

Product image for illustration purposes only

The easyRadio eRA-LoRa (Long Range) RF transceiver module uses Chirped Spread Spectrum (CSS) modulation together with DSP (Digital Signal Processing) to achieve greater range than traditional devices using OOK, FSK or GFSK modulation.

In addition, sensitivity and blocking performance are improved giving high interference immunity whilst still offering low power consumption.

The module is a complete sub-system that combines a high performance low power RF transceiver, a microcontroller and a voltage regulator.

Key operating parameters can be changed and configured by sending simple 'text' (ASCII character) commands to the module.

Features

Chirped Spread Spectrum technology Pin compatible with easyRadio Advanced (eRA) series RF modules uFL RF connector for remote antennas Multipoint communication Half duplex transparent Serial Data Input and Output Up to 180 bytes per packet Familiar easyRadio commands Built in temperature sensor 'Flash' firmware upgrades. New features and updates can be quickly programmed using LPRS tools

Key Parameters

Frequency Range: 860 - 1000MHz Frequency Bands: 868/915MHz Receiver sensitivity: down to -137dBm Multi-channel operation RF Power output: up to +20dBm (100mW) Receive current consumption: 15mA RSSI dynamic range: 127dB Line of Sight (LoS) range – Up to 10km+ (Depending on environment)

User Programmable Options:

Spreading factors 6: to 12 Selectable Bandwidth: 125, 250, 500kHz Over air bit rates of up to 300 kbps offer effective 37.5 kbps data rate Host Data Rate: 2.4kbps – 115.2kbps

The variable spreading factor in combination with the bandwidth provide a balance between sensitivity (range) and data rate.

Applications

Required range is above 1km or transceiver is in poor RF location Suburban security alarms - void buildings, caravan or car storage sites, warehouses Rural security, farm buildings/equipment, livestock monitoring, remote irrigation pumps

Data collection and monitoring over a wide area

FCC Warning Statement:

- This device complies with Part 15 of the FCC Rules.
 - Operation is subject to the following two conditions:
 - (1) This device may not cause harmful interference, and
 - (2) This device must accept any interference received, including interference that may cause undesired operation.
- This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.
- Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Canada Warning Statement:

English:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada.

To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

French:

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada.

Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

eRA-LoRa Transceiver

The easyRadio eRA-LoRa RF transceiver module is a complete sub-system that combines a high performance low power RF transceiver, a microcontroller and a voltage regulator.

The Serial Data Input (SDI) and Serial Data Output (SDO) by default operate at the standard 19,200 Baud and two handshake lines provide optional flow control to and from the host. The easyRadio Transceiver can accept and transmit up to 180 bytes of data, which it buffers internally before transmitting in an efficient over-air code format.

Any other eRA-Lora transceiver, within range and on the same settings, that 'hears' the transmission will decode the message and place the recovered data within a receive buffer that can then be downloaded to the receiving host for processing and interpretation. Radio transmission and reception is bi-directional (half duplex) i.e. transmit OR receive but not simultaneously. Extra internal buffers however, allow the user to upload data while a download is in progress giving the appearance of fully duplex data flow.

Block Diagram

Physical Dimensions

Pin Description

Pin No	Name	Description	Notes		
I	Antenna	50Ω RF input/output. Connect to suitable antenna.			
2	RF Ground	RF ground. Connect to antenna ground (coaxial cable screen braid) and local ground plane. Internally connected to other Ground pins.			
3	Programmable IO	Provisional - TBA			
4	Busy	Digital output indicates that transceiver is ready to receive serial data from host	CTS function		
5	Serial Data Out	Digital output for received serial data to host			
6	Serial Data In	Digital input for serial data to be transmitted			
7	Ready	Digital Input to indicate that Host is Ready to receive serial data from transceiver	RTS function		
8	Vcc	Positive supply pin. +2.5 to +6.0 Volts. This should be a 'clean' noise free supply with less than 25mV of ripple.			
9	Ground	Connect to supply 0 Volt and ground plane			

Notes

The module operates internally from the output of an on-board 3.3 Volt low drop regulator. This regulator will still provide an (unregulated) output below its drop out voltage, down to the minimum operating voltage (1.8V) of the RF IC which at 2.4V allows up to +20dBm RF output. The internal Vreg is not brought out to a specific pin.

The logic levels of the input/output pins are therefore between 0 Volt and the actual output voltage of the internal regulator. Outputs will drive external logic operating at 3.3 Volts. Resistors (10k typical) should be fitted in series with input data lines when interfacing to external 5V logic outputs to prevent driving excess current into inputs and thus damaging them.

