
SxX8BBS Series

F RoHS

Main Features				
Symbol	Value	Unit		
I _{T(RMS)}	0.8	А		
V _{drm} /V _{rrm}	600	V		
I _{gt}	200	μA		

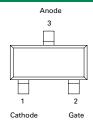
Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit				
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	Pw=100µs		700	V		
I _{T(RMS)}	RMS on-state current (full sine wave)		$T_c = 80^{\circ}C$	0.8	А		
I _{T(AV)}	Average on-state current		$T_c = 80^{\circ}C$	0.51	А		
	Non repetitive surge peak on-state current		f= 50Hz	10	А		
I _{TSM}	(Single cycle, T_j initial = 25°C)		f= 60Hz	12	А		
2t	l²t Value for fusing	t _p = 10 ms	f= 50 Hz	0.5	A ² s		
1-1		t _p = 8.3 ms	f= 60 Hz	0.6	A ² s		
di/dt	Critical rate of rise of on-state current $I_{g} = 10 \text{mA}$	60 Hz	T _J = 125°C	80	A/µs		
I _{GM}	Peak Gate Current	t _p = 20 μs	$T_J = 125^{\circ}C$	1.0	А		
P _{G(AV)}	Average gate power dissipation	—	T _J = 125°C	0.1	W		
T _{stg}	Storage junction temperature range	_	_	-40 to 150	°C		
TJ	Operating junction temperature range	—	_	-40 to 125	°C		

Description

This new sensitive SCR component series offers 600V V_{DRM} and 0.8A I_{T(RMS)} capability capability in the smallest package size in the industry, SOT23. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) applications. All SCRs junctions are glass-passivated to ensure long term reliability and parametric stability.


Features

- Very compact SOT23 SMT package
- Surge current capability up to 12A @ 60Hz
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 600V
- High dv/dt noise immunity

Applications

The SxX8BBS series is specifically designed for GFCI (Ground Fault Circuit Interrupter) and applications.

Pin out

Sensitive gate for direct microprocessor interface
RoHS compliant and Halogen-Free

< 25 µsec

• Improved turn-off time (t_)

Electrical Characteristics (T₁ = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
	DC Gate Trigger Current	V CV P 100 C	MIN.	50	μΑ
GT	DC Gate ingger Current	$V_{\rm D}$ = 6V, $R_{\rm L}$ = 100 Ω	MAX.	200	μA
V _{gt}	DC Gate Trigger Voltage	$V_{_{ m D}}$ = 6V, $R_{_{ m L}}$ = 100 Ω	MAX.	0.8	V
V _{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	MIN.	8	V
I _H	Holding Current	Initial Current = 20mA	MAX.	10	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_{J} = 125^{\circ}C$ $V_{D} = 67\% V_{DRM} N_{RRM}$ Exp. Waveform, $R_{GK} = 1 k\Omega$	MIN.	50	V/µs
V _{gD}	Gate Non-Trigger Voltage	$V_{\rm D} = V_{\rm DRM'} R_{\rm GK} = 1 \ \rm k\Omega$ $T_{\rm J} = 125^{\circ}\rm C$	MIN.	0.2	V
t _q	Turn-Off Time	I _T =0.5A	MAX.	25	μs
t _{gt}	Turn-On Time	I _g =10mA,Pw= 15μsec, I _τ = 1.6A(pk)	TYP.	2.0	μs

Static Characteristics (T_j = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V _{TM}	Peak On-State Voltage	I _{TM} = 1.6A (pk)	MAX.	1.70	V
1 /1		$T_{J} = 25^{\circ}C$	MAX.	5	μA
I _{DRM} /I _{RRM}		T _J = 125°C	MAX.	100	μA

Thermal Resistances

Symbol	Description	Value	Unit
R _{e(JC)}	Junction to case (AC)	45	°C/W
R _{e(J-A)}	Junction to ambient	220	°C/W

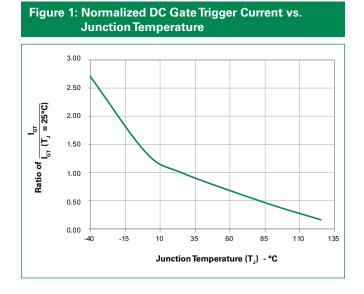
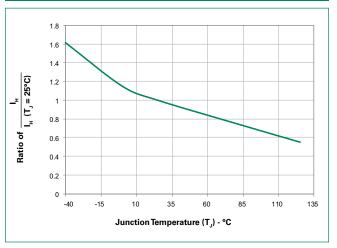
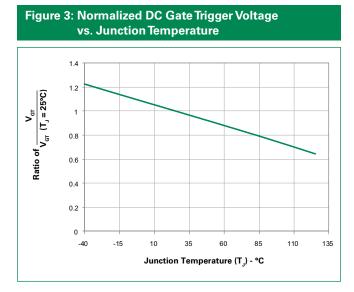
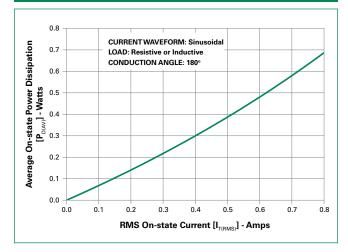
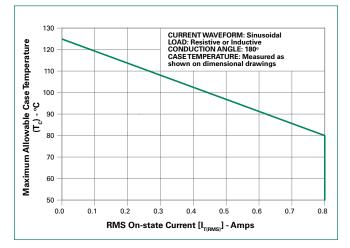
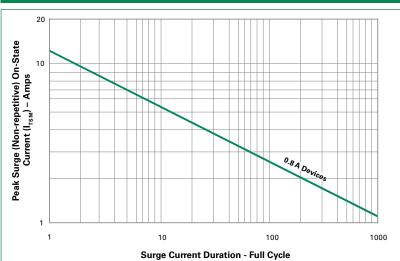




