

High Voltage Rectifiers

 $V_{RRM} = 24000 V$ $I_{F(AV)M} = 2.0 A$

V _{RRM}	Standard Types	Power Designation
24000	UGE 3126 AY4	Si-E 9000 / 4000-0.7

Symbol	Conditions		Ratings	
I _{F(RMS)}			5	Α
I _{F(AV)M}	air self cooling,	$T_{amb} = 45^{\circ}C$		
		 without cooling plate 	0.8	Α
		 with colling plate 	1.0	Α
	forced air cooling	j:		
	v = 3 m/s,	$T_{amb} = 35^{\circ}C$		
		- without cooling plate	1.4	Α
		- with cooling plate	1.7	Α
	oil cooling,	$T_{amb} = 35^{\circ}C$		
		- without cooling plate	2.0	Α
		- with cooling plate	2.0	Α
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	1.6	kW
I _{FSM}	non repetitive, 50 c/s (for 60 c/s add 10%)			
	$T_{(vj)} = 45^{\circ}C;$	$t_p = 10 \text{ ms}$	70	Α
	$T_{(vj)} = 150^{\circ}C;$	$t_p = 10 \text{ ms}$	60	Α
T _{amb}			-40+150	°C
T _{stg}			-40+150	°C
T _(vj)			150	°C
Weight			127	g

Symbol	Conditions		Characteristic	Characteristic Values	
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_R = V_{RRM}$	≤ 1	mA	
V _F	$I_{F} = 3 A$ $T_{(vj)} = 25^{\circ}C$		18	V	
V _{TO}	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		12 1.8	V Ω	
а	f = 50Hz		5 x 9,81	m/s ²	
M _d			8	Nm	

Data according to IEC 60747-2

Features

- Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics

Applications

- X-Ray equipment
- Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature $T_{(vj)}=25^{\circ}C$ and $T_{(vj)}=150^{\circ}C$ a = Mean value characteristic

b = Limit value characteristic

Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time t and serve for rating protective devices.

 $\begin{array}{ll} a = \text{Initial state} & \quad T_{(vj)} = \quad 45^{\circ}\text{C} \\ b = \text{Initial state} & \quad T_{(vj)} = \quad 150^{\circ}\text{C} \\ \end{array}$

Fig. 3: **Power loss** Non repetitive peak reverse power loss P_{RSM} as a function of time t, $T_{(v)} = 150^{\circ} C$

Fig. 4: **Load diagramm** Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 = air self cooling	without	cooling plate
2 = air self cooling	with	cooling plate
3 = forced air cooling	without	cooling plate
4 = forced air cooling	with	cooling plate
5 = oil cooling	without	cooling plate
6 = oil cooling	with	cooling plate