

T-1³/4(5mm) Bi-Color Indicator LED Lamp

LTL-293SJ AlGaAs Red-Green

Features

- Ultra-brightness chips are matched for uniform light output.
- T-1³/₄ type package.
- · Long life solid state reliability.
- · Low power consumption.
- · I.C. compatible.

Description

The Red/Green LTL-293SJ bicolor lamp is a white diffused, wide viewing angle, dual chips, utilizing Gallium Aluminum Arsenide Ultra-brightness Red Light Emitting Diode and Gallium Phosphide on Gallium Phosphide Green Light Emitting Diode. The dual chips operating dependently of each other.

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm (.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Devices

Part No. LTL-	Lens	Source Color
293SJ		AlGaAs Red
	White Diffused	Green

THROUGH HOLE LAMPS

Absolute Maximum Ratings at Ta=25°C

Parameter	Green	AlGaAs Red	Unit		
Power Dissipation	100	100	mW		
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	200	mA		
Continuous Forward Current	30	40	mA		
Derating Linear From 50°C	0.4	0.5	mA/°C		
Operating Temperature Range	-55°C to +100°C				
Storage Temperature Range	-55°C to +100°C				
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds				

 $\label{eq:Wavelength} \begin{array}{c} \mbox{Wavelength λ (nm)} \\ Fig.1 \quad Relative \ Intensity \ vs. \ Wavelength \end{array}$

Parameter	Symbol	Part No. LTL-293SJ	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity	١v	AlGaAs Red Green	29 12.6	90 40		mcd	l⊧=20mA Note 1,4
Viewing Angle	2 ⊕ ½	AIGaAs Red Green		60		deg	Note 2 (Fig. 6)
Peak Emission Wavelength	λΡ	AlGaAs Red Green		660 565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	AlGaAs Red Green		638 569		nm	Note 3
Spectral Line Half Width	Δλ	AlGaAs Red Green		20 30		nm	
Forward Voltage	VF	AlGaAs Red Green		1.8 2.1	2.4 2.6	v	I⊧=20mA
Reverse Current	IR	AlGaAs Red Green			100 100	•	Vr=4V,Note 5
						μA	Vr=5V,Note 5
Capacitance	с	AlGaAs Red Green		30 35		pF	VF=0,f=1MHz

Electrical /Opitcal Characteristics and Curves at Ta=25°C

Notes:1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

2. θl_2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. Iv need \pm 15% additionary for guaranteed limits.
- 5. Reverse current is controlled by dice source.

тнкоисн ноге

SUMAL