The serial inputs and outputs are intended for connection to a UART or similar low voltage logic device. Do not connect any of the inputs or outputs directly to an RS232 port. The transceiver module may be permanently damaged by the voltages (+/- 12V) present on RS232 signal lines.

When handshaking is enabled the 'Host Ready Input' should be held at 0 Volt (Ground) in the idle state.

On power up the transceiver is, by default configured to receive data.

Absolute Maximum Ratings

Operating Temperature Range	-40° C to +85° C
Storage Temperature Range	-40° C to +85° C
Vcc	- 0.3 to + 6.0 Volts
All Other Pins (N.B.)	- 0.3 to +3.3 Volts
Antenna	+10dBm - Should be protected to prevent damage from ESD

Performance Data: eRA-LoRa. Supply +5.0 Volt ± 5%, Temperature 20° C

DC Parameters	Pin	Min	Typical	Max	Units	Notes
Supply Voltage (Vcc)	8	2.5	3.3-5.0	6.0	Volts	
Transmit supply current	8	18	90	125	mA	90mA at +17dBm 125mA at +20dBm
Receive supply current	8	15.2	16	17.4	mA	*2
Sleep Mode current	8		15		μA	
Interface Levels	1					
Data Output Logic I		2.2	3.1	3.1	Volts	10k load to +Vcc supply
Data Output Logic 0			0.1		Volts	10k load to +Vcc supply
Logic Output Current				25	mA	
Data Input Logic I		2.0		3.6	Volts	*1
Data Input Logic 0				0.2	Volts	
Input Pull-ups			100		ΚΩ	*1
RF Parameters						
Antenna Impedance	I		50		Ohms	
Frequency Range		860		1000	MHz	Please refer to local ISM licence free radio regulations. See ER Frequency commands
E D · I	EU	868	869.85	870	MHz	
Frequency Regional	USA	902	903	928	MHz	See ER Configuration commands
Transmitter						
	I		+7	+20	dBm	868MHz - 50Ω load *4
Kr Power Output	I		+17	+20	dBm	915MHz - 50Ω load *4
Frequency accuracy			±10		ppm	Overall
Harmonics/Spurious Emissions			-47	< -36	dBm	Meets EN 300 220-3
Over Air Bit Rate				300	Kbps	(Not the effective Data Rate)
Receiver		SF6		SF12		
		-122		-137	dBm	At 125kHz bandwidth (SF 6 - 12)
		-119		-134	dBm	At 250kHz bandwidth
		-116		-131	dBm	At 500kHz bandwidth
Serial Data Rate		2.4	19.2	115.2	Kbps	Host interface
Logic Timing						
Initial Power Up Time			I		mS	*2,3
Mechanical						
Size			38 x 14 x 4		mm	
Pin Pitch			2.54		mm	(Standard 0.1 Inches)
Weight			3.5		grams	

Notes *:

- 1. The 'Host Ready Input' and the 'Serial Data Input' have 'weak' internal pull-ups enabled.
- 2. The transceiver will then be ready to receive (default) or transmit. It would normally be left in this powered state ready to receive data. Bandwidth 125 kHz = 15.2mA, 250 kHz = 16mA, 500 kHz = 17.4mA
- 3. During power-up the 'Busy' Output line initially goes high and then goes low when ready for use.
- 4. Typical values show restricted with 'Worldwide settings' applied.

easyRadio eRA Configuration Command Set

Key operating parameters of most easyRadio modules can be changed and configured by sending the 'text' (ASCII character) commands detailed below. These commands can also be executed using the free 'easyRadio Companion' software available for download on the LPRS website, any 'Terminal' software like Realterm/Tera Term that operates on a PC or from the host microcontroller.

The commands should be sent exactly as shown: i.e. case sensitive with no spaces between characters. Commands are not executed until the Acknowledgement sequence (ACK) is sent to and processed by the module.

