th>Synchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE#</td>
<td>CE#</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
</tr>
<tr>
<td>ALE</td>
<td>ALE</td>
</tr>
<tr>
<td>WE#</td>
<td>CLK</td>
</tr>
<tr>
<td>RE#</td>
<td>W/R#</td>
</tr>
<tr>
<td>DQ[7:0]</td>
<td>DQ[7:0]</td>
</tr>
<tr>
<td>N/A</td>
<td>DQS</td>
</tr>
<tr>
<td>WP#</td>
<td>WP#</td>
</tr>
</tbody>
</table>

Note: 1. TSOP devices do not support the synchronous interface.

Figure 10: Array Organization – x8

Cache Register and Data Register organization with a breakdown of data blocks per plane and device.

- 512 blocks per plane
- 1024 blocks per device

- 1 page = (2K + 64) bytes
- 1 block = (2K + 64) bytes x 64 pages = (128K + 4K) bytes
- 1 plane = (128K + 4K) bytes x 512 blocks = 528Mb
- 1 device = 528Mb x 2 planes = 1056Mb

Table 2: Array Addressing (x8)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
</tbody>
</table>
Table 2: Array Addressing (x8) (Continued)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/OQ3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA11¹</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
</tr>
<tr>
<td>Third</td>
<td>BA7</td>
<td>BA6³</td>
<td>PA5</td>
<td>PA4</td>
<td>PA3</td>
<td>PA2</td>
<td>PA1</td>
<td>PA0</td>
</tr>
<tr>
<td>Fourth</td>
<td>BA15</td>
<td>BA14</td>
<td>BA13</td>
<td>BA12</td>
<td>BA11</td>
<td>BA10</td>
<td>BA9</td>
<td>BA8</td>
</tr>
</tbody>
</table>

Notes:
1. If CA11 is 1, then CA[10:6] must be 0.
2. Block address concatenated with page address = actual page address; CAx = column address; PAx = page address; BAx = block address.
Figure 11: Array Organization – x16

![Diagram of array organization](image)

- **Cache Register**
- **Data Register**
- **512 blocks per plane**
- **1024 blocks per device**
- **1 plane = (64K + 2K) words x 512 blocks = 528Mb**
- **1 device = 528Mb x 2 planes = 1056Mb**

Table 3: Array Addressing (x16)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O[15:8]</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>LOW</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>LOW</td>
<td>BA7</td>
<td>BA6</td>
<td>PA5</td>
<td>PA4</td>
<td>PA3</td>
<td>PA2</td>
<td>PA1</td>
<td>PA0</td>
</tr>
<tr>
<td>Fourth</td>
<td>LOW</td>
<td>BA15</td>
<td>BA14</td>
<td>BA13</td>
<td>BA12</td>
<td>BA11</td>
<td>BA10</td>
<td>BA9</td>
<td>BA8</td>
</tr>
</tbody>
</table>

Notes:
1. If CA10 is 1, then CA[9:5] must be 0.
2. Block address concatenated with page address = actual page address. CAx = column address; PAx = page address; BAx = block address.
3. I/O[15:8] are not used during the addressing sequence and should be driven LOW.
Asynchronous Interface Bus Operation

The bus on the device is multiplexed. Data I/O, addresses, and commands all share the same pins. I/O[15:8] are used only for data in the x16 configuration. Addresses and commands are always supplied on I/O[7:0].

The command sequence typically consists of a COMMAND LATCH cycle, address input cycles, and one or more data cycles, either READ or WRITE.

Table 4: Asynchronous Interface Mode Selection

<table>
<thead>
<tr>
<th>Mode^1</th>
<th>CE#</th>
<th>CLE</th>
<th>ALE</th>
<th>WE#</th>
<th>RE#</th>
<th>I/Ox</th>
<th>WP#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby^2</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0V/VCc</td>
</tr>
<tr>
<td>Command input</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>Address input</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>Data input</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>Data output</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Write protect</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Mode selection settings for this table: H = Logic level HIGH; L = Logic level LOW; X = V_H or V_L.
2. WP# should be biased to CMOS LOW or HIGH for standby.

Asynchronous Enable/Standby

When the device is not performing an operation, the CE# pin is typically driven HIGH and the device enters standby mode. The memory will enter standby if CE# goes HIGH while data is being transferred and the device is not busy. This helps reduce power consumption.

The CE# “Don’t Care” operation enables the NAND Flash to reside on the same asynchronous memory bus as other Flash or SRAM devices. Other devices on the memory bus can then be accessed while the NAND Flash is busy with internal operations. This capability is important for designs that require multiple NAND Flash devices on the same bus.

A HIGH CLE signal indicates that a command cycle is taking place. A HIGH ALE signal signifies that an ADDRESS INPUT cycle is occurring.

Asynchronous Commands

An asynchronous command is written from I/O[7:0] to the command register on the rising edge of WE# when CE# is LOW, ALE is LOW, CLE is HIGH, and RE# is HIGH.

Commands are typically ignored by die (LUNs) that are busy (RDY = 0); however, some commands, including READ STATUS (70h) and READ STATUS ENHANCED (78h), are accepted by die (LUNs) even when they are busy.

For devices with a x16 interface, I/O[15:8] must be written with zeros when a command is issued.
Figure 12: Asynchronous Command Latch Cycle

CLE

CE#

WE#

ALE

I/Ox

COMMAND

†CLS †CLH

†CS †CH

†WP

†ALS †ALH

†DS †DH

[Box: Don’t Care]
Asynchronous Addresses

An asynchronous address is written from I/O[7:0] to the address register on the rising edge of WE# when CE# is LOW, ALE is HIGH, CLE is LOW, and RE# is HIGH.

Bits that are not part of the address space must be LOW (see Device and Array Organization). The number of cycles required for each command varies. Refer to the command descriptions to determine addressing requirements.

Addresses are typically ignored by die (LUNs) that are busy (RDY = 0); however, some addresses are accepted by die (LUNs) even when they are busy; for example, like address cycles that follow the READ STATUS ENHANCED (78h) command.

Figure 13: Asynchronous Address Latch Cycle
Asynchronous Data Input

Data is written from I/O[7:0] to the cache register of the selected die (LUN) on the rising edge of WE# when CE# is LOW, ALE is LOW, CLE is LOW, and RE# is HIGH.

Data input is ignored by die (LUNs) that are not selected or are busy (RDY = 0). Data is written to the data register on the rising edge of WE# when CE#, CLE, and ALE are LOW, and the device is not busy.

Data is input on I/O[7:0] on x8 devices and on I/O[15:0] on x16 devices.

Figure 14: Asynchronous Data Input Cycles
Asynchronous Data Output

Data can be output from a die (LUN) if it is in a READY state. Data output is supported following a READ operation from the NAND Flash array. Data is output from the cache register of the selected die (LUN) to I/O[7:0] on the falling edge of RE# when CE# is LOW, ALE is LOW, CLE is LOW, and WE# is HIGH.

If the host controller is using a t_{RC} of 30ns or greater, the host can latch the data on the rising edge of RE# (see the figure below for proper timing). If the host controller is using a t_{RC} of less than 30ns, the host can latch the data on the next falling edge of RE#.

Using the READ STATUS ENHANCED (78h) command prevents data contention following an interleaved die (multi-LUN) operation. After issuing the READ STATUS ENHANCED (78h) command, to enable data output, issue the READ MODE (00h) command.

Data output requests are typically ignored by a die (LUN) that is busy ($RDY = 0$); however, it is possible to output data from the status register even when a die (LUN) is busy by first issuing the READ STATUS or READ STATUS ENHANCED (78h) command.

![Figure 15: Asynchronous Data Output Cycles](image)

- t_{CEA}
- t_{REH}
- t_{RP}
- t_{RE}
- t_{COH}
- t_{RHZ}
- t_{RHOH}
- t_{RC}
- t_{RR}
- Don't Care

Micron Confidential and Proprietary
Write Protect#

The write protect# (WP#) signal enables or disables PROGRAM and ERASE operations to a target. When WP# is LOW, PROGRAM and ERASE operations are disabled. When WP# is HIGH, PROGRAM and ERASE operations are enabled.

It is recommended that the host drive WP# LOW during power-on until V_CCS is stable to prevent inadvertent PROGRAM and ERASE operations (see Device Initialization for additional details).

WP# must be transitioned only when the target is not busy and prior to beginning a command sequence. After a command sequence is complete and the target is ready, WP# can be transitioned. After WP# is transitioned, the host must wait tWW before issuing a new command.

The WP# signal is always an active input, even when CE# is HIGH. This signal should not be multiplexed with other signals.

Ready/Busy#

The ready/busy# (R/B#) signal provides a hardware method of indicating whether a target is ready or busy. A target is busy when one or more of its die (LUNs) are busy (RDY = 0). A target is ready when all of its die (LUNs) are ready (RDY = 1). Because each die (LUN) contains a status register, it is possible to determine the independent status of each die (LUN) by polling its status register instead of using the R/B# signal (see Status Operations for details regarding die (LUN) status).

This signal requires a pull-up resistor, Rp, for proper operation. R/B# is HIGH when the target is ready, and transitions LOW when the target is busy. The signal’s open-drain...
driver enables multiple R/B# outputs to be OR-tied. Typically, R/B# is connected to an interrupt pin on the system controller.

The combination of Rp and capacitive loading of the R/B# circuit determines the rise time of the R/B# signal. The actual value used for Rp depends on the system timing requirements. Large values of Rp cause R/B# to be delayed significantly. Between the 10% and 90% points on the R/B# waveform, the rise time is approximately two time constants (TC).

\[T_C = R \times C \]

Where \(R = \text{Rp} \) (resistance of pull-up resistor), and \(C = \text{total capacitive load} \).

The fall time of the R/B# signal is determined mainly by the output impedance of the R/B# signal and the total load capacitance. Approximate Rp values using a circuit load of 100pF are provided in Figure 22 (page 28).

The minimum value for Rp is determined by the output drive capability of the R/B# signal, the output voltage swing, and \(V_{CC} \).

\[Rp = \frac{V_{CC} \text{ (MAX)} - V_{OL} \text{ (MAX)}}{I_{OL} + \Sigma I_{L}} \]

Where \(\Sigma I_{L} \) is the sum of the input currents of all devices tied to the R/B# pin.

Figure 17: READ/BUSY# Open Drain
Figure 18: \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) (3.3V \(V_{\text{CC}} \))

Notes:
1. \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) calculated at 10% and 90% points.
2. \(t_{\text{Rise}} \) dependent on external capacitance and resistive loading and output transistor impedance.
3. \(t_{\text{Rise}} \) primarily dependent on external pull-up resistor and external capacitive loading.
4. \(t_{\text{Fall}} = 10\text{ns} \) at 3.3V.
5. See TC values in Figure 22 (page 28) for approximate \(R_p \) value and TC.

Figure 19: \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) (1.8V \(V_{\text{CC}} \))

Notes:
1. \(t_{\text{Fall}} \) and \(t_{\text{Rise}} \) are calculated at 10% and 90% points.
2. \(t_{\text{Rise}} \) primarily dependent on external pull-up resistor and external capacitive loading.
3. \(t_{\text{Fall}} \approx 7\text{ns} \) at 1.8V.
4. See TC values in Figure 22 (page 28) for TC and approximate \(R_p \) value.
Figure 20: I_{OL} vs. Rp ($V_{CC} = 3.3V$ V_{CC})

Figure 21: I_{OL} vs. Rp ($1.8V$ V_{CC})
Figure 22: TC vs. Rp

T(ns)

0 200 400 600 800 1000 1200

0 2000 4000 6000 8000 10,000 12,000

I(OL) at VCC (MAX)
RC = TC
C = 100pF

RC = TC

Micron Confidential and Proprietary
Device Initialization

Micron NAND Flash devices are designed to prevent data corruption during power transitions. \(V_{CC} \) is internally monitored. (The WP# signal supports additional hardware protection during power transitions.) When ramping \(V_{CC} \), use the following procedure to initialize the device:

1. Ramp \(V_{CC} \).
2. The host must wait for R/B# to be valid and HIGH before issuing RESET (FFh) to any target. The R/B# signal becomes valid when 50\(\mu \)s has elapsed since the beginning the \(V_{CC} \) ramp, and 10\(\mu \)s has elapsed since \(V_{CC} \) reaches \(V_{CC} \) (MIN).
3. If not monitoring R/B#, the host must wait at least 100\(\mu \)s after \(V_{CC} \) reaches \(V_{CC} \) (MIN). If monitoring R/B#, the host must wait until R/B# is HIGH.
4. The asynchronous interface is active by default for each target. Each LUN draws less than an average of 10mA (\(I_{ST} \)) measured over intervals of 1ms until the RESET (FFh) command is issued.
5. The RESET (FFh) command must be the first command issued to all targets (CE#s) after the NAND Flash device is powered on. Each target will be busy for 1ms after a RESET command is issued. The RESET busy time can be monitored by polling R/B# or issuing the READ STATUS (70h) command to poll the status register.
6. The device is now initialized and ready for normal operation.

Figure 23: R/B# Power-On Behavior

![Diagram of R/B# Power-On Behavior](image)
Command Definitions

Table 5: Command Set

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Cycle #1</th>
<th>Number of Valid Address Cycles</th>
<th>Data Input Cycles</th>
<th>Command Cycle #2</th>
<th>Valid While Selected LUN is Busy<sup>1</sup></th>
<th>Valid While Other LUNs are Busy<sup>2</sup></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>FFh</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Identification Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ ID</td>
<td>90h</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>READ PARAMETER PAGE</td>
<td>ECh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>READ UNIQUE ID</td>
<td>EDh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Feature Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GET FEATURES</td>
<td>EEh</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>SET FEATURES</td>
<td>EFh</td>
<td>1</td>
<td>4</td>
<td>–</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Status Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ STATUS</td>
<td>70h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ STATUS ENHANCED</td>
<td>78h</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Column Address Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANDOM DATA READ</td>
<td>05h</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>E0h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RANDOM DATA INPUT</td>
<td>85h</td>
<td>2</td>
<td>Optional</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PROGRAM FOR INTERNAL DATA MOVE</td>
<td>85h</td>
<td>5</td>
<td>Optional</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>READ OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ MODE</td>
<td>00h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>READ PAGE</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>30h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>READ PAGE CACHE SEQUENTIAL</td>
<td>31h</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>READ PAGE CACHE RANDOM</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>31h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>READ PAGE CACHE LAST</td>
<td>3Fh</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Program Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>–</td>
<td>10h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PROGRAM PAGE CACHE</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>–</td>
<td>15h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Erase Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE BLOCK</td>
<td>60h</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>D0h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Internal Data Move Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ FOR INTERNAL DATA MOVE</td>
<td>00h</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>35h</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Command Set (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Cycle #1</th>
<th>Number of Valid Address Cycles</th>
<th>Data Input Cycles</th>
<th>Command Cycle #2</th>
<th>Valid While Selected LUN is Busy</th>
<th>Valid While Other LUNs are Busy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM FOR INTERNAL DATA MOVE</td>
<td>85h</td>
<td>5</td>
<td>Optional</td>
<td>10h</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Block Lock Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK UNLOCK LOW</td>
<td>23h</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>BLOCK UNLOCK HIGH</td>
<td>24h</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>BLOCK LOCK</td>
<td>2Ah</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>BLOCK LOCK-TIGHT</td>
<td>2Ch</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>BLOCK LOCK READ STATUS</td>
<td>7Ah</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>One-Time Programmable (OTP) Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTP DATA LOCK BY PAGE (ONFI)</td>
<td>80h</td>
<td>5</td>
<td>No</td>
<td>10h</td>
<td>No</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>OTP DATA PROGRAM (ONFI)</td>
<td>80h</td>
<td>5</td>
<td>Yes</td>
<td>10h</td>
<td>No</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>OTP DATA READ (ONFI)</td>
<td>00h</td>
<td>5</td>
<td>No</td>
<td>30h</td>
<td>No</td>
<td>No</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
1. Busy means RDY = 0.
2. These commands can be used for interleaved die (multi-LUN) operations (see (page 0)).
3. Do not cross plane address boundaries when using READ for INTERNAL DATA MOVE and PROGRAM for INTERNAL DATA MOVE.
4. These commands supported only with ECC disabled.
5. Issuing a READ PAGE CACHE series (31h, 00h-31h, 3Fh) command when the array is busy (RDY = 1, ARDY = 0) is supported if the previous command was a READ PAGE (00h-30h) or READ PAGE CACHE series command; otherwise, it is prohibited.
6. Issuing a PROGRAM PAGE CACHE (80h-15h) command when the array is busy (RDY = 1, ARDY = 0) is supported if the previous command was a PROGRAM PAGE CACHE (80h-15h) command; otherwise, it is prohibited.
7. OTP commands can be entered only after issuing the SET FEATURES command with the feature address.
Table 6: Two-Plane Command Set

