437A Series
 1206 Fast-Acting Ceramic Fuse

Additional Information

Resources

Accessories

Samples

Electrical Characteristics for Series

\% of Ampere Rating	Ampere Rating	Opening Time at $\mathbf{2 5}^{\circ} \mathbf{C}$
100%	$0.250 \mathrm{~A}-8 \mathrm{~A}$	4 hours, Minimum
250%	$0.750 \mathrm{~A}-8 \mathrm{~A}$	5 seconds, Maximum
350%	$0.750 \mathrm{~A}-8 \mathrm{~A}$	1 second, Maximum
	$0.250 \mathrm{~A}-0.500 \mathrm{~A}$	5 seconds, Maximum

Description

The 437A Series AECQ-Compliant fuses are specifically tested to cater to secondary circuit protection needs of compact autoelectronics applications.
The general design ensures excellent temperature stability and performance reliability. In addition to this, the high $1^{2} t$ values typical of the Littelfuse Ceramic Fuse family ensure high inrush current withstand capability.

Features

- Operating Temperature from	Fast response to faulty
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	current to ensure over-current
- 100% Lead-free, Halogen-Free	protection for sensitive
and RoHS compliant	electronic components

- Meets Littelfuse's automotive qualifications*
* - Largely based on Littelfuse internal AEC-Q200 test plan.

Applications

- Li-ion Battery
- TFT Display
- LED Lighting
- Automotive Navigation
- Battery Management System (BMS) System
- Clusters

Agency Approvals

Agency	Agency File Number	Ampere Range
c ${ }^{\circ}$	E10480	0.250A - 8A
(1).	29862	0.250A - 8A

Electrical Specifications by Item

Ampere Rating	Amp Code	Max. Voltage	Interrupting Rating ${ }^{1}$	Nominal Resistance	Nominal Melting I^{2} t	Nominal Voltage Drop At Rated	Nominal Power Dissipation At Rated	Age Appr	
(A)	Amp Code	Rating (V)		(Ohms) ${ }^{2}$	$\left(A^{2} \operatorname{Sec} .\right)^{3}$	Current (V) ${ }^{4}$	Current (W)	$c=\mathbb{N}_{u s}$	\$1
0.250	. 250	125	50A @ 125VAC/DC	2.290	0.003	0.78	0.195	X	x
0.375	. 375	125		1.330	0.010	0.60	0.225	X	x
0.500	. 500	63	50A @ 63VAC/DC	0.908	0.018	0.52	0.260	x	X
0.750	. 750	63	$\begin{gathered} \text { 50A @ 63VAC/DC } \\ \text { 100A @ 63VDC } \end{gathered}$	0.600	0.064	0.45	0.338	x	x
1.00	001.	63	50A @ 63VAC/DC	0.420	0.100	0.41	0.410	x	X
1.25	1.25	63		0.318	0.256	0.40	0.500	X	X
1.50	01.5	63		0.209	0.324	0.39	0.585	x	x
1.75	1.75	63		0.071	0.075	0.27	0.473	X	X
2.00	002.	63		0.062	0.144	0.20	0.400	X	X
2.50	02.5	63	50A@ 45VAC/63VDC	0.043	0.441	0.15	0.375	X	X
3.00	003.	63		0.035	0.506	0.14	0.420	x	X
3.50	03.5	63		0.027	0.777	0.13	0.455	X	X
4.00	004.	63		0.022	1.024	0.13	0.520	X	X
5.00	005.	63		0.0159	2.30	0.13	0.650	X	X
7.00	007.	35	50A@32VAC/35VDC	0.0100	5.02	0.13	0.910	X	X
8.00	008.	35		0.008	7.23	0.13	1.040	X	X
Notes:									
1. AC Interruptin voltage with 2. Nominal Resi 3. Nominal Melting 4. Nominal Volta	gating tested at ime constant < 0.8 stance measured ing ${ }^{2}{ }^{2}$ t measured at age Drop measure	t rated voltage wit 8 msec . with < 10% rated at 1 msec. opening d at rated current	unity power factor. DC Interrupting R urrent. time. fter temperature has stabilized.	ing tested at rated	Devices designed to carry rated current for 4 hours minimum. It is recommended that devices be operated continuously at no more than 80% rated current. See "Temperature Re-rating Curve"for additional re-rating information. Devices designed to be mounted with marking code facing up.				