To send the commands follow this procedure:

Send Command from host: e.g. ER_CMD#U5 (Set UART BAUD to 38400) Wait for the completion of the echo of the Command from the module. e.g. ER_CMD#U5 Send the ACK command as the three upper case ASCII characters 'A' 'C' 'K' in sequence with no spaces If enabled from firmware version 4.1.16 the module can reply with 'OK' to indicate correct modification of parameters. Commands ending with '?' or 9-character length do not require an ACK follow up. Some special commands (noted below) do require an ACK

Host Serial Cor	mmunication Settings	5			
Command	UART Data Rate	✓	Tick Indicates Factory Default setti	ng	
ER_CMD#UI	2400				
ER_CMD#U2	4800				
ER_CMD#U3	9600				
ER_CMD#U4	19200	✓			
ER_CMD#U5	38400				
ER_CMD#U6	31250		MIDI - Musical Instrument Digital Ir	nterface (Not supported	by PC UARTS)
ER_CMD#U7	76800		(Not supported by PC UARTS)		
ER_CMD#U8	115200				
ER_CMD#U?	Get UART Value		The module replies with the currer	nt UART data rate value	9
			E.g: ER_CMD#U2 - No 'ACK' is re	equired	
ER_CMD#A70	No Parity	\checkmark	Data = Start, 8 Data, No Parity,	Stop	
ER_CMD#A71	Even Parity		Data = Start, 8 Data, Parity, S	top	
ER_CMD#A72	Odd Parity		Data = Start, 8 Data, Parity, S	top	
ER_CMD#A40	Disable FAST ACK	✓			
ER_CMD#A41	Enable FAST ACK		"FAST ACK"		
			which is the ASCII ACK value. The in replacement of the Txt version of	host will then issue the of "ACK".	a single HEX 6 (0x06) e same single byte 0x06
Transmit RF Po	ower Output Settings			eBA-LoBa	Units
				868 or 902-928	MHz
ER CMD#P0			All frequencies from firmware	-	dBm
ER CMD#PI			version 4.1.16 and above, use a		dBm
ER CMD#P2			single table. Maximum limits for	3	dBm
ER CMD#P3			the band can be capped using	5	dBm
ER CMD#P4			the new W (World	7	dBm
ER CMD#P5			Regulations) Command.	9	dBm
ER CMD#P6			The default W setting is	11	dBm
ER CMD#P7			unrestricted and the user is	3	dBm
ER CMD#P8			responsible to comply with	15	dBm
ER CMD#P9		✓	local laws.	17	dBm
			N.B. RF Power Output conforms w +17dBm selectable firmware/freque	vith and is restricted by	EU & US regulations
ER_CMD#P?	Get Power Value		The module replies with the currer e.g: ER_CMD#P9 - No ACK is req	nt power value. uired.	