Note 4 applies to all parameters and conditions

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Cycle #1</th>
<th>Number of Valid Address Cycles</th>
<th>Command Cycle #2</th>
<th>Number of Valid Address Cycles</th>
<th>Command Cycle #3</th>
<th>Valid While Selected LUN is Busy</th>
<th>Valid While Other LUNs are Busy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ PAGE TWO-PLANE</td>
<td>00h</td>
<td>5</td>
<td>00h</td>
<td>5</td>
<td>30h</td>
<td>No</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>READ FOR TWO-PLANE INTERNAL DATA MOVE</td>
<td>00h</td>
<td>5</td>
<td>00h</td>
<td>5</td>
<td>35h</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>RANDOM DATA READ TWO-PLANE</td>
<td>06h</td>
<td>5</td>
<td>E0h</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>PROGRAM PAGE TWO-PLANE</td>
<td>80h</td>
<td>5</td>
<td>11h-80h</td>
<td>5</td>
<td>10h</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE CACHE MODE TWO-PLANE</td>
<td>80h</td>
<td>5</td>
<td>11h-80h</td>
<td>5</td>
<td>15h</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PROGRAM FOR TWO-PLANE INTERNAL DATA MOVE</td>
<td>85h</td>
<td>5</td>
<td>11h-85h</td>
<td>5</td>
<td>10h</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>BLOCK ERASE TWO-PLANE</td>
<td>60h</td>
<td>3</td>
<td>D1h-60h</td>
<td>–</td>
<td>D0h</td>
<td>No</td>
<td>Yes</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes:
1. Do not cross plane boundaries when using READ FOR INTERNAL DATA MOVE TWO-PLANE or PROGRAM FOR TWO-PLANE INTERNAL DATA MOVE.
2. The RANDOM DATA READ TWO-PLANE command is limited to use with the PAGE READ TWO-PLANE command.
3. D1h command can be omitted.
4. These commands supported only with ECC disabled.
Reset Operations

RESET (FFh)

The RESET command is used to put the memory device into a known condition and to abort the command sequence in progress.

READ, PROGRAM, and ERASE commands can be aborted while the device is in the busy state. The contents of the memory location being programmed or the block being erased are no longer valid. The data may be partially erased or programmed, and is invalid. The command register is cleared and is ready for the next command. The data register and cache register contents are marked invalid.

The status register contains the value E0h when WP# is HIGH; otherwise it is written with a 60h value. R/B# goes LOW for tRST after the RESET command is written to the command register.

The RESET command must be issued to all CE#s as the first command after power-on. The device will be busy for a maximum of 1ms.

Figure 24: RESET (FFh) Operation

![RESET (FFh) Operation Diagram]
Identification Operations

READ ID (90h)

The READ ID (90h) command is used to read identifier codes programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing 90h to the command register puts the target in read ID mode. The target stays in this mode until another valid command is issued.

When the 90h command is followed by an 00h address cycle, the target returns a 5-byte identifier code that includes the manufacturer ID, device configuration, and part-specific information.

When the 90h command is followed by a 20h address cycle, the target returns the 4-byte ONFI identifier code.

Figure 25: READ ID (90h) with 00h Address Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>90h</td>
<td>00h</td>
<td>Byte 0</td>
<td>Byte 1</td>
<td>Byte 2</td>
<td>Byte 3</td>
<td>Byte 4</td>
</tr>
</tbody>
</table>

Note: 1. See the READ ID Parameter tables for byte definitions.

Figure 26: READ ID (90h) with 20h Address Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
<th>DOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>90h</td>
<td>20h</td>
<td>4Fh</td>
<td>4Eh</td>
<td>46h</td>
<td>49h</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. See READ ID Parameter tables for byte definitions.
READ ID Parameter Tables

Table 7: READ ID Parameters for Address 00h

b = binary; h = hexadecimal

<table>
<thead>
<tr>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0 – Manufacturer ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Micron</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2Ch</td>
</tr>
<tr>
<td>Byte 1 – Device ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT29F1G08ABAEAA 1Gb, x8, 3.3V</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>F1h</td>
<td></td>
</tr>
<tr>
<td>MT29F1G08ABBEAA 1Gb, x8, 1.8V</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A1h</td>
<td></td>
</tr>
<tr>
<td>MT29F1G16ABBEAA 1Gb, x16, 1.8V</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>B1h</td>
<td></td>
</tr>
<tr>
<td>Byte 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of die per CE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00b</td>
</tr>
<tr>
<td>Cell type</td>
<td>SLC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00b</td>
</tr>
<tr>
<td>Number of simultaneously programmed pages</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00b</td>
<td></td>
</tr>
<tr>
<td>Interleaved operations between multiple die</td>
<td>Not supported</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
<td></td>
</tr>
<tr>
<td>Cache programming</td>
<td>Supported</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1b</td>
</tr>
<tr>
<td>Byte value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT29F1G08ABAEAA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80h</td>
<td></td>
</tr>
<tr>
<td>MT29F1G08ABBEAA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80h</td>
<td></td>
</tr>
<tr>
<td>MT29F1G16ABBEAA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80h</td>
<td></td>
</tr>
<tr>
<td>Byte 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page size</td>
<td>2KB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>01b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spare area size (bytes)</td>
<td>64B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block size (without spare)</td>
<td>128KB</td>
<td>0</td>
<td>1</td>
<td>01b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>x8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x16</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial access (MIN)</td>
<td>1.8V</td>
<td>25ns</td>
<td>0</td>
<td></td>
<td></td>
<td>0xxx0b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3V</td>
<td>20ns</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>1xxx0b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT29F1G08ABAEAA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>95h</td>
</tr>
<tr>
<td>MT29F1G08ABBEAA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>15h</td>
</tr>
<tr>
<td>MT29F1G16ABBEAA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>55h</td>
</tr>
<tr>
<td>Byte 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00b</td>
</tr>
<tr>
<td>Planes per CE#1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01b</td>
<td></td>
</tr>
<tr>
<td>Plane size</td>
<td>512Mb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>000b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
</tr>
</tbody>
</table>
Table 7: READ ID Parameters for Address 00h (Continued)

b = binary; *h* = hexadecimal

<table>
<thead>
<tr>
<th>Byte value</th>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT29F1G08ABAEAE</td>
<td>0 0 0 0 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04h</td>
</tr>
<tr>
<td>MT29F1G08ABBEAE</td>
<td>0 0 0 0 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04h</td>
</tr>
<tr>
<td>MT29F1G16ABBEAE</td>
<td>0 0 0 0 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04h</td>
</tr>
</tbody>
</table>

Note: 1. Only single-plane operations are supported.

Table 8: READ ID Parameters for Address 20h

h = hexadecimal

<table>
<thead>
<tr>
<th>Byte</th>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>“O”</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4Fh</td>
</tr>
<tr>
<td>1</td>
<td>“N”</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4Eh</td>
</tr>
<tr>
<td>2</td>
<td>“F”</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>46h</td>
</tr>
<tr>
<td>3</td>
<td>“I”</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>49h</td>
</tr>
<tr>
<td>4</td>
<td>Undefined</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>XXh</td>
</tr>
</tbody>
</table>
READ PARAMETER PAGE (ECh)

The READ PARAMETER PAGE (ECh) command is used to read the ONFI parameter page programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing ECh to the command register puts the target in read parameter page mode. The target stays in this mode until another valid command is issued.

When the ECh command is followed by an 00h address cycle, the target goes busy for \(t_R \). If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode. Use of the READ STATUS ENHANCED (78h) command is prohibited while the target is busy and during data output.

To insure data integrity, x8 devices contain at least eight copies of the parameter page, and x16 devices contain at least four copies of the parameter page. Each parameter page is 256 bytes. If the initial READ PARAMETER PAGE (ECh) command fails to retrieve a correct copy of the parameter page, the command can be reissued until a correct copy is retrieved. If desired, the RANDOM DATA READ (05h-E0h) command can be used to change the location of data output.

Figure 27: READ PARAMETER (ECh) Operation
Table 9: Parameter Page Data Structure

h = hexadecimal

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3</td>
<td>Parameter page signature</td>
<td>4Fh, 4Eh, 46h, 49h</td>
</tr>
<tr>
<td>4–5</td>
<td>Revision number</td>
<td>02h, 00h</td>
</tr>
<tr>
<td>6–7</td>
<td>Features supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABAEAWP</td>
<td>10h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEAHC</td>
<td>10h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G16ABBEEAHC</td>
<td>11h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEA4</td>
<td>10h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G16ABBEEA4</td>
<td>11h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEA3W</td>
<td>10h, 00h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEA3W</td>
<td>11h, 00h</td>
</tr>
<tr>
<td>8–9</td>
<td>Optional commands supported</td>
<td>3Fh, 00h</td>
</tr>
<tr>
<td>10–31</td>
<td>Reserved</td>
<td>00h, 00h, 00h</td>
</tr>
<tr>
<td>32–43</td>
<td>Device manufacturer</td>
<td>4Dh, 49h, 43h, 52h, 4Fh, 4Eh, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td>44–63</td>
<td>Device model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABAEAWP</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 41h, 45h, 41h, 45h, 41h, 57h, 50h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEAHC</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 42h, 45h, 41h, 48h, 43h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G16ABBEEAHC</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 31h, 36h, 41h, 42h, 42h, 45h, 41h, 48h, 43h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEA4</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 42h, 45h, 41h, 48h, 43h, 34h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G16ABBEEA4</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 31h, 36h, 41h, 42h, 42h, 45h, 41h, 48h, 43h, 34h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABAEA4</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 41h, 45h, 41h, 48h, 34h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABAEA3W</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 41h, 45h, 41h, 33h, 57h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G08ABBEEA3W</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 30h, 38h, 41h, 42h, 42h, 45h, 41h, 33h, 57h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td></td>
<td>MT29F1G16ABBEEA3W</td>
<td>4Dh, 54h, 32h, 39h, 46h, 31h, 47h, 31h, 36h, 41h, 42h, 42h, 45h, 41h, 33h, 57h, 20h, 20h, 20h, 20h</td>
</tr>
<tr>
<td>64</td>
<td>Manufacturer ID</td>
<td>2Ch</td>
</tr>
<tr>
<td>65–66</td>
<td>Date code</td>
<td>00h, 00h</td>
</tr>
<tr>
<td>67–79</td>
<td>Reserved</td>
<td>00h, 00h, 00h</td>
</tr>
</tbody>
</table>
Table 9: Parameter Page Data Structure (Continued)

h = hexadecimal

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80–83</td>
<td>Number of data bytes per page</td>
<td>00h, 08h, 00h, 00h</td>
</tr>
<tr>
<td>84–85</td>
<td>Number of spare bytes per page</td>
<td>40h, 00h</td>
</tr>
<tr>
<td>86–89</td>
<td>Number of data bytes per partial page</td>
<td>00h, 02h, 00h, 00h</td>
</tr>
<tr>
<td>90–91</td>
<td>Number of spare bytes per partial page</td>
<td>10h, 00h</td>
</tr>
<tr>
<td>92–95</td>
<td>Number of pages per block</td>
<td>40h, 00h, 00h, 00h</td>
</tr>
<tr>
<td>96–99</td>
<td>Number of blocks per unit</td>
<td>00h, 04h, 00h, 00h</td>
</tr>
<tr>
<td>100</td>
<td>Number of logical units</td>
<td>01h</td>
</tr>
<tr>
<td>101</td>
<td>Number of address cycles</td>
<td>22h</td>
</tr>
<tr>
<td>102</td>
<td>Number of bits per cell</td>
<td>01h</td>
</tr>
<tr>
<td>103–104</td>
<td>Bad blocks maximum per unit</td>
<td>14h, 00h</td>
</tr>
<tr>
<td>105–106</td>
<td>Block endurance</td>
<td>01h, 05h</td>
</tr>
<tr>
<td>107</td>
<td>Guaranteed valid blocks at beginning of target</td>
<td>01h</td>
</tr>
<tr>
<td>108–109</td>
<td>Block endurance for guaranteed valid blocks</td>
<td>00h, 00h</td>
</tr>
<tr>
<td>110</td>
<td>Number of programs per page</td>
<td>04h</td>
</tr>
<tr>
<td>111</td>
<td>Partial programming attributes</td>
<td>00h</td>
</tr>
<tr>
<td>112</td>
<td>Number of bits ECC bits</td>
<td>04h</td>
</tr>
<tr>
<td>113</td>
<td>Number of interleaved address bits</td>
<td>00h</td>
</tr>
<tr>
<td>114</td>
<td>Interleaved operation attributes</td>
<td>00h</td>
</tr>
<tr>
<td>115–127</td>
<td>Reserved</td>
<td>00h, 00h, 00h</td>
</tr>
<tr>
<td>128</td>
<td>I/O pin capacitance</td>
<td>0Ah</td>
</tr>
<tr>
<td>129–130</td>
<td>Timing mode support</td>
<td>MT29F1G08ABAEAWP 3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH C 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G16ABBEAH C 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G16ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABAEAH4 3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABAE3W 3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEA3W 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G16ABBEA3W 1Fh, 00h</td>
</tr>
</tbody>
</table>
Table 9: Parameter Page Data Structure (Continued)

h = hexadecimal

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>131–132</td>
<td>Program cache timing mode support</td>
<td>MT29F1G08ABAEAWP 3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAHC 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G16ABBEAHC 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G16ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH4 3Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F1G08ABBEAH4 1Fh, 00h</td>
</tr>
<tr>
<td>133–134</td>
<td>¹PROG (MAX) page program time</td>
<td>58h, 02h</td>
</tr>
<tr>
<td>135–136</td>
<td>²BERS (MAX) block erase time</td>
<td>B8h, 0Bh</td>
</tr>
<tr>
<td>137–138</td>
<td>³R (MAX) page read time</td>
<td>19h, 00h</td>
</tr>
<tr>
<td>139–140</td>
<td>⁴CCS (MIN)</td>
<td>64h, 00h</td>
</tr>
<tr>
<td>141–163</td>
<td>Reserved</td>
<td>00h, 00h, 00h</td>
</tr>
<tr>
<td>164–165</td>
<td>Vendor-specific revision number</td>
<td>01h, 00h</td>
</tr>
<tr>
<td>166–253</td>
<td>Vendor-specific</td>
<td>01h, 00h, 00h, 02h, 04h, 08h, 01h, 01h, 04h, 01h, 02h, 01h, 0Ah, 00h, 00h</td>
</tr>
<tr>
<td>254–255</td>
<td>Integrity CRC</td>
<td>Set at test</td>
</tr>
<tr>
<td>256–511</td>
<td>Value of bytes 0–255</td>
<td></td>
</tr>
<tr>
<td>512–767</td>
<td>Value of bytes 0–255</td>
<td></td>
</tr>
<tr>
<td>768+</td>
<td>Additional redundant parameter pages</td>
<td></td>
</tr>
</tbody>
</table>
READ UNIQUE ID (EDh)

The READ UNIQUE ID (EDh) command is used to read a unique identifier programmed into the target. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing EDh to the command register puts the target in read unique ID mode. The target stays in this mode until another valid command is issued.

