

High Voltage Rectifiers

 $V_{RRM} = 4800 V$ $I_{F(AV)M} = 10.2 A$

V _{RRM}	Standard Types	Power Designation
4800	UGE 0221 AY4	Si-E 1750 / 775-4

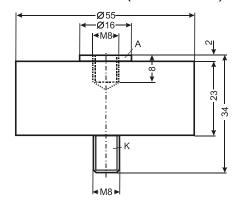
Symbol	Conditions		Ratings	
I _{F(RMS)}	air self cooling,	$T_{amb} = 45^{\circ}C$	16	А
		without cooling platewith colling plate	3.8 5.4	A A
	forced air cooling v = 3 m/s,	g: T _{amb} = 35°C - without cooling plate - with cooling plate	7.0 10.2	A A
	oil cooling,	T _{amb} = 35°C - without cooling plate - with cooling plate	10.2 10.2	A A
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	3.4	kW
I _{FSM}	non repetitive, 50 $\frac{T_{(vj)} = 45^{\circ}C;}{T_{(vj)} = 150^{\circ}C;}$	0 c/s (for 60 c/s add 10%) $t_p = 10 \text{ ms}$ $t_n = 10 \text{ ms}$	180 140	A
T _{amb} T _{stg} T _(vj)	VII	r	-40+150 -40+150 150	°C °C °C
Weight			120	g

Symbol	Conditions		Characteristic	Values
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_R = V_{RRM}$	≤ 2	mA
V _F	$I_F = 30 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		4.8	V
V _{to}	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		2.55 90	V mΩ
а	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Data according to IEC 60747-2

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics


Applications

- X-Ray equipment
- Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

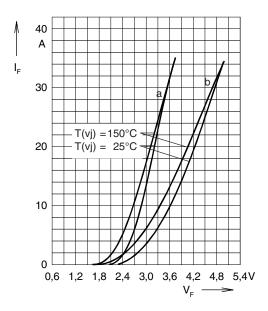


Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature $T_{(vj)}=25^{\circ}C$ and $T_{(vj)}=150^{\circ}C$ a = Mean value characteristic

b = Limit value characteristic

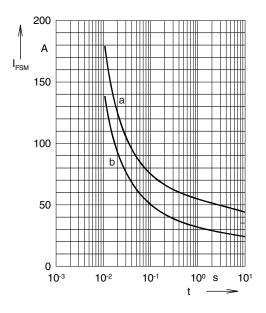


Fig. 2: Characteristics of maximum permissible current
The curves show the non repetitive peak one cycle surge for

The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time t and serve for rating protective devices.

 $\begin{array}{ll} a = Initial \; state & \quad T_{(vj)} = \; 45^{\circ}C \\ b = Initial \; state & \quad T_{(vj)} = \; 150^{\circ}C \end{array}$

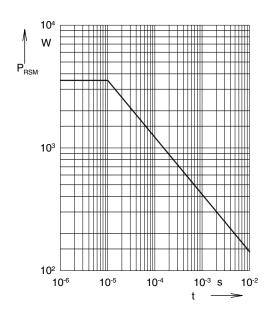


Fig. 3: **Power loss** Non repetitive peak reverse power loss P_{RSM} as a function of time t, $T_{(v)} = 150^{\circ} C$

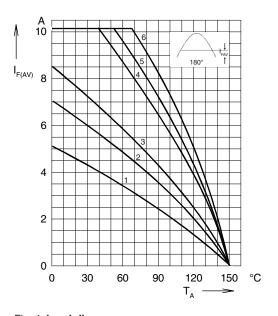


Fig. 4: Load diagramm

Mean forward current $I_{\text{F(AV)}}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 = air self cooling	without	cooling plate
2 = air self cooling	with	cooling plate
3 = forced air cooling	without	cooling plate
4 = forced air cooling	with	cooling plate
5 = oil cooling	without	cooling plate
6 = oil cooling	with	cooling plate

000