437A Series
 1206 Fast-Acting Ceramic Fuse

Temperature Re-rating Curve

Note:

1. Re-rating depicted in this curve is in addition to the standard re-rating of 20% for continuous operation.

Example:

For continuous operation at 75 degrees celsius, the fuse should be rerated as follows:
$\left.I=(0.80)(0.85))_{\text {RAT }}=(0.68)\right)_{\text {RAT }}$
Part Numbering System

Soldering Parameters

Reflow Condition		Pb -free assembly
Pre Heat	- Temperature Min ($\mathrm{T}_{\text {s(min) }}$)	$150^{\circ} \mathrm{C}$
	- Temperature Max ($\mathrm{T}_{\text {s(max) }}$)	$200^{\circ} \mathrm{C}$
	- Time (Min to Max) (t_{s})	60-180 seconds
Average Ramp-up Rate (Liquidus Temp (T_{L}) to peak)		$5^{\circ} \mathrm{C} /$ second max.
$\mathrm{T}_{\text {S(max) }}$ to T_{L} - Ramp-up Rate		$5^{\circ} \mathrm{C} /$ second max.
Reflow	- Temperature (T_{L}) (Liquidus)	$217{ }^{\circ} \mathrm{C}$
	- Temperature (\mathbf{t}_{L})	60-150 seconds
Peak Temperature (T_{p})		$260+0 /-{ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature (t_{p})		$20-40$ seconds
Ramp-down Rate		$5^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak Temperature (T_{p})		8 minutes max.
Do not exceed		$260^{\circ} \mathrm{C}$
Wave Soldering		$260^{\circ} \mathrm{C}, 10$ seconds max.

437A Series
 1206 Fast-Acting Ceramic Fuse

Product Characteristics

Materials	Body: Advanced Ceramic Terminations: Ag/Ni/Sn (100\% Lead-free) Element Cover Coating: Lead-free Glass
Moisture Sensitivity Level	IPC/JEDEC J-STD-020, Level 1
Solderability	IPC/EIC/JEDEC J-STD-002, Condition B
Humidity Test	MIL-STD-202, Method 103, Conditions D
Resistance to Solder Heat	MIL-STD-202, Method 210, Condition B
Moisture Resistance	MIL-STD-202, Method 106
Thermal Shock	MIL-STD-202, Method 107, Condition B
Mechanical Shock	MIL-STD-202, Method 213, Condition A
Vibration	MIL-STD-202, Method 201
Vibration, High Frequency	MIL-STD-202, Method 204, Condition D
Dissolution of Metallization	IPC/EIC/JEDEC J-STD-002, Condition D
Terminal Strength	IEC 60127-4

High Temperature Storage	MIL-STD-202 Method 108 with exemptions
Thermal Shock Test	JESD22 Method JA-104, Test Conditions B and N
Biased Humidity	MIL-STD-202 Method 103, 85 10 C/85 operating power for 1000 hrs with
Operational Life	MIL-STD-202 Method 108, Test Condition D
Resistance To Solvents	MIL-STD-202 Method 215
Mechanical Shock	MIL-STD-202 Method 213, Test Condition C
High Frequency Vibration	MIL-STD-202, Method 204
Resistance To Soldering Heat	MILSTD-202 Method 210, Test Condition B
Solderability	JESD22-B102E Method 1
Terminal Strength For SMD	AEC Q200-006
Board Flex	AEC Q200-005
Electrical Characterization	3Temperature Electrical Characterization

Amp Code	Marking Code
.250	\mathbf{D}
.375	\mathbf{E}
.500	\mathbf{F}
.750	\mathbf{G}
001.	\mathbf{H}
1.25	\mathbf{J}
01.5	\mathbf{K}
1.75	\mathbf{L}
002.	\mathbf{N}
02.5	$\mathbf{\mathbf { 0 }}$
003.	\mathbf{P}
3.500	\mathbf{R}
004.	\mathbf{S}
005.	\mathbf{T}
007.	\mathbf{W}
008.	$\mathbf{l X}$

Part Marking System

Packaging

Packaging Option	Packaging Specification	Quantity	Quantity and Packaging Code
8mm Tape and Reel	EIA-481, IEC 60286, Part 3	3000	WRA