When the EDh command is followed by an 00h address cycle, the target goes busy for \(t_R \). If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode.

After \(t_R \) completes, the host enables data output mode to read the unique ID. When the asynchronous interface is active, one data byte is output per RE# toggle.

Sixteen copies of the unique ID data are stored in the device. Each copy is 32 bytes. The first 16 bytes of a 32-byte copy are unique data, and the second 16 bytes are the complement of the first 16 bytes. The host should XOR the first 16 bytes with the second 16 bytes. If the result is 16 bytes of FFh, then that copy of the unique ID data is correct. In the event that a non-FFh result is returned, the host can repeat the XOR operation on a subsequent copy of the unique ID data. If desired, the RANDOM DATA READ (05h-E0h) command can be used to change the data output location.

The upper eight I/Os on a x16 device are not used and are a “Don’t Care” for x16 devices.

Figure 28: READ UNIQUE ID (EDh) Operation
Feature Operations

The SET FEATURES (EFh) and GET FEATURES (EEh) commands are used to modify the target’s default power-on behavior. These commands use a one-byte feature address to determine which subfeature parameters will be read or modified. Each feature address (in the 00h to FFh range) is defined in below. The SET FEATURES (EFh) command writes subfeature parameters (P1–P4) to the specified feature address. The GET FEATURES command reads the subfeature parameters (P1–P4) at the specified feature address.

Table 10: Feature Address Definitions

<table>
<thead>
<tr>
<th>Feature Address</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Reserved</td>
</tr>
<tr>
<td>01h</td>
<td>Timing mode</td>
</tr>
<tr>
<td>02h–7Fh</td>
<td>Reserved</td>
</tr>
<tr>
<td>80h</td>
<td>Programmable output drive strength</td>
</tr>
<tr>
<td>81h</td>
<td>Programmable RB# pull-down strength</td>
</tr>
<tr>
<td>82h–FFh</td>
<td>Reserved</td>
</tr>
<tr>
<td>90h</td>
<td>Array operation mode</td>
</tr>
</tbody>
</table>

Table 11: Feature Address 90h – Array Operation Mode

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Operation mode option</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTP operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTP protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. These bits are reset to 00h on power cycle.

SET FEATURES (EFh)

The SET FEATURES (EFh) command writes the subfeature parameters (P1–P4) to the specified feature address to enable or disable target-specific features. This command is accepted by the target only when all die (LUNs) on the target are idle.
Writing EFh to the command register puts the target in the set features mode. The target stays in this mode until another command is issued.

The EFh command is followed by a valid feature address. The host waits for \(t_{\text{ADL}} \) before the subfeature parameters are input. When the asynchronous interface is active, one subfeature parameter is latched per rising edge of WE#.

After all four subfeature parameters are input, the target goes busy for \(t_{\text{FEAT}} \). The READ STATUS (70h) command can be used to monitor for command completion.

Feature address 01h (timing mode) operation is unique. If SET FEATURES is used to modify the interface type, the target will be busy for \(t_{\text{ITC}} \).

Figure 29: SET FEATURES (EFh) Operation

GET FEATURES (EEh)

The GET FEATURES (EEh) command reads the subfeature parameters (P1–P4) from the specified feature address. This command is accepted by the target only when all die (LUNs) on the target are idle.

Writing EEh to the command register puts the target in get features mode. The target stays in this mode until another valid command is issued.

When the EEh command is followed by a feature address, the target goes busy for \(t_{\text{FEAT}} \). If the READ STATUS (70h) command is used to monitor for command completion, the READ MODE (00h) command must be used to re-enable data output mode. During and prior to data output, use of the READ STATUS ENHANCED (78h) command is prohibited prior to and during data output.

After \(t_{\text{FEAT}} \) completes, the host enables data output mode to read the subfeature parameters.

Figure 30: GET FEATURES (EEh) Operation
Table 12: Feature Addresses 01h: Timing Mode

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>Timing mode</td>
<td>Mode 0 (default)</td>
<td>Reserved (0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td>1, 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 1</td>
<td>Reserved (0)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01h</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 2</td>
<td>Reserved (0)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>02h</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 3</td>
<td>Reserved (0)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>03h</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 4</td>
<td>Reserved (0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>04h</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode 5</td>
<td>Reserved (0)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>05h</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00h</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. The timing mode feature address is used to change the default timing mode. The timing mode should be selected to indicate the maximum speed at which the device will receive commands, addresses, and data cycles. The five supported settings for the timing mode are shown. The default timing mode is mode 0. The device returns to mode 0 when the device is power cycled. Supported timing modes are reported in the parameter page.
2. Supported for both 1.8V and 3.3V.
3. Supported for 3.3V only.
Table 13: Feature Addresses 80h: Programmable I/O Drive Strength

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>I/O drive strength</td>
<td>Full (default)</td>
<td>Reserved (0)</td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three-quarters</td>
<td>Reserved (0)</td>
<td>0</td>
<td>1</td>
<td>01h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-half</td>
<td>Reserved (0)</td>
<td>1</td>
<td>0</td>
<td>02h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-quarter</td>
<td>Reserved (0)</td>
<td>1</td>
<td>1</td>
<td>03h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The programmable drive strength feature address is used to change the default I/O drive strength. Drive strength should be selected based on expected loading of the memory bus. This table shows the four supported output drive strength settings. The default drive strength is full strength. The device returns to the default drive strength mode when the device is power cycled. AC timing parameters may need to be relaxed if I/O drive strength is not set to full.

Table 14: Feature Addresses 81h: Programmable R/B# Pull-Down Strength

<table>
<thead>
<tr>
<th>Subfeature Parameter</th>
<th>Options</th>
<th>I/07</th>
<th>I/06</th>
<th>I/05</th>
<th>I/04</th>
<th>I/03</th>
<th>I/02</th>
<th>I/01</th>
<th>I/00</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>R/B# pull-down strength</td>
<td>Full (default)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>00h</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three-quarters</td>
<td></td>
<td>0</td>
<td>1</td>
<td>01h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-half</td>
<td></td>
<td>1</td>
<td>0</td>
<td>02h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One-quarter</td>
<td></td>
<td>1</td>
<td>1</td>
<td>03h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. This feature address is used to change the default R/B# pull-down strength. Its strength should be selected based on the expected loading of R/B#. Full strength is the default, power-on value.
Status Operations

Each die (LUN) provides its status independently of other die (LUNs) on the same target through its 8-bit status register.

After the READ STATUS (70h) or READ STATUS ENHANCED (78h) command is issued, status register output is enabled. The contents of the status register are returned on I/O[7:0] for each data output request.

When the asynchronous interface is active and status register output is enabled, changes in the status register are seen on I/O[7:0] as long as CE# and RE# are LOW; it is not necessary to toggle RE# to see the status register update.

While monitoring the status register to determine when a data transfer from the Flash array to the data register (\(TR\)) is complete, the host must issue the READ MODE (00h) command to disable the status register and enable data output (see Read Operations).

The READ STATUS (70h) command returns the status of the most recently selected die (LUN). To prevent data contention during or following an interleaved die (multi-LUN) operation, the host must enable only one die (LUN) for status output by using the READ STATUS ENHANCED (78h) command (see Interleaved Die (Multi-LUN) Operations).

Table 15: Status Register Definition

<table>
<thead>
<tr>
<th>SR Bit</th>
<th>Program Page</th>
<th>Program Page Cache Mode</th>
<th>Page Read</th>
<th>Page Read Cache Mode</th>
<th>Block Erase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Write protect</td>
<td>Write protect</td>
<td>Write protect</td>
<td>Write protect</td>
<td>0 = Protected</td>
<td>0 = Protected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Not protected</td>
<td>1 = Not protected</td>
</tr>
<tr>
<td>6</td>
<td>RDY</td>
<td>RDY cache(^1)</td>
<td>RDY</td>
<td>RDY cache(^1)</td>
<td>RDY</td>
<td>0 = Busy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Ready</td>
<td>1 = Ready</td>
</tr>
<tr>
<td>5</td>
<td>ARDY</td>
<td>ARDY(^2)</td>
<td>ARDY</td>
<td>ARDY(^2)</td>
<td>ARDY</td>
<td>0 = Busy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Ready</td>
<td>1 = Ready</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Reserved (0)</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>FAILC (N−1)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 = Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Fail</td>
</tr>
<tr>
<td>0</td>
<td>FAIL</td>
<td>FAIL (N)</td>
<td>–</td>
<td>–</td>
<td>FAIL</td>
<td>0 = Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Fail</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Status register bit 6 is 1 when the cache is ready to accept new data. R/B# follows bit 6.
2. Status register bit 5 is 0 during the actual programming operation. If cache mode is used, this bit will be 1 when all internal operations are complete.

READ STATUS (70h)

The READ STATUS (70h) command returns the status of the last-selected die (LUN) on a target. This command is accepted by the last-selected die (LUN) even when it is busy (RDY = 0).

If there is only one die (LUN) per target, the READ STATUS (70h) command can be used to return status following any NAND command.
In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select the die (LUN) that should report status. In this situation, using the READ STATUS (70h) command will result in bus contention, as two or more die (LUNs) could respond until the next operation is issued. The READ STATUS (70h) command can be used following all single-die (LUN) operations.

Figure 31: READ STATUS (70h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>D_OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>70h</td>
<td></td>
</tr>
</tbody>
</table>

READ STATUS ENHANCED (78h)

The READ STATUS ENHANCED (78h) command returns the status of the addressed die (LUN) on a target even when it is busy (RDY = 0). This command is accepted by all die (LUNs), even when they are BUSY (RDY = 0).

Writing 78h to the command register, followed by three row address cycles containing the page, block, and LUN addresses, puts the selected die (LUN) into read status mode. The selected die (LUN) stays in this mode until another valid command is issued. Die (LUNs) that are not addressed are deselected to avoid bus contention.

The selected LUN’s status is returned when the host requests data output. The RDY and ARDY bits of the status register are shared for all planes on the selected die (LUN). The FAILC and FAIL bits are specific to the plane specified in the row address.

The READ STATUS ENHANCED (78h) command also enables the selected die (LUN) for data output. To begin data output following a READ-series operation after the selected die (LUN) is ready (RDY = 1), issue the READ MODE (00h) command, then begin data output. If the host needs to change the cache register that will output data, use the RANDOM DATA READ TWO-PLANE (06h-E0h) command after the die (LUN) is ready.

Use of the READ STATUS ENHANCED (78h) command is prohibited during the power-on RESET (FFh) command and when OTP mode is enabled. It is also prohibited following some of the other reset, identification, and configuration operations. See individual operations for specific details.

Figure 32: READ STATUS ENHANCED (78h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>D_OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/Ox</td>
<td>78h</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td></td>
</tr>
</tbody>
</table>
Column Address Operations

The column address operations affect how data is input to and output from the cache registers within the selected die (LUNs). These features provide host flexibility for managing data, especially when the host internal buffer is smaller than the number of data bytes or words in the cache register.

When the asynchronous interface is active, column address operations can address any byte in the selected cache register.

RANDOM DATA READ (05h-E0h)

The RANDOM DATA READ (05h-E0h) command changes the column address of the selected cache register and enables data output from the last selected die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during CACHE READ operations (RDY = 1; ARDY = 0).

Writing 05h to the command register, followed by two column address cycles containing the column address, followed by the E0h command, puts the selected die (LUN) into data output mode. After the E0h command cycle is issued, the host must wait at least tWHR before requesting data output. The selected die (LUN) stays in data output mode until another valid command is issued.

In devices with more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be issued prior to issuing the RANDOM DATA READ (05h-E0h). In this situation, using the RANDOM DATA READ (05h-E0h) command without the READ STATUS ENHANCED (78h) command will result in bus contention because two or more die (LUNs) could output data.

Figure 33: RANDOM DATA READ (05h-E0h) Operation
RANDOM DATA READ TWO-PLANE (06h-E0h)

The RANDOM DATA READ TWO-PLANE (06h-E0h) command enables data output on the addressed die’s (LUN’s) cache register at the specified column address. This command is accepted by a die (LUN) when it is ready (RDY = 1; ARDY = 1).

Writing 06h to the command register, followed by two column address cycles and three row address cycles, followed by E0h, enables data output mode on the address LUN’s cache register at the specified column address. After the E0h command cycle is issued, the host must wait at least t_{WHR} before requesting data output. The selected die (LUN) stays in data output mode until another valid command is issued.

Following a two-plane read page operation, the RANDOM DATA READ TWO-PLANE (06h-E0h) command is used to select the cache register to be enabled for data output. After data output is complete on the selected plane, the command can be issued again to begin data output on another plane.

In devices with more than one die (LUN) per target, after all of the die (LUNs) on the target are ready (RDY = 1), the RANDOM DATA READ TWO-PLANE (06h-E0h) command can be used following an interleaved die (multi-LUN) read operation. Die (LUNs) that are not addressed are deselected to avoid bus contention.

In devices with more than one die (LUN) per target, during interleaved die (multi-LUN) operations where more than one or more die (LUNs) are busy (RDY = 1; ARDY = 0 or RDY = 0; ARDY = 0), the READ STATUS ENHANCED (78h) command must be issued to the die (LUN) to be selected prior to issuing the RANDOM DATA READ TWO-PLANE (06h-E0h). In this situation, using the RANDOM DATA READ TWO-PLANE (06h-E0h) command without the READ STATUS ENHANCED (78h) command will result in bus contention, as two or more die (LUNs) could output data.

If there is a need to update the column address without selecting a new cache register or LUN, the RANDOM DATA READ (05h-E0h) command can be used instead.

Figure 34: RANDOM DATA READ TWO-PLANE (06h-E0h) Operation
The RANDOM DATA INPUT (85h) command changes the column address of the selected cache register and enables data input on the last-selected die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during cache program operations (RDY = 1; ARDY = 0).

Writing 85h to the command register, followed by two column address cycles containing the column address, puts the selected die (LUN) into data input mode. After the second address cycle is issued, the host must wait at least t_{ADL} before inputting data. The selected die (LUN) stays in data input mode until another valid command is issued. Though data input mode is enabled, data input from the host is optional. Data input begins at the column address specified.

The RANDOM DATA INPUT (85h) command is allowed after the required address cycles are specified, but prior to the final command cycle (10h, 11h, 15h) of the following commands while data input is permitted: PROGRAM PAGE (80h-10h), PROGRAM PAGE CACHE (80h-15h), PROGRAM FOR INTERNAL DATA MOVE (85h-10h), and PROGRAM FOR TWO-PLANE INTERNAL DATA MOVE (85h-11h).