Figure 2: Normalized DC Holding Current vs. Junction Temperature

Thyristors EV Series 0.8 Amp Sensitive SCRs

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

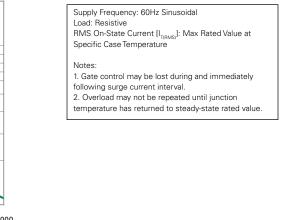

Figure 4: On-State Current vs. On-State Voltage (Typical) 4 Intantaneous On -state Current (I_T) – Amps 3.5 3 2.5 2 1.5 1 0.5 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 0.7 0.8 0.9 1 2 Instantaneous On-state Voltage (V_T) – Volts

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: Surge Peak On-State Current vs. Number of Cycles

5000

1000

100

10

1

1

Typical dv/dt value (V/μs)

25°C

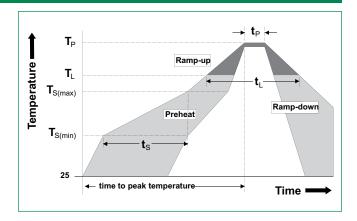

85°C

Figure 8: Static dv/dt vs. RGK vs. Junction Temperature

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T_L) to peak		5°C/second max	
$T_{S(max)}$ to T_{L} - Ramp-up Rate		5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 – 150 seconds	
Peak Temper	rature (T _P)	260 ^{+0/-5} °C	
Time within	5°C of actual peak Temperature (t_p)	20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not exceed		280°C	

Figure 9: Static dv/dt vs. CGK vs. Juntion Temperature

125°0

10

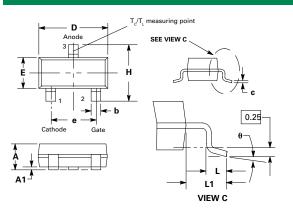
 $\mathbf{C}_{_{\mathrm{GK}}}$ Value (nF)

 $V_{D} = 400V$ $R_{GK} = 1k\Omega$

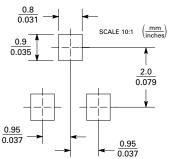
50

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0.
Lead Material	Copper Alloy


Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Reliability/Environmental Tests

Test	Specifications and Conditions
HTRB (AC Blocking)	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ V _{DRM} @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -55°C to +150°C; 15-min dwell-time
H3TRB	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
UHAST	ESD22-A118, 96hours, 130°C, 85%RH
Resistance to Solder Heat	MIL-STD-750 Method 2031, 260°C, 10s
Solderability	ANSI/J-STD-002, category 3, Test A
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020D

Dimensions – SOT-23

SOLDERING FOOTPRINT

Dimensions		Inches		Millimeters		
Dimensions	Min	Тур	Max	Min	Тур	Max
А	0.035	0.040	0.044	0.89	1.02	1.12
A1	0.001	0.002	0.004	0.03	0.05	0.10
b	0.015	0.018	0.020	0.38	0.46	0.51
с	0.003	0.005	0.007	0.08	0.13	0.18
D	0.110	0.114	0.120	2.79	2.90	3.05
E	0.047	0.051	0.055	1.19	1.30	1.40
е	0.070	0.075	0.081	1.78	1.91	2.06
L	0.004	0.008	0.012	0.10	0.20	0.30
L1	0.014	0.021	0.029	0.36	0.53	0.74
Н	0.083	0.094	0.104	2.11	2.39	2.64
θ	0°	-	10°	0°	-	10°

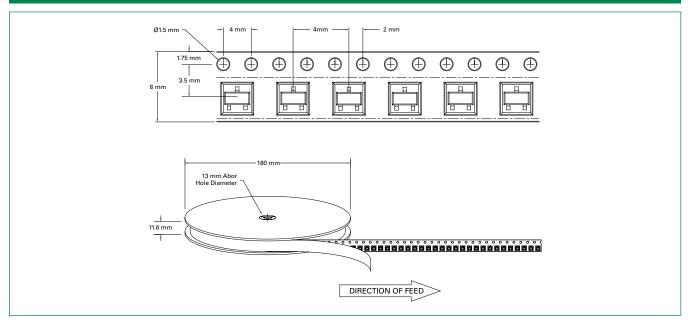
Packing Options				
Part Number	Marking	Weight	Packing Mode	Base Quantity
S6X8BBSRP	6X8	0.01g	Tape & Reel	3000

Product Sele	ctor		
Part Number	Voltage	Gate	Deales
	600V	Sensitivity	Packaç

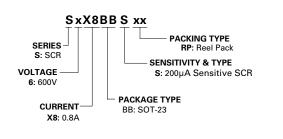
200 µA

Х

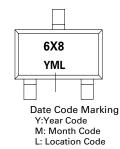
S6X8BBS


ae

SOT-23



Thyristors EV Series 0.8 Amp Sensitive SCRs


SOT-23 Reel Pack (RP) Specifications

Part Numbering System

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.