l

RF Channel Set	tings							
ER CMD#Cx	Where x =	Channel		E.g. For Cl	nannel I:			
	Number in decimal			ER CMD#	CI or			
				ER_CMD#C01 (leading zero)				
				Value save	d in non-vola	atile EÉPROM		
ER_CMD#C?	Get Channe	el Value		The modu	le replies wit	h the current	channel settin	g
				E.g: ER_CI	1D#C9 - No	o ACK is requ	ired.	
Signal Bandwid	th			Band	width	Data Bata	@ S/E = 10	
	Sot Signal B	andwidth		125		Q77		After sending these
ER_CMD#BI	Default 4 I		1	250		1953	bps	number will be reset to
ER_CMD#B1	Delault 4.1.	101	-	500		3906	bps	Channel 0
ER_CMD#B2	Get Signal F	Sandwidth		500	KLIZ	3700	bps	Chamero
Band Plan	Get Signal L	andwidth						
FR CMD#b0	FU		✓		869 850		MHz	Band base/start frequency
FR CMD#bl					903.000		MH ₇	Furope/ USA
FR_CMD#b6	Custom Set	ting			903.000		MH ₇	b6 user configurable using
ER_CMD#b?	Get curre	ent Band			705.000			absolute frequency settings.
	Plan	and Build						1, 5
Frequency Sett	ings							
ER CMD#F	Set Absolut	e		Sets the at	solute frequ	ency to xxxx	xxx in Hex	Set Frequency of Channel 0
_	Frequency			E.g. ER CI	4D#F33D8C	DB90 sets the	radio	, ,
				frequency	to 86985000	0Hz. This will		
				automatica	lly set Band	Plan to b6		
ER_CMD#F?	Get curren	t		Returns th	e current fre	equency value	as 8 bytes of	Get Frequency of Channel 0
	Frequency	/alue		Hex E.g. El	R_CMD#F?	Returns 33D8	DB90 which	
				is 8698500	00MHz			
Spreading Fact	or	-						
	S/F	Chips		В	andwidth I	Hz	Data	
				BO	BI	B2	Rate	
				125	250 ✓	500	· .	
ER_CMD#s0	6	64		93/5	18/50	37500	bps	4
ER_CMD#s1	/	128		5469	10938	218/5	bps	4
ER_CMD#s2	8	256		3125	6250	12500	bps	4
ER_CMD#s3	9	512		1/58	3516	/031	bps	4
ER_CMD#s4	10	1024	•	977	1953	3906	bps	4
ER_CMD#s5	11	2048		537	1074	2148	bps	S/E 12 at 125kHz not
ER_CMD#s6		4096		IN/A	586	11/1	Dps	supported at this time
ER_CMD#s?	Get Spread	ing Factor						FF
	Poset Mod			Poset mod	lulo and rotr	iovo all Powor		105
	Reset Hour			Reset mod	lule and retr	eve all FOWER		L L6 and above)
	Encryption		1	I PRS Prop	rietary Encr	unt settings (
ER_CMD#ALL	Encryption		-	ЕПОТТОР				
ER_CMD#A50	Handshakin		1	Currently	not available	lf handshakir	g is required	please contact LPRS directly
$FR CMD#\Delta51$	Handshakin	σ On	-	Currenuy	not available		6 is required,	picase contact in No directly.
ER_CMD#a00	RSSI Off	5 0 11	✓	Received S	ignal Strengt	h Indicator		
ER_CMD#a01	RSSI On			Each recei	ved packet d	elivered is pro	eceded by the	8 bit RSSI value of the received
				Dacket	red packet d			
ER CMD#a40	'OK' Cor	nfirmation	✓	• •				
Disabled			When ena	bled, the tra	ansceiver will	reply 'OK' fol	lowing the confirmation 'ACK'	
ER CMD#a41 'OK' Confirmation			from the h	ost.		.,	6	
_	Enabled							
ER_CMD#a50	Disable Sleep mode		✓					
	•			When ena	bled Pin3 m	ust be held lo	w for normal	operation. Setting the pin high
ER_CMD#a51	51 Enable Sleep mode			puts the tr	ansceiver an	d MCU into s	leep mode cor	suming only 15uA.
ER_CMD#S0	Sleep Com	mand		Prior to se	nding this co	ommand, set p	in 7 High. Foll	owing the ACK the current will
				drop to <	20uA. Pull pi	n 5 Low to w	ake from Sleep	D.
				(This is un	related to Pi	n3 Sleep Pin F	unction)	
				lt takes ap	proximately	200uS to ente	er Sleep and ap	proximately 6mS to wake from
				Sleep.				

Test Modes				
ER_CMD#T3	Get Firmware		Returns module firmware revision string	
	Revision		E.g. ERIC-LORA V4.1.16	
ER_CMD#T4	RAW Data Out		Output received data on the CTS pin	
ER_CMD#T7	Read on chip temperature Sensor		Example reply: -15 or 23 (This decimal value is in Celsius)	
ER_CMD#T7xx	Calibrate on-chip temperature sensor		xx = Actual Temp (only calibrate when above 0 degrees)	
ER_CMD#T8	Last Packet RSSI		Returns the Hex value of the RSSI (Received Signal Strength Indicator) register measured on the last valid packet	
Other Special Commands				
ER CMD#L8? Get Serial Number			Returns the unique four byte module serial number in Hex. E.g. 40 00 00 56	
			'ACK' required	
Worldwide Reg	ulations (Firmware Ver	sion	s 4.1.16+)	
ER_CMD#W0		✓	Default – No RF Power output restrictions	
ER_CMD#W1			EU Regulation Band Restrictions	
ER_CMD#W2			USA FCC Restrictions	
ER_CMD#W?			Read the current setting	
Group ID Settin	ng			
ER_CMD#N0xxx	x Enable Group ID		E.g. ER_CMD#N04578 sets the group ID as 0x4578	
			See Notes on Group ID number assignment below	
ER_CMD#N0000	00000 Disable Group ID			
ER_CMD#N0? Get Group ID			Returns the 4 byte Group ID number in Hex. Requires ACK	
Encryption Key				
ER_CMD#N1xxx	x Set Encryption Key	/	e.g. ER_CMD#N121F5 = set Encryption Key to 0x21F5	
			There is no method to read the Encryption Key for security purposes.	

Reserved LoRa Group ID number assignments.

12xx Reserved for standard LoRa communications

34xx Reserved for LoRaWAN communications

00xx and FFxx will default to 12xx

When Group ID's are different to the above reserved values, data is automatically encrypted using LPRS proprietary encryption using the encryption key stored in memory (Default 0000).

Group ID's can also be modified to increase security to the Key as it is used in the calculation creating a 32-bit seed.