In devices that have more than one die (LUN) per target, the RANDOM DATA INPUT (85h) command can be used with other commands that support interleaved die (multi-LUN) operations.

Figure 35: RANDOM DATA INPUT (85h) Operation
The PROGRAM FOR INTERNAL DATA INPUT (85h) command changes the row address (block and page) where the cache register contents will be programmed in the NAND Flash array. It also changes the column address of the selected cache register and enables data input on the specified die (LUN). This command is accepted by the selected die (LUN) when it is ready (RDY = 1; ARDY = 1). It is also accepted by the selected die (LUN) during cache programming operations (RDY = 1; ARDY = 0).

Write 85h to the command register. Then write two column address cycles and three row address cycles. This updates the page and block destination of the selected device for the addressed LUN and puts the cache register into data input mode. After the fifth address cycle is issued the host must wait at least \(t_{ADL} \) before inputting data. The selected LUN stays in data input mode until another valid command is issued. Though data input mode is enabled, data input from the host is optional. Data input begins at the column address specified.

The PROGRAM FOR INTERNAL DATA INPUT (85h) command is allowed after the required address cycles are specified, but prior to the final command cycle (10h, 11h, 15h) of the following commands while data input is permitted: PROGRAM PAGE (80h-10h), PROGRAM PAGE TWO-PLANE (80h-11h), PROGRAM PAGE CACHE (80h-15h), PROGRAM FOR INTERNAL DATA MOVE (85h-10h), and PROGRAM FOR TWO-PLANE INTERNAL DATA MOVE (85h-11h). When used with these commands, the LUN address and plane select bits are required to be identical to the LUN address and plane select bits originally specified.

The PROGRAM FOR INTERNAL DATA INPUT (85h) command enables the host to modify the original page and block address for the data in the cache register to a new page and block address.

In devices that have more than one die (LUN) per target, the PROGRAM FOR INTERNAL DATA INPUT (85h) command can be used with other commands that support interleaved die (multi-LUN) operations.

The PROGRAM FOR INTERNAL DATA INPUT (85h) command can be used with the RANDOM DATA READ (05h-E0h) or RANDOM DATA READ TWO-PLANE (06h-E0h) commands to read and modify cache register contents in small sections prior to programming cache register contents to the NAND Flash array. This capability can reduce the amount of buffer memory used in the host controller.

The RANDOM DATA INPUT (85h) command can be used during the PROGRAM FOR INTERNAL DATA MOVE command sequence to modify one or more bytes of the original data. First, data is copied into the cache register using the 00h-35h command sequence, then the RANDOM DATA INPUT (85h) command is written along with the address of the data to be modified next. New data is input on the external data pins. This copies the new data into the cache register.
Figure 36: PROGRAM FOR INTERNAL DATA INPUT (85h) Operation

Micron Confidential and Proprietary
The READ PAGE (00h-30h) command, when issued by itself, reads one page from the NAND Flash array to its cache register and enables data output for that cache register.

During data output the following commands can be used to read and modify the data in the cache registers: RANDOM DATA READ (05h-E0h) and RANDOM DATA INPUT (85h).

Read Cache Operations

To increase data throughput, the READ PAGE CACHE series (31h, 00h-31h) commands can be used to output data from the cache register while concurrently copying a page from the NAND Flash array to the data register.

To begin a read page cache sequence, begin by reading a page from the NAND Flash array to its corresponding cache register using the READ PAGE (00h-30h) command. R/B# goes LOW during t_R and the selected die (LUN) is busy (RDY = 0, ARDY = 0). After t^1_{R} (R/B# is HIGH and RDY = 1, ARDY = 1), issue either of these commands:

- **READ PAGE CACHE SEQUENTIAL (31h)** – copies the next sequential page from the NAND Flash array to the data register
- **READ PAGE CACHE RANDOM (00h-31h)** – copies the page specified in this command from the NAND Flash array to its corresponding data register

After the READ PAGE CACHE series (31h, 00h-31h) command has been issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for t_{RCBSY} while the next page begins copying data from the array to the data register. After t_{RCBSY}, R/B# goes HIGH and the die’s (LUN’s) status register bits indicate the device is busy with a cache operation (RDY = 1, ARDY = 0). The cache register becomes available and the page requested in the READ PAGE CACHE operation is transferred to the data register. At this point, data can be output from the cache register, beginning at column address 0. The RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data output by the die (LUN).

After outputting the desired number of bytes from the cache register, either an additional READ PAGE CACHE series (31h, 00h-31h) operation can be started or the READ PAGE CACHE LAST (3Fh) command can be issued.

If the READ PAGE CACHE LAST (3Fh) command is issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for t_{RCBSY} while the data register is copied into the cache register. After t_{RCBSY}, R/B# goes HIGH and RDY = 1 and ARDY = 1, indicating that the cache register is available and that the die (LUN) is ready. Data can then be output from the cache register, beginning at column address 0. The RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data being output.

For READ PAGE CACHE series (31h, 00h-31h, 3Fh), during the die (LUN) busy time, t_{RCBSY}, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and RESET (FFh). When RDY = 1 and ARDY = 0, the only valid commands during READ PAGE CACHE series (31h, 00h-31h) operations are status operations (70h, 78h), READ MODE (00h), READ PAGE CACHE series (31h, 00h-31h), RANDOM DATA READ (05h-E0h), and RESET (FFh).
Two-Plane Read Operations

Two-plane read page operations improve data throughput by copying data from more than one plane simultaneously to the specified cache registers. This is done by prepending one or more READ PAGE TWO-PLANE (00h-00h-30h) commands in front of the READ PAGE (00h-30h) command.

When the die (LUN) is ready, the RANDOM DATA READ TWO-PLANE (06h-E0h) command determines which plane outputs data. During data output, the following commands can be used to read and modify the data in the cache registers: RANDOM DATA READ (05h-E0h) and RANDOM DATA INPUT (85h).

Two-Plane Read Cache Operations

Two-plane read cache operations can be used to output data from more than one cache register while concurrently copying one or more pages from the NAND Flash array to the data register. This is done by prepending READ PAGE TWO-PLANE (00h-00h-30h) commands in front of the PAGE READ CACHE RANDOM (00h-31h) command.

To begin a two-plane read page cache sequence, begin by issuing a READ PAGE TWO-PLANE operation using the READ PAGE TWO-PLANE (00h-00h-30h) and READ PAGE (00h-30h) commands. R/B# goes LOW during tR and the selected die (LUN) is busy (RDY = 0, ARDY = 0). After tR (R/B# is HIGH and RDY = 1, ARDY = 1), issue either of these commands:

- READ PAGE CACHE SEQUENTIAL (31h) – copies the next sequential pages from the previously addressed planes from the NAND Flash array to the data registers.
- READ PAGE TWO-PLANE (00h-00h-30h) [in some cases, followed by READ PAGE CACHE RANDOM (00h-31h)] – copies the pages specified from the NAND Flash array to the corresponding data registers.

After the READ PAGE CACHE series (31h, 00h-31h) command has been issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the next pages begin copying data from the array to the data registers. After tRCBSY, R/B# goes HIGH and the LUN’s status register bits indicate the device is busy with a cache operation (RDY = 1, ARDY = 0). The cache registers become available and the pages requested in the READ PAGE CACHE operation are transferred to the data registers. Issue the RANDOM DATA READ TWO-PLANE (06h-E0h) command to determine which cache register will output data. After data is output, the RANDOM DATA READ TWO-PLANE (06h-E0h) command can be used to output data from other cache registers. After a cache register has been selected, the RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data output.

After outputting data from the cache registers, either an additional TWO-PLANE READ CACHE series (31h, 00h-31h) operation can be started or the READ PAGE CACHE LAST (3Fh) command can be issued.

If the READ PAGE CACHE LAST (3Fh) command is issued, R/B# goes LOW on the target, and RDY = 0 and ARDY = 0 on the die (LUN) for tRCBSY while the data registers are copied into the cache registers. After tRCBSY, R/B# goes HIGH and RDY = 1 and ARDY = 1, indicating that the cache registers are available and that the die (LUN) is ready. Issue the RANDOM DATA READ TWO-PLANE (06h-E0h) command to determine which cache register will output data. After data is output, the RANDOM DATA READ TWO-PLANE (06h-E0h) command can be used to output data from other cache registers. After a cache register has been selected, the RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data output.
For READ PAGE CACHE series (31h, 00h-31h, 3Fh), during the die (LUN) busy time, RCBSY, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and RESET (FFh). When RDY = 1 and ARDY = 0, the only valid commands during READ PAGE CACHE series (31h, 00h-31h) operations are status operations (70h, 78h), READ MODE (00h), two-plane read cache series (31h, 00h-00h-30h, 00h-31h), RANDOM DATA READ (06h-E0h, 05h-E0h), and RESET (FFh).

READ MODE (00h)

The READ MODE (00h) command disables status output and enables data output for the last-selected die (LUN) and cache register after a READ operation (00h-30h, 00h-3Ah, 00h-35h) has been monitored with a status operation (70h, 78h). This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) prior to issuing the READ MODE (00h) command. This prevents bus contention.

READ PAGE (00h-30h)

The READ PAGE (00h-30h) command copies a page from the NAND Flash array to its respective cache register and enables data output. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To read a page from the NAND Flash array, write the 00h command to the command register, then write \(n \) address cycles to the address registers, and conclude with the 30h command. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for \(t_R \) as data is transferred.

To determine the progress of the data transfer, the host can monitor the target’s R/B# signal or, alternatively, the status operations (70h, 78h) can be used. If the status operations are used to monitor the LUN’s status, when the die (LUN) is ready (RDY = 1, ARDY = 1), the host disables status output and enables data output by issuing the READ MODE (00h) command. When the host requests data output, output begins at the column address specified.

During data output the RANDOM DATA READ (05h-E0h) command can be issued.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) prior to the issue of the READ MODE (00h) command. This prevents bus contention.

The READ PAGE (00h-30h) command is used as the final command of a two-plane read operation. It is preceded by one or more READ PAGE TWO-PLANE (00h-00h-30h) commands. Data is transferred from the NAND Flash array for all of the addressed planes to their respective cache registers. When the die (LUN) is ready (RDY = 1, ARDY = 1), data output is enabled for the cache register linked to the plane addressed in the READ PAGE (00h-30h) command. When the host requests data output, output begins at the column address last specified in the READ PAGE (00h-30h) command. The RANDOM DATA READ TWO-PLANE (06h-E0h) command is used to enable data output in the other cache registers.
Figure 37: READ PAGE (00h-30h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Command</td>
<td>Address</td>
<td>Address</td>
<td>Address</td>
<td>Address</td>
<td>Address</td>
<td>Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>OUT</td>
<td>D n+1</td>
<td>D n+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

READ PAGE CACHE SEQUENTIAL (31h)

The READ PAGE CACHE SEQUENTIAL (31h) command reads the next sequential page within a block into the data register while the previous page is output from the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue this command, write 31h to the command register. After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is busy with a cache operation (RDY = 1, ARDY = 0), indicating that the cache register is available and that the specified page is copying from the NAND Flash array to the data register. At this point, data can be output from the cache register beginning at column address 0. The RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data being output from the cache register.

The READ PAGE CACHE SEQUENTIAL (31h) command can be used to cross block boundaries. If the READ PAGE CACHE SEQUENTIAL (31h) command is issued after the last page of a block is read into the data register, the next page read will be the next logical block in which the 31h command was issued. Do not issue the READ PAGE CACHE SEQUENTIAL (31h) to cross die (LUN) boundaries. Instead, issue the READ PAGE CACHE LAST (3Fh) command.
Figure 38: READ PAGE CACHE SEQUENTIAL (31h) Operation

READ PAGE CACHE RANDOM (00h-31h)

The READ PAGE CACHE RANDOM (00h-31h) command reads the specified block and page into the data register while the previous page is output from the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue this command, write 00h to the command register, then write n address cycles to the address register, and conclude by writing 31h to the command register. The column address in the address specified is ignored. The die (LUN) address must match the same die (LUN) address as the previous READ PAGE (00h-30h) command or, if applicable, the previous READ PAGE CACHE RANDOM (00h-31h) command.

After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is busy with a cache operation (RDY = 1, ARDY = 0), indicating that the cache register is available and that the specified page is copying from the NAND Flash array to the data register. At this point, data can be output from the cache register beginning at column address 0. The RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data being output from the cache register.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command followed by the READ MODE (00h) command must be used to select only one die (LUN) and prevent bus contention.
Figure 39: READ PAGE CACHE RANDOM (00h-31h) Operation

Micron Confidential and Proprietary
READ PAGE CACHE LAST (3Fh)

The READ PAGE CACHE LAST (3Fh) command ends the read page cache sequence and copies a page from the data register to the cache register. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) during READ PAGE CACHE (31h, 00h-31h) operations (RDY = 1 and ARDY = 0).

To issue the READ PAGE CACHE LAST (3Fh) command, write 3Fh to the command register. After this command is issued, R/B# goes LOW and the die (LUN) is busy (RDY = 0, ARDY = 0) for tRCBSY. After tRCBSY, R/B# goes HIGH and the die (LUN) is ready (RDY = 1, ARDY = 1). At this point, data can be output from the cache register, beginning at column address 0. The RANDOM DATA READ (05h-E0h) command can be used to change the column address of the data being output from the cache register.

In devices that have more than one LUN per target, during and following interleaved die (multi-LUN) operations the READ STATUS ENHANCED (78h) command followed by the READ MODE (00h) command must be used to select only one die (LUN) and prevent bus contention.

Figure 40: READ PAGE CACHE LAST (3Fh) Operation
READ PAGE TWO-PLANE 00h-00h-30h

The READ PAGE TWO-PLANE (00h-00h-30h) operation is similar to the PAGE READ (00h-30h) operation. It transfers two pages of data from the NAND Flash array to the data registers. Each page must be from a different plane on the same die.

To enter the READ PAGE TWO-PLANE mode, write the 00h command to the command register, and then write five address cycles for plane 0 (BA6 = 0). Next, write the 00h command to the command register, and five address cycles for plane 1 (BA6 = 1). Finally, issue the 30h command. The first-plane and second-plane addresses must meet the two-plane addressing requirements, and, in addition, they must have identical column addresses.

After the 30h command is written, page data is transferred from both planes to their respective data registers in tR. During these transfers, R/B# goes LOW. When the transfers are complete, R/B# goes HIGH. To read out the data from the plane 0 data register, pulse RE# repeatedly. After the data cycle from the plane 0 address completes, issue a RANDOM DATA READ TWO-PLANE (06h-E0h) command to select the plane 1 address, then repeatedly pulse RE# to read out the data from the plane 1 data register.

Alternatively, the READ STATUS (70h) command can monitor data transfers. When the transfers are complete, status register bit 6 is set to 1. To read data from the first of the two planes, the user must first issue the RANDOM DATA READ TWO-PLANE (06h-E0h) command and pulse RE# repeatedly.

When the data cycle is complete, issue a RANDOM DATA READ TWO-PLANE (06h-E0h) command to select the other plane. To output the data beginning at the specified column address, pulse RE# repeatedly.

Use of the READ STATUS ENHANCED (78h) command is prohibited during and following a PAGE READ TWO-PLANE operation.
Figure 41: READ PAGE TWO-PLANE (00h-00h-30h) Operation
Program Operations

Program operations are used to move data from the cache or data registers to the NAND array. During a program operation the contents of the cache and/or data registers are modified by the internal control logic.

