

### MONO AUTOMOTIVE CLASSD AUDIO AMPLIFIER

#### **GENERAL DESCRIPTION**

The IS32AP2120 is a mono Class D audio amplifier, ideal for use in automotive emergency call (eCall), telematics, instrument cluster, and infotainment applications. The device can deliver 5.8W into 8 $\Omega$  speaker at less than 1% THD+N from a 12V power supply. The wide operating voltage range and excellent efficiency make the device ideal for start-stop support or running from a backup battery when required.

#### APPLICATIONS

- Automotive emergency call (eCall) amplifier
- Telemetric systems
- Instrument cluster systems
- Infotainment audio

#### FEATURES

- 4.5V to 24V operating range
- Mono BTL digital power amplifier
- Loudspeaker power(with AGC) from 12V supply
   5.8W/CH in to 8Ω @1% THD+N
  - 7W/CH into 8Ω @10% THD+N
  - 9W/CH in to 4Ω @1% THD+N
  - 10.2W/CH into 4Ω @10% THD+N
- Up to 90% efficiency
- Differential analog input
- 70dB power supply rejection ratio (PSRR)
- Dynamic temperature control prevents chip from over heating
- AGC (Automatic Gain Control) control function
  - Protection and monitoring functions:
  - Short-circuit protection
  - Output DC level detection while music is playing
  - Over temperature protection
  - Over and under voltage protection
- Thermally enhanced eTSSOP-16 package
- AEC-Q100 Qualified (pending)
- -40°C to +125°C ambient temperature range

#### TYPICAL APPLICATION CIRCUIT




Figure 1 Typical Application Circuit

#### Advance Information July 2016



#### **PIN CONFIGURATION**

| Package   | Pin Configuration (Top View)                                                                                                                                                                                                                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eTSSOP-16 | FAULTB       1        16       PVCC         IN+       2       15       BS+         IN-       3       14       OUT+         AGND       4       13       PGND         GAIN0       5       12       PGND         GAIN1       6       11       OUT-         SDB       7       10       BS-         VDD       8       9       PVCC |

#### PIN DESCRIPTION

| No.   | PIN         | DESCRIPTION                                            |  |
|-------|-------------|--------------------------------------------------------|--|
| 1     | FAULTB      | Active-low open-drain output used to report faults.    |  |
| 2     | IN+         | lon-inverting analog input.                            |  |
| 3     | IN-         | Inverting analog input.                                |  |
| 4     | AGND        | Ground.                                                |  |
| 5     | GAIN0       | Output gain control pin.                               |  |
| 6     | GAIN1       | Output gain control pin.                               |  |
| 7     | SDB         | Active-low SDB pin (no internal pull-up or pull-down). |  |
| 8     | VDD         | nternal 5V voltage.                                    |  |
| 9,16  | PVCC        | Power supply.                                          |  |
| 10    | BS-         | Bootstrap for negative-output high-side FET.           |  |
| 11    | OUT-        | Negative output for channel.                           |  |
| 12,13 | PGND        | Ground.                                                |  |
| 14    | OUT+        | Positive output for channel.                           |  |
| 15    | BS+         | Bootstrap for positive-output high-side FET.           |  |
|       | Thermal Pad | Connect to GND.                                        |  |



#### ORDERING INFORMATION Automotive Range: -40°C To +125°C

| Order Part No.                        | Package              | QTY                  |  |
|---------------------------------------|----------------------|----------------------|--|
| IS32AP2120-ZLA3-TR<br>IS32AP2120-ZLA3 | eTSSOP-16, Lead-free | 2500/Reel<br>96/Tube |  |