Channel Frequencies

Each channel frequency is calculated relative to the Start Frequency of the channel, the Channel Number and the Channel Spacing/Band width.

Three commands control the values of each of these parameters:

ER_CMD#bn	Where n is the Start Frequency in MHz of the Band Plan being used	b
ER_CMD#Cn	Where n is the integer Channel Number	с
ER_CMD#Bn	Where n is the Channel Spacing/Bandwidth in kHz	S

The centre frequency of each channel is calculated using the formula:

Centre Frequency (f) = b + cs + $\frac{s}{2}$

Where

1

ExampleBand plan Start Frequencyb = 0Channel Numberc = 1Channel Spacing/Bandwidths = 500kHz

f = 903.000MHz + 1 x 500kHz + 500kHz/2 = **903.750MHz**

Application & Operation of eRA-LoRa Transceiver

The diagram below shows a typical system block diagram comprising hosts (user's application) connected to easyRadio transceivers. The hosts (A & B) will be monitoring (collecting data) and/or controlling (sending data) to some real world application.

Typical System Block Diagram

The hosts provide serial data input and output lines and two 'handshaking' lines that control the flow of data to and from the easyRadio Transceivers. The 'Busy' output line, when active, indicates that the transceiver is undertaking an internal task and is not ready to receive serial data. The 'Host Ready' input is used to indicate that the host is ready to receive the data held in the buffer of the easyRadio Transceiver.

The host should check before sending data that the 'Busy' line is not high, as this would indicate that the transceiver is unable to reliably receive further data. It should also pull the 'Host Ready' line low and check that no data appears on the Serial Data Output line.

The Busy output is active all the time regardless of handshaking setting. The host Ready is enabled by the handshaking setting command.

Timing Specifications		Units	Notes
Host Serial Input/Output	2400, 4800, 9600, 19200, 38400, 31250 (MIDI), 76800 & 115200	baud	1
Host Character Format	I Start, 8 Data, No Parity, I Stop	Bits	2
End of Data Delay	2 x BAUD Byte Duration	mS	3
RF Transmit duration	Depends on Bandwidth and data rate setting	mS	4
Buffer Size	180	Bytes	5

Notes

- Data is inverted i.e. Start Bit is logic low. The inputs are intended for direct connection to a microcontroller UART or to RS232 inputs and outputs via an RS232 Level translator such as a Maxim MAX232, which invert the logic of the RS232 signals. This allows direct connection to, for example a microcontroller UART. The data rate is user programmable (Default 19200 baud) and may differ between individual units within a system.
- 2. | start, 8 data, | stop = 10 bits @ 104uS/bit = 0.52mS/character at 19200 Baud. (Default)
- 3. The 'End of Data' delay is fixed at twice the character time.
- 4. A fixed package overhead of xx is added to all packets.
- 5. The buffer size is limited to 180 bytes. Sending more than 180 bytes will cause loss of data.
- 6. CTS pin will go high 2 bytes before the buffer is full. This allows characters already sent to be accepted by the ER module.

Product Order Codes

Name	Description	Order Code	
eRA-LoRa	CE/FCC/IC Certified Radio Module	ERA-LORA	

Please contact the sales office for availability of variants of the standard product. The software interface can be customised to specific requirements for high volume applications.

easyRadio Advanced Firmware Versions

Version	Date	Revision	Known Issues
3.6.2XXX	January 2016	Initial Release	
4.1.16	March 2018		Temperature bug.

Document History

Issue	Date	Revision
1.0	February 2016	Provisional datasheet
1.1	August 2016	Amendments for Approvals
1.2	December 2016	Minor additions
1.22	February 2017	New easyRadio Companion commands added
1.23	November 2017	Clarification of Frequency Range
1.3	January 2018	Corrections and clarifications
1.4	May 2018	Corrections, amendments, additional features V4.1.16

Changes to this Document

CopyrightSpecific changes are recorded in the documentation history above.DisclaimerSee: www.lprs.co.ukTerms and Conditions of UseSee: www.lprs.co.ukContact InformationFor further information or technical assistance please contact:

Low Power Radio Solutions Ltd. Two Rivers Industrial Estate Station Lane, Witney Oxon, OX28 4BH England

This data sheet has been updated to reflect changes throughout the range of LPRS modules.

Tel: Fax: Web: Email: Technical: +44 (0)1993 709418 +44 (0)1993 708575 http://www.lprs.co.uk info@lprs.co.uk technical@lprs.co.uk