Within a block, pages must be programmed sequentially from the least significant page address to the most significant page address (0, 1, 2, …, 63). During a program operation, the contents of the cache and/or data registers are modified by the internal control logic.

Program Operations

The PROGRAM PAGE (80h-10h) command, when not preceded by the PROGRAM PAGE TWO-PLANE (80h-11h) command, programs one page from the cache register to the NAND Flash array. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that the operation has completed successfully.

Program Cache Operations

The PROGRAM PAGE CACHE (80h-15h) command can be used to improve program operation system performance. When this command is issued, the die (LUN) goes busy (RDY = 0, ARDY = 0) while the cache register contents are copied to the data register, and the die (LUN) is busy with a program cache operation (RDY = 1, ARDY = 0). While the contents of the data register are moved to the NAND Flash array, the cache register is available for an additional PROGRAM PAGE CACHE (80h-15h) or PROGRAM PAGE (80h-10h) command.

For PROGRAM PAGE CACHE series (80h-15h) operations, during the die (LUN) busy times, tCBSY and tLPROG, when RDY = 0 and ARDY = 0, the only valid commands are status operations (70h, 78h) and reset (FFh). When RDY = 1 and ARDY = 0, the only valid commands during PROGRAM PAGE CACHE series (80h-15h) operations are status operations (70h, 78h), PROGRAM PAGE CACHE (80h-15h), PROGRAM PAGE (80h-10h), RANDOM DATA INPUT (85h), PROGRAM FOR INTERNAL DATA INPUT (85h), and RESET (FFh).

Two-Plane Program Operations

The PROGRAM PAGE TWO-PLANE (80h-11h) command can be used to improve program operation system performance by enabling multiple pages to be moved from the cache registers to different planes of the NAND Flash array. This is done by prepending one or more PROGRAM PAGE TWO-PLANE (80h-11h) commands in front of the PROGRAM PAGE (80h-10h) command.

Two-Plane Program Cache Operations

The PROGRAM PAGE TWO-PLANE (80h-11h) command can be used to improve program cache operation system performance by enabling multiple pages to be moved from the cache registers to the data registers and, while the pages are being transferred from the data registers to different planes of the NAND Flash array, free the cache registers to receive data input from the host. This is done by prepending one or more PROGRAM PAGE TWO-PLANE (80h-11h) commands in front of the PROGRAM PAGE CACHE (80h-15h) command.
PROGRAM PAGE (80h-10h)

The PROGRAM PAGE (80h-10h) command enables the host to input data to a cache register, and moves the data from the cache register to the specified block and page address in the array of the selected die (LUN). This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) when it is busy with a PROGRAM PAGE CACHE (80h-15h) operation (RDY = 1, ARDY = 0).

To input a page to the cache register and move it to the NAND array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by a PROGRAM PAGE TWO-PLANE (80h-11h) command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Then write \(n \) address cycles containing the column address and row address. Data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle the RANDOM DATA INPUT (85h) and PROGRAM FOR INTERNAL DATA INPUT (85h) commands may be issued. When data input is complete, write 10h to the command register. The selected LUN will go busy (RDY = 0, ARDY = 0) for \(t_{PROG} \) as data is transferred.

To determine the progress of the data transfer, the host can monitor the target's R/B# signal or, alternatively, the status operations (70h, 78h) may be used. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the status of the FAIL bit.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The PROGRAM PAGE (80h-10h) command is used as the final command of a two-plane program operation. It is preceded by one or more PROGRAM PAGE TWO-PLANE (80h-11h) commands. Data is transferred from the cache registers for all of the addressed planes to the NAND array. The host should check the status of the operation by using the status operations (70h, 78h).

Figure 42: PROGRAM PAGE (80h-10h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>D<sub>N</sub></th>
<th>D<sub>M</sub></th>
<th>D<sub>IN</sub></th>
<th>Command</th>
<th>Command</th>
<th>D<sub>OUT</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>80h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>D0</td>
<td>D1</td>
<td>...</td>
<td>Dn</td>
<td>10h</td>
<td>70h</td>
</tr>
<tr>
<td>RDY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WB</th>
<th>PROG</th>
<th>Status</th>
</tr>
</thead>
</table>

PROGRAM PAGE CACHE (80h-15h)

The PROGRAM PAGE CACHE (80h-15h) command enables the host to input data to a cache register; copies the data from the cache register to the data register; then moves the data register contents to the specified block and page address in the array of the selected die (LUN). After the data is copied to the data register, the cache register is available for additional PROGRAM PAGE CACHE (80h-15h) or PROGRAM PAGE (80h-10h) commands. The PROGRAM PAGE CACHE (80h-15h) command is accepted by the die...
(LUN) when it is ready (RDY = 1, ARDY = 1). It is also accepted by the die (LUN) when busy with a PROGRAM PAGE CACHE (80h-15h) operation (RDY = 1, ARDY = 0).

To input a page to the cache register to move it to the NAND array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by a PROGRAM PAGE TWO-PLANE (80h-11h) command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Then write n address cycles containing the column address and row address. Data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle the RANDOM DATA INPUT (85h) and PROGRAM FOR INTERNAL DATA INPUT (85h) commands may be issued. When data input is complete, write 15h to the command register. The selected LUN will go busy (RDY = 0, ARDY = 0) for tCBSY to allow the data register to become available from a previous program cache operation, to copy data from the cache register to the data register, and then to begin moving the data register contents to the specified page and block address.

To determine the progress of tCBSY, the host can monitor the target’s R/B# signal or, alternatively, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is busy with a PROGRAM CACHE operation (RDY = 1, ARDY = 0), the host should check the status of the FAILC bit to see if a previous cache operation was successful.

If, after tCBSY, the host wants to wait for the program cache operation to complete, without issuing the PROGRAM PAGE (80h-10h) command, the host should monitor ARDY until it is 1. The host should then check the status of the FAIL and FAILC bits.

In devices with more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The PROGRAM PAGE CACHE (80h-15h) command is used as the final command of a two-plane program cache operation. It is preceded by one or more PROGRAM PAGE TWO-PLANE (80h-11h) commands. Data for all of the addressed planes is transferred from the cache registers to the corresponding data registers, then moved to the NAND Flash array. The host should check the status of the operation by using the status operations (70h, 78h).
Figure 43: PROGRAM PAGE CACHE (80h–15h) Operation (Start)

Figure 44: PROGRAM PAGE CACHE (80h–15h) Operation (End)
PROGRAM PAGE TWO-PLANE (80h-11h)

The PROGRAM PAGE TWO-PLANE (80h-11h) command enables the host to input data to the addressed plane’s cache register and queue the cache register to ultimately be moved to the NAND Flash array. This command can be issued one or more times. Each time a new plane address is specified that plane is also queued for data transfer. To input data for the final plane and to begin the program operation for all previously queued planes, issue either the PROGRAM PAGE (80h-10h) command or the PROGRAM PAGE CACHE (80h-15h) command. All of the queued planes will move the data to the NAND Flash array. This command is accepted by the die (LUN) when it is ready (RDY = 1).

To input a page to the cache register and queue it to be moved to the NAND Flash array at the block and page address specified, write 80h to the command register. Unless this command has been preceded by a PROGRAM PAGE TWO-PLANE (80h-11h) command, issuing the 80h to the command register clears all of the cache registers’ contents on the selected target. Write five address cycles containing the column address and row address; data input cycles follow. Serial data is input beginning at the column address specified. At any time during the data input cycle, the RANDOM DATA INPUT (85h) and PROGRAM FOR INTERNAL DATA INPUT (85h) commands can be issued. When data input is complete, write 11h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for 1DBSY.

To determine the progress of 1DBSY, the host can monitor the target’s R/B# signal or, alternatively, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is ready (RDY = 1), additional PROGRAM PAGE TWO-PLANE (80h-11h) commands can be issued to queue additional planes for data transfer. Alternatively, the PROGRAM PAGE (80h-10h) or PROGRAM PAGE CACHE (80h-15h) commands can be issued.

When the PROGRAM PAGE (80h-10h) command is used as the final command of a two-plane program operation, data is transferred from the cache registers to the NAND Flash array for all of the addressed planes during 1PROG. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the status of the FAIL bit for each of the planes to verify that programming completed successfully.

When the PROGRAM PAGE CACHE (80h-15h) command is used as the final command of a program cache two-plane operation, data is transferred from the cache registers to the data registers after the previous array operations finish. The data is then moved from the data registers to the NAND Flash array for all of the addressed planes. This occurs during 1CBSY. After 1CBSY, the host should check the status of the FAILC bit for each of the planes from the previous program cache operation, if any, to verify that programming completed successfully.

For the PROGRAM PAGE TWO-PLANE (80h-11h), PROGRAM PAGE (80h-10h), and PROGRAM PAGE CACHE (80h-15h) commands, see Two-Plane Operations for two-plane addressing requirements.
Figure 45: PROGRAM PAGE TWO-PLANE (80h–11h) Operation

The diagram illustrates the operation of programming two planes in a NAND flash memory device. The cycle type includes command, address, data-in (DIN), data-out (DOUT), and command. The I/O (I/O[7:0]) and RDY signals are also shown, indicating the timing of the operation with tADL, tWB, and tDBSY intervals.
Erase Operations

Erase operations are used to clear the contents of a block in the NAND Flash array to prepare its pages for program operations.

Erase Operations

The ERASE BLOCK (60h-D0h) command, when not preceded by the ERASE BLOCK TWO-PLANE (60h-D1h) command, erases one block in the NAND Flash array. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that this operation completed successfully.

TWO-PLANE ERASE Operations

The ERASE BLOCK TWO-PLANE (60h-D1h) command can be used to further system performance of erase operations by allowing more than one block to be erased in the NAND array. This is done by prepending one or more ERASE BLOCK TWO-PLANE (60h-D1h) commands in front of the ERASE BLOCK (60h-D0h) command. See Two-Plane Operations for details.

ERASE BLOCK (60h-D0h)

The ERASE BLOCK (60h-D0h) command erases the specified block in the NAND Flash array. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To erase a block, write 60h to the command register. Then write three address cycles containing the row address; the page address is ignored. Conclude by writing D0h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for \(t_{BERS} \) while the block is erased.

To determine the progress of an ERASE operation, the host can monitor the target’s R/B# signal, or alternatively, the status operations (70h, 78h) can be used. When the die (LUN) is ready (RDY = 1, ARDY = 1) the host should check the status of the FAIL bit.

In devices that have more than one die (LUN) per target, during and following interleaved die (multi-LUN) operations, the READ STATUS ENHANCED (78h) command must be used to select only one die (LUN) for status output. Use of the READ STATUS (70h) command could cause more than one die (LUN) to respond, resulting in bus contention.

The ERASE BLOCK (60h-D0h) command is used as the final command of an erase two-plane operation. It is preceded by one or more ERASE BLOCK TWO-PLANE (60h-D1h) commands. All blocks in the addressed planes are erased. The host should check the status of the operation by using the status operations (70h, 78h). See Two-Plane Operations for two-plane addressing requirements.

Figure 46: ERASE BLOCK (60h-D0h) Operation
ERASE BLOCK TWO-PLANE (60h-D1h)

The ERASE BLOCK TWO-PLANE (60h-D1h) command queues a block in the specified plane to be erased in the NAND Flash array. This command can be issued one or more times. Each time a new plane address is specified, that plane is also queued for a block to be erased. To specify the final block to be erased and to begin the ERASE operation for all previously queued planes, issue the ERASE BLOCK (60h-D0h) command. This command is accepted by the die (LUN) when it is ready (RDY = 1, ARDY = 1).

To queue a block to be erased, write 60h to the command register, then write three address cycles containing the row address; the page address is ignored. Conclude by writing D1h to the command register. The selected die (LUN) will go busy (RDY = 0, ARDY = 0) for tDBSY.

To determine the progress of tDBSY, the host can monitor the target’s R/B# signal, or alternatively, the status operations (70h, 78h) can be used. When the LUN’s status shows that it is ready (RDY = 1, ARDY = 1), additional ERASE BLOCK TWO-PLANE (60h-D1h) commands can be issued to queue additional planes for erase. Alternatively, the ERASE BLOCK (60h-D0h) command can be issued to erase all of the queued blocks.

For two-plane addressing requirements for the ERASE BLOCK TWO-PLANE (60h-D1h) and ERASE BLOCK (60h-D0h) commands, see Two-Plane Operations.

Figure 47: ERASE BLOCK TWO-PLANE (60h–D1h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>60h</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>D1h</td>
<td>60h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Micron Confidential and Proprietary
Internal Data Move Operations

Internal data move operations make it possible to transfer data within a device from one page to another using the cache register. This is particularly useful for block management and wear leveling. The INTERNAL DATA MOVE operation is restricted to only within even blocks or only within odd blocks.

The INTERNAL DATA MOVE operation is a two-step process consisting of a READ FOR INTERNAL DATA MOVE (00h-35h) and a PROGRAM FOR INTERNAL DATA MOVE (85h-10h) command. To move data from one page to another, first issue the READ FOR INTERNAL DATA MOVE (00h-35h) command. When the die (LUN) is ready (RDY = 1, ARDY = 1), the host can transfer the data to a new page by issuing the PROGRAM FOR INTERNAL DATA MOVE (85h-10h) command. When the die (LUN) is again ready (RDY = 1, ARDY = 1), the host should check the FAIL bit to verify that this operation completed successfully.

To prevent bit errors from accumulating over multiple INTERNAL DATA MOVE operations, it is recommended that the host read the data out of the device to verify the data prior to issuing the PROGRAM FOR INTERNAL DATA MOVE (85h-10h) command to prevent the propagation of data errors.

Between the READ FOR INTERNAL DATA MOVE (00h-35h) and PROGRAM FOR INTERNAL DATA MOVE (85h-10h) commands, the following commands are supported: status operation (70h) and column address operations (05h-E0h, 85h). The RESET operation (FFh) can be issued after READ FOR INTERNAL DATA MOVE (00h-35h), but the contents of the cache registers on the target are not valid.

READ FOR INTERNAL DATA MOVE (00h-35h)

The READ FOR INTERNAL DATA MOVE (00h-35h) command is functionally identical to the READ PAGE (00h-30h) command, except that 35h is written to the command register instead of 30h.

It is recommended that the host read the data out of the device to verify the data prior to issuing the PROGRAM FOR INTERNAL DATA MOVE (85h-10h) command to prevent the propagation of data errors.
Figure 48: READ FOR INTERNAL DATA MOVE (00h-35h) Operation

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>D_OUT</th>
<th>D_OUT</th>
<th>D_OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>00h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>35h</td>
<td>Dn</td>
<td>Dn + 1</td>
<td>Dn + 2</td>
</tr>
<tr>
<td>RDY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 49: READ FOR INTERNAL DATA MOVE (00h-35h) with RANDOM DATA READ (05h-E0h)

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>D_OUT</th>
<th>D_OUT</th>
<th>D_OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>00h</td>
<td>C1</td>
<td>C2</td>
<td>R1</td>
<td>R2</td>
<td>35h</td>
<td>D0</td>
<td>...</td>
<td>Dj + n</td>
</tr>
<tr>
<td>RDY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle type</th>
<th>Command</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Address</th>
<th>Command</th>
<th>t_WHR</th>
<th>Dk</th>
<th>Dk + 1</th>
<th>Dk + 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O[7:0]</td>
<td>05h</td>
<td>C1</td>
<td>C2</td>
<td>E0h</td>
<td>Dk</td>
<td>Dk + 1</td>
<td>Dk + 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM FOR INTERNAL DATA MOVE (85h-10h)

The PROGRAM FOR INTERNAL DATA MOVE (85h-10h) command is functionally identical to the PROGRAM PAGE (80h-10h) command, except that when 85h is written to the command register, cache register contents are not cleared.

Figure 50: PROGRAM FOR INTERNAL DATA MOVE (85h-10h)

Figure 51: PROGRAM FOR INTERNAL DATA MOVE (85h-10h) with RANDOM DATA INPUT (85h)
Block Lock Feature

The block lock feature protects either the entire device or ranges of blocks from being programmed and erased. Using the block lock feature is preferable to using WP# to prevent PROGRAM and ERASE operations.

Block lock is enabled and disabled at power-on through the LOCK pin. At power-on, if LOCK is LOW, all BLOCK LOCK commands are disabled. However, if LOCK is HIGH at power-on, the BLOCK LOCK commands are enabled and, by default, all the blocks on the device are protected, or locked, from PROGRAM and ERASE operations, even if WP# is HIGH.

Before the contents of the device can be modified, the device must first be unlocked. Either a range of blocks or the entire device may be unlocked. PROGRAM and ERASE operations complete successfully only in the block ranges that have been unlocked. Blocks, once unlocked, can be locked again to protect them from further PROGRAM and ERASE operations.

Blocks that are locked can be protected further, or locked tight. When locked tight, the device’s blocks can no longer be locked or unlocked.

WP# and Block Lock

The following is true when the block lock feature is enabled:

- Holding WP# LOW locks all blocks, provided the blocks are not locked tight.
- If WP# is held LOW to lock blocks, then returned to HIGH, a new UNLOCK command must be issued to unlock blocks.

UNLOCK (23h-24h)

By default at power-on, if LOCK is HIGH, all the blocks are locked and protected from PROGRAM and ERASE operations. The UNLOCK (23h) command is used to unlock a range of blocks. Unlocked blocks have no protection and can be programmed or erased.

The UNLOCK command uses two registers, a lower boundary block address register and an upper boundary block address register, and the invert area bit to determine what range of blocks are unlocked. When the invert area bit = 0, the range of blocks within the lower and upper boundary address registers are unlocked. When the invert area bit = 1, the range of blocks outside the boundaries of the lower and upper boundary address registers are unlocked. The lower boundary block address must be less than the upper boundary block address. The figures below show examples of how the lower and upper boundary address registers work with the invert area bit.

To unlock a range of blocks, issue the UNLOCK (23h) command followed by the appropriate address cycles that indicate the lower boundary block address. Then issue the 24h command followed by the appropriate address cycles that indicate the upper boundary block address. The least significant page address bit, PA0, should be set to 1 if setting the invert area bit; otherwise, it should be 0. The other page address bits should be 0.

Only one range of blocks can be specified in the lower and upper boundary block address registers. If after unlocking a range of blocks the UNLOCK command is again issued, the new block address range determines which blocks are unlocked. The previous unlocked block address range is not retained.
Figure 52: Flash Array Protected: Invert Area Bit = 0

Figure 53: Flash Array Protected: Invert Area Bit = 1
Table 16: Block Lock Address Cycle Assignments

<table>
<thead>
<tr>
<th>ALE Cycle</th>
<th>I/O[15:8]</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>LOW</td>
<td>BA7</td>
<td>BA6</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>Invert area bit²</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>BA15</td>
<td>BA14</td>
<td>BA13</td>
<td>BA12</td>
<td>BA11</td>
<td>BA10</td>
<td>BA9</td>
<td>BA8</td>
</tr>
</tbody>
</table>

Notes:
1. I/O[15:8] is applicable only for x16 devices.
2. Invert area bit is applicable for 24h command; it may be LOW or HIGH for 23h command.

Figure 54: UNLOCK Operation

- CLE:
- CE#:
- WE#:
- ALE:
- RE#:
- I/Ox:

23h: UNLOCK
Block add 1
Block add 2
Lower boundary

24h: Block add 1
Block add 2
Upper boundary
LOCK (2Ah)

By default at power-on, if LOCK is HIGH, all the blocks are locked and protected from PROGRAM and ERASE operations. If portions of the device are unlocked using the UNLOCK (23h) command, they can be locked again using the LOCK (2Ah) command. The LOCK command locks all of the blocks in the device. Locked blocks are write-protected from PROGRAM and ERASE operations.

To lock all of the blocks in the device, issue the LOCK (2Ah) command.

When a PROGRAM or ERASE operation is issued to a locked block, R/B# goes LOW for \^LBSY. The PROGRAM or ERASE operation does not complete. Any READ STATUS command reports bit 7 as 0, indicating that the block is protected.

The LOCK (2Ah) command is disabled if LOCK is LOW at power-on or if the device is locked tight.

Figure 55: LOCK Operation

![Diagram showing LOCK operation with signals CLE, CE#, WE#, and I/Ox connected to specific levels and timing for the LOCK (2Ah) command.](image-url)
LOCK TIGHT (2Ch)

The LOCK TIGHT (2Ch) command prevents locked blocks from being unlocked and also prevents unlocked blocks from being locked. When this command is issued, the UNLOCK (23h) and LOCK (2Ah) commands are disabled. This provides an additional level of protection against inadvertent PROGRAM and ERASE operations to locked blocks.

To implement LOCK TIGHT in all of the locked blocks in the device, verify that WP# is HIGH and then issue the LOCK TIGHT (2Ch) command.

When a PROGRAM or ERASE operation is issued to a locked block that has also been locked tight, R/B# goes LOW for \(t_{LBSY} \). The PROGRAM or ERASE operation does not complete. The READ STATUS (70h) command reports bit 7 as 0, indicating that the block is protected. PROGRAM and ERASE operations complete successfully to blocks that were not locked at the time the LOCK TIGHT command was issued.

After the LOCK TIGHT command is issued, the command cannot be disabled via a software command. Lock tight status can be disabled only by power cycling the device or toggling WP#. When the lock tight status is disabled, all of the blocks become locked, the same as if the LOCK (2Ah) command had been issued.

The LOCK TIGHT (2Ch) command is disabled if LOCK is LOW at power-on.

Figure 56: LOCK TIGHT Operation

```
LOCK

WP#

CLE

CE#

WE#

I/Ox 2Ch LOCK TIGHT
command

R/B# Don't Care
```
The BLOCK LOCK READ STATUS (7Ah) command is used to determine the protection status of individual blocks. The address cycles have the same format, as shown below, and the invert area bit should be set LOW. On the falling edge of RE# the I/O pins output the block lock status register, which contains the information on the protection status of the block.

Table 17: Block Lock Status Register Bit Definitions

<table>
<thead>
<tr>
<th>Block Lock Status Register Definitions</th>
<th>I/O[7:3]</th>
<th>I/O2 (Lock#)</th>
<th>I/O1 (LT#)</th>
<th>I/O0 (LT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block is locked tight</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Block is locked</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Block is unlocked, and device is locked tight</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Block is unlocked, and device is not locked tight</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 58: BLOCK LOCK READ STATUS

Micron Confidential and Proprietary

1Gb x8, x16: NAND Flash Memory
Block Lock Feature

Figure 57: PROGRAM/ERASE Issued to Locked Block

BLOCK LOCK READ STATUS (7Ah)

Table 17: Block Lock Status Register Bit Definitions

Figure 58: BLOCK LOCK READ STATUS

Figure 59: BLOCK LOCK Flowchart

- Power-up with LOCK HIGH:
 - Entire NAND Flash array locked
 - LOCK TIGHT Cmd with WP# and LOCK HIGH

- Power-up with LOCK LOW (default):
 - BLOCK LOCK function disabled
 - UNLOCK Cmd with invert area bit = 1

- WP# LOW >100ns or LOCK Cmd:
 - UNLOCK Cmd with invert area bit = 1
 - UNLOCK Cmd with invert area bit = 0

- Locked range:
 - LOCK TIGHT Cmd with WP# and LOCK HIGH
 - LOCK TIGHT Cmd with WP# and LOCK HIGH

- Locked-tight range:
 - UNLOCK Cmd with invert area bit = 0
 - UNLOCK Cmd with invert area bit = 0
One-Time Programmable (OTP) Operations

This Micron NAND Flash device offers a protected, one-time programmable NAND Flash memory area. Thirty full pages (2112 bytes per page) of OTP data are available on the device, and the entire range is guaranteed to be good. The OTP area is accessible only through the OTP commands. Customers can use the OTP area any way they choose; typical uses include programming serial numbers or other data for permanent storage.

The OTP area leaves the factory in an unwritten state (all bits are 1s). Programming or partial-page programming enables the user to program only 0 bits in the OTP area. The OTP area cannot be erased, whether it is protected or not. Protecting the OTP area prevents further programming of that area.

Micron provides a unique way to program and verify data before permanently protecting it and preventing future changes. The OTP area is only accessible while in OTP operation mode. To set the device to OTP operation mode, issue the SET FEATURE (EFh) command to feature address 90h and write 01h to P1, followed by three cycles of 00h to P2-P4. For parameters to enter OTP mode, see Features Operations.

When the device is in OTP operation mode, all subsequent PAGE READ (00h-30h) and PROGRAM PAGE (80h-10h) commands are applied to the OTP area. The OTP area is assigned to page addresses 02h-1Fh. To program an OTP page, issue the PROGRAM PAGE (80h-10h) command. The pages must be programmed in the ascending order. Similarly, to read an OTP page, issue the PAGE READ (00h-30h) command.

Protecting the OTP is done by entering OTP protect mode. To set the device to OTP protect mode, issue the SET FEATURE (EFh) command to feature address 90h and write 03h to P1, followed by three cycles of 00h to P2-P4.

To determine whether the device is busy during an OTP operation, either monitor R/B# or use the READ STATUS (70h) command.

To exit OTP operation or protect mode, write 00h to P1 at feature address 90h.
OTP DATA PROGRAM (80h-10h)

The OTP DATA PROGRAM (80h-10h) command is used to write data to the pages within the OTP area. An entire page can be programmed at one time, or a page can be partially programmed up to eight times. Only the OTP area allows up to eight partial-page programs. The rest of the blocks support only four partial-page programs. There is no ERASE operation for OTP pages.

PROGRAM PAGE enables programming into an offset of an OTP page using two bytes of the column address (CA[12:0]). The command is compatible with the RANDOM DATA INPUT (85h) command. The PROGRAM PAGE command will not execute if the OTP area has been protected.

To use the PROGRAM PAGE command, issue the 80h command. Issue \(n \) address cycles. The first two address cycles are the column address. For the remaining cycles, select a page in the range of 02h-00h through 1Fh-00h. Next, write from 1–2112 bytes of data. After data input is complete, issue the 10h command. The internal control logic automatically executes the proper programming algorithm and controls the necessary timing for programming and verification.

R/B# goes LOW for the duration of the array programming time (\(t_{PROG} \)). The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. Bit 5 of the status register reflects the state of R/B#. When the device is ready, read bit 0 of the status register to determine whether the operation passed or failed (see Status Operations). Each OTP page can be programmed to 8 partial-page programming.
RANDOM DATA INPUT (85h)

After the initial OTP data set is input, additional data can be written to a new column address with the RANDOM DATA INPUT (85h) command. The RANDOM DATA INPUT command can be used any number of times in the same page prior to the OTP PAGE WRITE (10h) command being issued.

Figure 60: OTP DATA PROGRAM (After Entering OTP Operation Mode)

Note: 1. The OTP page must be within the 02h–1Fh range.
Figure 61: OTP DATA PROGRAM Operation with RANDOM DATA INPUT (After Entering OTP Operation Mode)

Note: 1. The OTP page must be within the 02h–1Fh range.

OTP DATA PROTECT (80h-10h)

The OTP DATA PROTECT (80h-10h) command is used to prevent further programming of the pages in the OTP area. To protect the OTP area, the target must be in OTP operation mode.

To protect all data in the OTP area, issue the 80h command. Issue n address cycles including the column address, OTP protect page address and block address; the column and block addresses are fixed to 0. Next, write 00h data for the first byte location and issue the 10h command. R/B# goes LOW for the duration of the array programming time, tPROG.

After the data is protected, it cannot be programmed further. When the OTP area is protected, the pages within the area are no longer programmable and cannot be unprotected.

The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. The RDY bit of the status register will reflect the state of R/B#. Use of the READ STATUS ENHANCED (78h) command is prohibited.

When the target is ready, read the FAIL bit of the status register to determine if the operation passed or failed.

If the OTP DATA PROTECT (80h-10h) command is issued after the OTP area has already been protected, R/B# goes LOW for tOBSY. After tOBSY, the status register is set to 60h.
Figure 62: OTP DATA PROTECT Operation (After Entering OTP Protect Mode)

Note: 1. OTP data is protected following a good status confirmation.
OTP DATA READ (00h-30h)

To read data from the OTP area, set the device to OTP operation mode, then issue the PAGE READ (00h-30h) command. Data can be read from OTP pages within the OTP area whether the area is protected or not.

To use the PAGE READ command for reading data from the OTP area, issue the 00h command, and then issue five address cycles: for the first two cycles, the column address; and for the remaining address cycles, select a page in the range of 02h-00h-00h through 1Fh-00h-00h. Lastly, issue the 30h command. The PAGE READ CACHE MODE command is not supported on OTP pages.

R/B# goes LOW (\text{\text{\text{\text{\text{l}}}}}) while the data is moved from the OTP page to the data register. The READ STATUS (70h) command is the only valid command for reading status in OTP operation mode. Bit 5 of the status register reflects the state of R/B# (see Status Operations).

Normal READ operation timings apply to OTP read accesses. Additional pages within the OTP area can be selected by repeating the OTP DATA READ command.

The PAGE READ command is compatible with the RANDOM DATA OUTPUT (05h-E0h) command.

Only data on the current page can be read. Pulsing RE# outputs data sequentially.

Figure 63: OTP DATA READ

Note: 1. The OTP page must be within the 02h–1Fh range.
Figure 64: OTP DATA READ with RANDOM DATA READ Operation

Note: 1. The OTP page must be within the range 02h–1Fh.
Multi-Plane Operations

Each NAND Flash logical unit (LUN) is divided into multiple physical planes. Each plane contains a cache register and a data register independent of the other planes. The planes are addressed via the low-order block address bits. Specific details are provided in Device and Array Organization.

Multi-plane operations make better use of the NAND Flash arrays on these physical planes by performing concurrent READ, PROGRAM, or ERASE operations on multiple planes, significantly improving system performance. Multi-plane operations must be of the same type across the planes; for example, it is not possible to perform a PROGRAM operation on one plane with an ERASE operation on another.

When issuing MULTI-PLANE PROGRAM or ERASE operations, use the READ STATUS (70h) command and check whether the previous operation(s) failed. If the READ STATUS (70h) command indicates that an error occurred (FAIL = 1 and/or FAILC = 1), use the READ STATUS ENHANCED (78h) command—time for each plane—to determine which plane operation failed.

Multi-Plane Addressing

Multi-plane commands require an address per operational plane. For a given multi-plane operation, these addresses are subject to the following requirements:

- The LUN address bit(s) must be identical for all of the issued addresses.
- The plane select bit, BA[6], must be different for each issued address.

The READ STATUS (70h) command should be used following MULTI-PLANE PROGRAM PAGE and ERASE BLOCK operations on a single die (LUN).
Error Management

Each NAND Flash die (LUN) is specified to have a minimum number of valid blocks (NVB) of the total available blocks. This means the die (LUNs) could have blocks that are invalid when shipped from the factory. An invalid block is one that contains at least one page that has more bad bits than can be corrected by the minimum required ECC. Additional blocks can develop with use. However, the total number of available blocks per die (LUN) will not fall below NVB during the endurance life of the product.

Although NAND Flash memory devices could contain bad blocks, they can be used quite reliably in systems that provide bad block management and error-correction algorithms. This type of software environment ensures data integrity.

Internal circuitry isolates each block from other blocks, so the presence of a bad block does not affect the operation of the rest of the NAND Flash array.

NAND Flash devices are shipped from the factory erased. The factory identifies invalid blocks before shipping by attempting to program the bad block mark into every location in the first page of each invalid block. It may not be possible to program every location with the bad block mark. However, the first spare area location in each bad block is guaranteed to contain the bad block mark. This method is compliant with ONFI Factory Defect Mapping requirements. See the following table for the first spare area location and the bad block mark.

System software should check the first spare area location on the first page of each block prior to performing any PROGRAM or ERASE operations on the NAND Flash device. A bad block table can then be created, enabling system software to map around these areas. Factory testing is performed under worst-case conditions. Because invalid blocks could be marginal, it may not be possible to recover this information if the block is erased.

Over time, some memory locations may fail to program or erase properly. In order to ensure that data is stored properly over the life of the NAND Flash device, the following precautions are required:

- Always check status after a PROGRAM or ERASE operation
- Under typical conditions, use the minimum required ECC (see table below)
- Use bad block management and wear-leveling algorithms

The first block (physical block address 00h) for each CE# is guaranteed to be valid with ECC when shipped from the factory.

Table 18: Error Management Details

<table>
<thead>
<tr>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of valid blocks (NVB) per LUN</td>
<td>1004</td>
</tr>
<tr>
<td>Total available blocks per LUN</td>
<td>1024</td>
</tr>
<tr>
<td>First spare area location</td>
<td>x8: byte 2048 x16: word 1024</td>
</tr>
<tr>
<td>Bad-block mark</td>
<td>x8: 00h x16: 0000h</td>
</tr>
<tr>
<td>Minimum required ECC</td>
<td>4-bit ECC per 528 bytes of data</td>
</tr>
<tr>
<td>Minimum required ECC for block 0 if PROGRAM/ERASE cycles are less than 1000</td>
<td>1-bit ECC per 528 bytes</td>
</tr>
</tbody>
</table>
Output Drive Impedance

Because NAND Flash is designed for use in systems that are typically point-to-point connections, an option to control the drive strength of the output buffers is provided. Drive strength should be selected based on the expected loading of the memory bus. There are four supported settings for the output drivers: overdrive 2, overdrive 1, nominal, and underdrive.

The nominal output drive strength setting is the power-on default value. The host can select a different drive strength setting using the SET FEATURES (EFh) command.

The output impedance range from minimum to maximum covers process, voltage, and temperature variations. Devices are not guaranteed to be at the nominal line.

Table 19: Output Drive Strength Conditions (V_{CCQ} = 1.7–1.95V)

<table>
<thead>
<tr>
<th>Range</th>
<th>Process</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Fast-Fast</td>
<td>1.95V</td>
<td>T_A (MIN)</td>
</tr>
<tr>
<td>Nominal</td>
<td>Typical-Typical</td>
<td>1.8V</td>
<td>+25°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>Slow-Slow</td>
<td>1.7V</td>
<td>T_A (MAX)</td>
</tr>
</tbody>
</table>

Table 20: Output Drive Strength Impedance Values (V_{CCQ} = 1.7–1.95V)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT to V_{SSQ}}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>Rpd</td>
<td>V_{CCQ} × 0.2</td>
<td>7.5</td>
<td>13.5</td>
<td>34</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>9</td>
<td>18</td>
<td>31</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>11</td>
<td>23.5</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>V_{CCQ} × 0.2</td>
<td>11</td>
<td>23.5</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>9</td>
<td>18</td>
<td>31</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>7.5</td>
<td>13.5</td>
<td>34</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>Rpd</td>
<td>V_{CCQ} × 0.2</td>
<td>10.5</td>
<td>19</td>
<td>47</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>13</td>
<td>25</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>16</td>
<td>32.5</td>
<td>61.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>V_{CCQ} × 0.2</td>
<td>16</td>
<td>32.5</td>
<td>61.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>13</td>
<td>25</td>
<td>44</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>10.5</td>
<td>19</td>
<td>47</td>
<td>ohms</td>
</tr>
<tr>
<td>Nominal</td>
<td>Rpd</td>
<td>V_{CCQ} × 0.2</td>
<td>15</td>
<td>27</td>
<td>66.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>18</td>
<td>35</td>
<td>62.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>22</td>
<td>52</td>
<td>88</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td>Rpu</td>
<td>V_{CCQ} × 0.2</td>
<td>22</td>
<td>52</td>
<td>88</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.5</td>
<td>18</td>
<td>35</td>
<td>62.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCQ} × 0.8</td>
<td>15</td>
<td>27</td>
<td>66.5</td>
<td>ohms</td>
</tr>
</tbody>
</table>
Table 20: Output Drive Strength Impedance Values (\(V_{CCQ} = 1.7–1.95V\)) (Continued)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>(V_{OUT} \text{ to } V_{SSQ})</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underdrive Rpd</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>21.5</td>
<td>39</td>
<td>95</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>26</td>
<td>50</td>
<td>90</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>31.5</td>
<td>66.5</td>
<td>126.5</td>
<td>ohms</td>
</tr>
<tr>
<td>Underdrive Rpu</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>31.5</td>
<td>66.5</td>
<td>126.5</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>26</td>
<td>50</td>
<td>90</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>21.5</td>
<td>39</td>
<td>95</td>
<td>ohms</td>
</tr>
</tbody>
</table>

Table 21: Output Drive Strength Conditions (\(V_{CCQ} = 2.7–3.6V\))

<table>
<thead>
<tr>
<th>Range</th>
<th>Process</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Fast-Fast</td>
<td>3.6V</td>
<td>(T_A) (MIN)</td>
</tr>
<tr>
<td>Nominal</td>
<td>Typical-Typical</td>
<td>3.3V</td>
<td>+25°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>Slow-Slow</td>
<td>2.7V</td>
<td>(T_A) (MAX)</td>
</tr>
</tbody>
</table>

Table 22: Output Drive Strength Impedance Values (\(V_{CCQ} = 2.7–3.6V\))

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>(V_{OUT} \text{ to } V_{SSQ})</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2 Rpd</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>7.0</td>
<td>16.2</td>
<td>28.7</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>9.0</td>
<td>18.0</td>
<td>36.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>11.8</td>
<td>21.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 2 Rpu</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>11.8</td>
<td>21.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>9.0</td>
<td>18.0</td>
<td>36.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>7.0</td>
<td>14.0</td>
<td>28.7</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 1 Rpd</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>9.3</td>
<td>22.3</td>
<td>40.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>12.6</td>
<td>25.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>16.3</td>
<td>29.0</td>
<td>68.0</td>
<td>ohms</td>
</tr>
<tr>
<td>Overdrive 1 Rpu</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>16.3</td>
<td>29.0</td>
<td>68.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>12.6</td>
<td>25.0</td>
<td>50.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>9.3</td>
<td>19.0</td>
<td>40.0</td>
<td>ohms</td>
</tr>
<tr>
<td>Nominal Rpd</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>12.8</td>
<td>32.0</td>
<td>58.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>18.0</td>
<td>35.0</td>
<td>70.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>23.0</td>
<td>40.0</td>
<td>95.0</td>
<td>ohms</td>
</tr>
<tr>
<td>Nominal Rpu</td>
<td></td>
<td>(V_{CCQ} \times 0.2)</td>
<td>23.0</td>
<td>40.0</td>
<td>95.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.5)</td>
<td>18.0</td>
<td>35.0</td>
<td>70.0</td>
<td>ohms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CCQ} \times 0.8)</td>
<td>12.8</td>
<td>32.0</td>
<td>58.0</td>
<td>ohms</td>
</tr>
</tbody>
</table>
Table 22: Output Drive Strength Impedance Values (V_{CCQ} = 2.7–3.6V) (Continued)

<table>
<thead>
<tr>
<th>Output Strength</th>
<th>Rpd/Rpu</th>
<th>V_{OUT} to V_{SSQ}</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underdrive Rpd</td>
<td>V_{CCQ} X 0.2</td>
<td>18.4</td>
<td>45.0</td>
<td>80.0</td>
<td>ohms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CCQ} X 0.5</td>
<td>25.0</td>
<td>50.0</td>
<td>100.0</td>
<td>ohms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CCQ} X 0.8</td>
<td>32.0</td>
<td>57.0</td>
<td>136.0</td>
<td>ohms</td>
<td></td>
</tr>
<tr>
<td>Rpu</td>
<td>V_{CCQ} X 0.2</td>
<td>32.0</td>
<td>57.0</td>
<td>136.0</td>
<td>ohms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CCQ} X 0.5</td>
<td>25.0</td>
<td>50.0</td>
<td>100.0</td>
<td>ohms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CCQ} X 0.8</td>
<td>18.4</td>
<td>45.0</td>
<td>80.0</td>
<td>ohms</td>
<td></td>
</tr>
</tbody>
</table>

Table 23: Pull-Up and Pull-Down Output Impedance Mismatch

<table>
<thead>
<tr>
<th>Drive Strength</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>0</td>
<td>6.3</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>0</td>
<td>8.8</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Nominal</td>
<td>0</td>
<td>12.3</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
<tr>
<td>Underdrive</td>
<td>0</td>
<td>17.5</td>
<td>ohms</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Notes:
1. Mismatch is the absolute value between pull-up and pull-down impedances. Both are measured at the same temperature and voltage.
2. Test conditions: V_{CCQ} = V_{CCQ} (MIN), V_{OUT} = V_{CCQ} × 0.5, T_A = T_{OPER}.

AC Overshoot/Undershoot Specifications

The supported AC overshoot and undershoot area depends on the timing mode selected by the host.

Table 24: Asynchronous Overshoot/Undershoot Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Timing Mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maximum peak amplitude provided for overshoot area</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum peak amplitude provided for undershoot area</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum overshoot area above V_{CCQ}</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Maximum undershoot area below V_{SSQ}</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 65: Overshoot

![Overshoot Diagram]

Figure 66: Undershoot

![Undershoot Diagram]
Output Slew Rate

The output slew rate is tested using the following setup with only one die per DQ channel.

Table 25: Test Conditions for Output Slew Rate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OL(DC)}$</td>
<td>$0.3 \times V_{CCQ}$</td>
</tr>
<tr>
<td>$V_{OH(DC)}$</td>
<td>$0.7 \times V_{CCQ}$</td>
</tr>
<tr>
<td>$V_{OL(AC)}$</td>
<td>$0.2 \times V_{CCQ}$</td>
</tr>
<tr>
<td>$V_{OH(AC)}$</td>
<td>$0.8 \times V_{CCQ}$</td>
</tr>
<tr>
<td>Rising edge (RISE)</td>
<td>$V_{OL(DC)}$ to $V_{OH(AC)}$</td>
</tr>
<tr>
<td>Falling edge (FALL)</td>
<td>$V_{OH(DC)}$ to $V_{OL(AC)}$</td>
</tr>
<tr>
<td>Output capacitive load (C_{LOAD})</td>
<td>5pF</td>
</tr>
<tr>
<td>Temperature range</td>
<td>T_{A}</td>
</tr>
</tbody>
</table>

Table 26: Output Slew Rate ($V_{CCQ} = 1.7–1.95V$)

<table>
<thead>
<tr>
<th>Output Drive Strength</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>1</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>0.85</td>
<td>5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Nominal</td>
<td>0.75</td>
<td>4</td>
<td>V/ns</td>
</tr>
<tr>
<td>Underdrive</td>
<td>0.6</td>
<td>4</td>
<td>V/ns</td>
</tr>
</tbody>
</table>

Table 27: Output Slew Rate ($V_{CCQ} = 2.7–3.6V$)

<table>
<thead>
<tr>
<th>Output Drive Strength</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overdrive 2</td>
<td>1.5</td>
<td>10.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Overdrive 1</td>
<td>1.5</td>
<td>9.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Nominal</td>
<td>1.2</td>
<td>7.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>Underdrive</td>
<td>1.0</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
</tbody>
</table>
Electrical Specifications

Stresses greater than those listed can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods can affect reliability.

Table 28: Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Input</td>
<td>V_{IN}</td>
<td>–0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage Input</td>
<td>3.3V</td>
<td>–0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage Input</td>
<td>1.8V</td>
<td>–0.6</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>V_{CC}</td>
<td>–0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>3.3V</td>
<td>–0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>1.8V</td>
<td>–0.6</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Short circuit output current, I/Os</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 29: Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>T_A</td>
<td>0</td>
<td>–</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>–40</td>
<td></td>
<td>85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>V_{CC} supply voltage</td>
<td>V_{CC}</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>3.3V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8V</td>
<td>1.7</td>
<td>1.8</td>
<td>1.95</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Ground supply voltage</td>
<td>V_{SS}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 30: Valid Blocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Device</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid block number</td>
<td>NVB</td>
<td>3.3V/1.8V</td>
<td>1004</td>
<td>1024</td>
<td>Blocks</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1. Invalid blocks are blocks that contain one or more bad bits. The device may contain bad blocks upon shipment. Additional bad blocks may develop over time; however, the total number of available blocks will not drop below NVB during the endurance life of the device. Do not erase or program blocks marked invalid by the factory.
Table 31: Capacitance

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>C_{IN}</td>
<td>10</td>
<td>pF</td>
<td>1, 2</td>
</tr>
<tr>
<td>Input/output capacitance (I/O)</td>
<td>C_{IO}</td>
<td>10</td>
<td>pF</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Notes:
1. These parameters are verified in device characterization and are not 100% tested.
2. Test conditions: $T_C = 25^\circ$C; $f = 1$ MHz; $V_{IN} = 0V$.

Table 32: Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input pulse levels</td>
<td>$0.0V$ to V_{CC}</td>
<td></td>
</tr>
<tr>
<td>Input rise and fall times</td>
<td>5ns</td>
<td></td>
</tr>
<tr>
<td>Input and output timing levels</td>
<td>$V_{CC}/2$</td>
<td></td>
</tr>
<tr>
<td>Output load</td>
<td>3.3V</td>
<td>1 TTL GATE and CL = 30pF</td>
</tr>
<tr>
<td></td>
<td>1.8V</td>
<td>1 TTL GATE and CL = 30pF</td>
</tr>
</tbody>
</table>

Note:
1. These parameters are verified in device characterization and are not 100% tested.
Table 33: AC Characteristics: Command, Data, and Address Input (3.3V)

Note 1 applies to all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to data start</td>
<td>tADL</td>
<td>70</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>ALE hold time</td>
<td>tALH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ALE setup time</td>
<td>tALS</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# hold time</td>
<td>tCH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CLE hold time</td>
<td>tCLH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CLE setup time</td>
<td>tCLS</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# setup time</td>
<td>tCS</td>
<td>15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data hold time</td>
<td>tDH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data setup time</td>
<td>tDS</td>
<td>7</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WRITE cycle time</td>
<td>tWC</td>
<td>20</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width HIGH</td>
<td>tWH</td>
<td>7</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width</td>
<td>tWP</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WP# transition to WE# LOW</td>
<td>tWW</td>
<td>100</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Operating mode timings meet ONFI timing mode 5 parameters. 2. Timing for tADL begins in the address cycle, on the final rising edge of WE#, and ends with the first rising edge of WE# for data input.

Table 34: AC Characteristics: Command, Data, and Address Input (1.8V)

Note 1 applies to all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to data start</td>
<td>tADL</td>
<td>70</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>ALE hold time</td>
<td>tALH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>ALE setup time</td>
<td>tALS</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# hold time</td>
<td>tCH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CLE hold time</td>
<td>tCLH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CLE setup time</td>
<td>tCLS</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# setup time</td>
<td>tCS</td>
<td>20</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data hold time</td>
<td>tDH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data setup time</td>
<td>tDS</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WRITE cycle time</td>
<td>tWC</td>
<td>25</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width HIGH</td>
<td>tWH</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width</td>
<td>tWP</td>
<td>12</td>
<td>–</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WP# transition to WE# LOW</td>
<td>tWW</td>
<td>100</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Operating mode timings meet ONFI timing mode 4 parameters. 2. Timing for tADL begins in the address cycle, on the final rising edge of WE#, and ends with the first rising edge of WE# for data input.
Table 35: AC Characteristics: Normal Operation (3.3V)

Note 1 applies to all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to RE# delay</td>
<td>tAR</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# access time</td>
<td>tCEA</td>
<td>–</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# HIGH to output High-Z</td>
<td>tCHZ</td>
<td>–</td>
<td>50</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CLE to RE# delay</td>
<td>tCLR</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# HIGH to output hold</td>
<td>tCOH</td>
<td>15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output High-Z to RE# LOW</td>
<td>tIR</td>
<td>0</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>READ cycle time</td>
<td>tRC</td>
<td>20</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# access time</td>
<td>tREA</td>
<td>–</td>
<td>16</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH hold time</td>
<td>tREH</td>
<td>7</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH to output hold</td>
<td>tRHOH</td>
<td>15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH to WE# LOW</td>
<td>tRHW</td>
<td>100</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH to output High-Z</td>
<td>tRHZ</td>
<td>–</td>
<td>100</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>RE# LOW to output hold</td>
<td>tRLOH</td>
<td>5</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# pulse width</td>
<td>tRP</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Ready to RE# LOW</td>
<td>tRR</td>
<td>20</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Reset time (READ/PROGRAM/ERASE)</td>
<td>tRST</td>
<td>–</td>
<td>5/10/500</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>WE# HIGH to busy</td>
<td>tWB</td>
<td>–</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WE# HIGH to RE# LOW</td>
<td>tWHR</td>
<td>60</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. AC characteristics may need to be relaxed if I/O drive strength is not set to full.
2. Transition is measured ±200mV from steady-state voltage with load. This parameter is sampled and not 100% tested.
3. The first time the RESET (FFh) command is issued while the device is idle, the device will go busy for a maximum of 1ms. Thereafter, the device goes busy for a maximum of 5μs.

Table 36: AC Characteristics: Normal Operation (1.8V)

Note 1 applies to all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to RE# delay</td>
<td>tAR</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# access time</td>
<td>tCEA</td>
<td>–</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# HIGH to output High-Z</td>
<td>tCHZ</td>
<td>–</td>
<td>50</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CLE to RE# delay</td>
<td>tCLR</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# HIGH to output hold</td>
<td>tCOH</td>
<td>15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output High-Z to RE# LOW</td>
<td>tIR</td>
<td>0</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>READ cycle time</td>
<td>tRC</td>
<td>25</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# access time</td>
<td>tREA</td>
<td>–</td>
<td>22</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH hold time</td>
<td>tREH</td>
<td>10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH to output hold</td>
<td>tRHOH</td>
<td>15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# HIGH to WE# LOW</td>
<td>tRHW</td>
<td>100</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
Table 36: AC Characteristics: Normal Operation (1.8V) (Continued)

Note 1 applies to all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE# HIGH to output High-Z</td>
<td>tRHZ</td>
<td>–</td>
<td>65</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>RE# LOW to output hold</td>
<td>tRLOH</td>
<td>3</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RE# pulse width</td>
<td>tRP</td>
<td>12</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Ready to RE# LOW</td>
<td>tRR</td>
<td>20</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Reset time (READ/PROGRAM/ERASE)</td>
<td>tRST</td>
<td>–</td>
<td>5/10/500</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>WE# HIGH to busy</td>
<td>tWB</td>
<td>–</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WE# HIGH to RE# LOW</td>
<td>tWHR</td>
<td>80</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. AC characteristics may need to be relaxed if I/O drive strength is not set to full.
2. Transition is measured ±200mV from steady-state voltage with load. This parameter is sampled and not 100% tested.
3. The first time the RESET (FFh) command is issued while the device is idle, the device will be busy for a maximum of 1ms. Thereafter, the device is busy for a maximum of 5µs.
Table 37: DC Characteristics and Operating Conditions (3.3V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential READ current</td>
<td>[^RC = , ^{1}RC,(\text{MIN}); , CE# = , V_{IL}; I_{\text{OUT}} = 0\text{mA}]</td>
<td>(I_{CC1})</td>
<td>–</td>
<td>25</td>
<td>35</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>PROGRAM current</td>
<td>–</td>
<td>(I_{CC2})</td>
<td>–</td>
<td>25</td>
<td>35</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>ERASE current</td>
<td>–</td>
<td>(I_{CC3})</td>
<td>–</td>
<td>25</td>
<td>35</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current (TTL)</td>
<td>([CE# = , V_{IH}; WP# = 0\text{V} / V_{CC}])</td>
<td>(I_{SB1})</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current (CMOS)</td>
<td>([CE# = V_{CC} - 0.2\text{V}; , WP# = 0\text{V} / V_{CC}])</td>
<td>(I_{SB2})</td>
<td>–</td>
<td>20</td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Staggered power-up current</td>
<td>([\text{Rise time} = 1\text{ms}; , \text{Line capacitance} = 0.1µF])</td>
<td>(I_{ST})</td>
<td>–</td>
<td>–</td>
<td>10 per die</td>
<td>mA</td>
<td>1</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>([V_{IN} = 0\text{V} , \text{to} , V_{CC}])</td>
<td>(I_{LI})</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>([V_{OUT} = 0\text{V} , \text{to} , V_{CC}])</td>
<td>(I_{LO})</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Input high voltage</td>
<td>([I/O[7:0], , I/O[15:0], , CE#, , CLE, , ALE, , WE#, , RE#, , \text{WP}#])</td>
<td>(V_{IH})</td>
<td>0.8 x (V_{CC})</td>
<td>–</td>
<td>(V_{CC} + 0.3) V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input low voltage</td>
<td>([\text{all inputs}])</td>
<td>(V_{IL})</td>
<td>–0.3</td>
<td>–</td>
<td>0.2 x (V_{CC})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output high voltage</td>
<td>([I_{OH} = -400\mu\text{A}])</td>
<td>(V_{OH})</td>
<td>0.67 x (V_{CC})</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>([I_{OL} = 2.1\text{mA}])</td>
<td>(V_{OL})</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>Output low current</td>
<td>([V_{OL} = 0.4\text{V}])</td>
<td>(I_{OL} (R/B#))</td>
<td>8</td>
<td>10</td>
<td>–</td>
<td>mA</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes:
1. Measurement is taken with 1ms averaging intervals and begins after \(V_{CC}\) reaches \(V_{CC}(\text{MIN})\).
2. \(I_{OL} (R/B\#)\) may need to be relaxed if R/B pull-down strength is not set to full.
3. \(V_{OH}\) and \(V_{OL}\) may need to be relaxed if I/O drive strength is not set to full.
Table 38: DC Characteristics and Operating Conditions (1.8V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential READ current</td>
<td>tRC = tRC (MIN); CE# = VIL; IOUT = 0mA</td>
<td>lCC1</td>
<td>–</td>
<td>13</td>
<td>20</td>
<td>mA</td>
<td>1, 2</td>
</tr>
<tr>
<td>PROGRAM current</td>
<td></td>
<td>lCC2</td>
<td>–</td>
<td>10</td>
<td>20</td>
<td>mA</td>
<td>1, 2</td>
</tr>
<tr>
<td>ERASE current</td>
<td></td>
<td>lCC3</td>
<td>–</td>
<td>10</td>
<td>20</td>
<td>mA</td>
<td>1, 2</td>
</tr>
<tr>
<td>Standby current (TTL)</td>
<td>CE# = VH; WP# = 0V/VCC</td>
<td>lSB1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby current (CMOS)</td>
<td>CE# = VCC - 0.2V; WP# = 0V/VCC</td>
<td>lSB2</td>
<td>–</td>
<td>10</td>
<td>50</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Staggered power-up current</td>
<td>Rise time = 1ms; Line capacitance = 0.1µF</td>
<td>lST</td>
<td>–</td>
<td>–</td>
<td>10 per die</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input leakage current</td>
<td>VIN = 0V to VCC</td>
<td>lIi</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Output leakage current</td>
<td>VOUT = 0V to VCC</td>
<td>lIO</td>
<td>–</td>
<td>–</td>
<td>±10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Input high voltage</td>
<td>I/O[7:0], I/O[15:0], CE#, CLE, ALE, WE#, RE#, WP#</td>
<td>VIH</td>
<td>0.8 x VCC</td>
<td>–</td>
<td>VCC + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input low voltage, all inputs</td>
<td></td>
<td>VIL</td>
<td>−0.3</td>
<td>–</td>
<td>0.2 x VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output high voltage</td>
<td>IOH = −100µA</td>
<td>VOH</td>
<td>VCC - 0.1</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output low voltage</td>
<td>IOL = +100µA</td>
<td>VOL</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output low current (R/B#)</td>
<td>VOUT = 0.2V</td>
<td>lOL (R/B#)</td>
<td>3</td>
<td>4</td>
<td>–</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Typical and maximum values are for single-plane operation only.
2. Values are for single-die operations. Values could be higher for interleaved-die operations.
3. Measurement is taken with 1ms averaging intervals and begins after VCC reaches VCC(MIN).
4. Test conditions for VOH and VOL.
5. DC characteristics may need to be relaxed if R/B# pull-down strength is not set to full.
Electrical Specifications – Program/Erase Characteristics

Table 39: Program/Erase Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of partial-page programs</td>
<td>NOP</td>
<td>–</td>
<td>4</td>
<td>cycles</td>
<td></td>
</tr>
<tr>
<td>BLOCK ERASE operation time</td>
<td>tBERS</td>
<td>0.7</td>
<td>3</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Busy time for PROGRAM CACHE operation</td>
<td>tCBSY</td>
<td>3</td>
<td>600</td>
<td>µs</td>
<td>2</td>
</tr>
<tr>
<td>Cache read busy time</td>
<td>tRCBSY</td>
<td>3</td>
<td>25</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Busy time for SET FEATURES and GET FEATURES operations</td>
<td>tFEAT</td>
<td>–</td>
<td>1</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Busy time for OTP DATA PROGRAM operation if OTP is protected</td>
<td>tOBSY</td>
<td>–</td>
<td>30</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>PROGRAM PAGE operation time</td>
<td>tPROG</td>
<td>200</td>
<td>600</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>Data transfer from Flash array to data register</td>
<td>tR</td>
<td>–</td>
<td>25</td>
<td>µs</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes:
1. Applies to entire table: Typical is nominal voltage and room temperature.
2. tCBSY MAX time depends on timing between internal program completion and data-in.
3. Typical program time is defined as the time within which more than 50% of the pages are programmed at nominal voltage and room temperature.
4. AC characteristics may need to be relaxed if I/O drive strength is not set to full.
Asynchronous Interface Timing Diagrams

Figure 67: RESET Operation

CLE

CE#

WE#

R/B#

I/O[7:0]

FFh

RESET command

Figure 68: READ STATUS Cycle

CLE

CE#

WE#

RE#

I/O[7:0]

Status output

Don't Care
Figure 69: READ STATUS ENHANCED Cycle

Figure 70: READ PARAMETER PAGE
Figure 71: READ PAGE

CLE
CE#
WE#
ALE
RE#
I/Ox
RDY

00h Col add 1 Col add 2 Row add 1 Row add 2 Row add 3 30h

Busy

Don't Care

PDF: 09005aef847d5585
m68m_nonecc_embedded_it_ct.pdf - Rev. L 2/15 EN
Figure 72: READ PAGE Operation with CE# “Don’t Care”
Figure 73: RANDOM DATA READ

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox
- RDY

Column address M

1Gb x8, x16: NAND Flash Memory
Asynchronous Interface Timing Diagrams

Micron Confidential and Proprietary

© 2015 Micron Technology, Inc. All rights reserved.
Figure 74: READ PAGE CACHE SEQUENTIAL

CLE

CE#

WE#

ALE

RE#

I/Ox

RDY

Column address 0

Page address M

Page address M

Page address M + 1

Page address M + 2

© 2015 Micron Technology, Inc. All rights reserved.
Figure 75: READ PAGE CACHE RANDOM

[Diagram of READ PAGE CACHE RANDOM with timings and waveforms for CLE, CE#, WE#, ALE, RE#, I/Ox, and RDY signals, showing page address and column address transitions.]
Figure 76: READ ID Operation

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox

Address, 1 cycle

- Byte 1
- Byte 1
- Byte 2
- Byte 3
- Byte 4

Figure 77: PROGRAM PAGE Operation

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox

- RDY

1 up to m byte serial Input

Don't Care
Figure 78: PROGRAM PAGE Operation with CE# “Don’t Care”

Figure 79: PROGRAM PAGE Operation with RANDOM DATA INPUT
Figure 80: PROGRAM PAGE CACHE

Figure 81: PROGRAM PAGE CACHE Ending on 15h
Figure 82: INTERNAL DATA MOVE

Figure 83: ERASE BLOCK Operation
Revision History

Rev. L – 2/15
• Made minor format changes per Micron conventions

Rev. K – 10/14
• Updated the x8 and x16 Array Organization figures

Rev. J – 04/14
• Updated the ONFI statement in the READ PARAMETER PAGE (ECh) section and the LOCK TIGHT command section

Rev. I – 08/13
• Updated Block Lock Feature and Lock Tight in Block Lock Feature

Rev. H – 02/13
• Changed status to Production

Rev. G – 11/12
• Updated part number chart with option X for product longevity program (PLP) under Special Options

Rev. F – 08/12
• Updated the Marketing Part Number Chart

Rev. E – 07/12
• Added LOCK pin description to Table 1
• Added note 2 to Figure 2

Rev. D – 02/12
• Updated \(I_{SB2} \) spec in 3.3V DC Characteristics and Operating Conditions table

Rev. C – 02/12
• Updated Parameter Page Data Structure Tables
• Updated 63-ball package drawing (H4)

Rev. B – 11/11
• Command Definitions topic, Command Set table: Changed OTP DATA LOCK BY BLOCK (ONFI) to OTP DATA LOCK BY PAGE (ONFI).
• One-Time Programmable (OTP) Operations topic, OTP DATA PROTECT (80h-10) section: Updated content.
Micron Confidential and Proprietary

1Gb x8, x16: NAND Flash Memory
Revision History

Rev. A – 08/11

• Initial version