Copyright © 2016 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

b.) the user assume all such risks; and



#### ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (Unless otherwise noted) (Note 1).

| ever operating nee an temperature range (ernees earer mee ne |                |
|--------------------------------------------------------------|----------------|
| Supply voltage, V <sub>CC</sub> (Relative to GND)            | -0.3V ~ +30V   |
| Supply voltage ramp rate, V <sub>CC_RAMP</sub>               | 15V/ms         |
| For SDB pin (Relative to GND)                                | -0.3V ~ +5V    |
| For IN+, IN- pins (Relative to GND)                          | -0.3V ~ +6.5V  |
| DC current on VCC, GND and OUTx pins, Icc, Io                | ±4A            |
| Maximum current, on all input pins, IIN_MAX (Note 2)         | ±1mA           |
| Maximum sink current for open-drain pins, IIN_ODMAX          | 7mA            |
| Junction-to-ambient thermal resistance, $\theta_{JA}$        | 39.4°C/W       |
| Storage temperature range, T <sub>STG</sub>                  | -55°C ~ +150°C |
| ESD (HBM)                                                    | ±2kV           |
| ESD (CDM)                                                    | ±0.8kV         |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 2: See Application Information section for information on analog input voltage and ac coupling.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol              | Parameter                                                                                               | Condition                                                                           | Min. | Тур. | Max. | Unit     |
|---------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|------|------|----------|
| Vcc                 | Supply voltage range relative to GND.<br>Includes AC transients, requires proper<br>decoupling.(Note 3) |                                                                                     | 4.5  | 12   | 24   | V        |
| V <sub>CC_RIP</sub> | Maximum ripple on VCC                                                                                   | V <sub>CC</sub> <8V                                                                 |      |      | 1    | $V_{PP}$ |
| V <sub>SD_H</sub>   | SDB pin input voltage for logic-level high                                                              |                                                                                     | 2    |      |      | V        |
| V <sub>SD_L</sub>   | SDB pin input voltage for logic-level low                                                               |                                                                                     |      |      | 0.7  | V        |
| TA                  | Ambient temperature                                                                                     |                                                                                     | -40  |      | 125  | °C       |
| R∟                  | Load impedance range                                                                                    | When using low impedance<br>loads, do not exceed<br>overcurrent limit.              | 3.4  | 4    | 16   | Ω        |
| Rpu                 | External pull-up resistor range                                                                         | Resistor connected between<br>open-drain logic output and<br>V <sub>DD</sub> supply | 10   |      | 50   | kΩ       |



#### **RECOMMENDED OPERATING CONDITIONS (CONTINUE)**

| Symbol | Parameter                                                            | Condition | Min. | Тур. | Max. | Unit |
|--------|----------------------------------------------------------------------|-----------|------|------|------|------|
| L MCC  | External capacitor on VCC pin, typical value ±20% (Note 3)           |           |      | 10   |      | μF   |
| CVDD   | External capacitor on the BYP pin, typical value ±10%                |           |      | 1    |      | μF   |
|        | External capacitance to analog input pin in series with input signal |           |      | 1    |      | μF   |
| CBSP   | External boostrap capacitor, typical value ±20%                      |           |      | 220  |      | nF   |

Note 3: See the Power Supply section.

Note 4: Signal input for full unclipped output with gains of 36dB, 32dB, 26dB, and 20dB

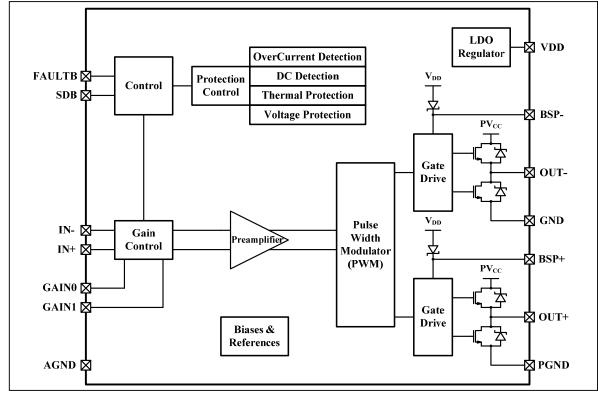
Note 5: Maximum recommended input voltage is determined by the gain setting.

#### **ELECTRICAL CHARACTERISTICS**

 $T_A = 25^{\circ}$ C,  $V_{CC} = 12$ V,  $R_L = 8\Omega$ ,  $P_O = 1$ W/CH, AES17 filter (unless otherwise noted).

| Symbol          | Parameter                                         | Condition                                        | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------------------------------|--------------------------------------------------|------|------|------|------|
| Operating       | Current                                           |                                                  |      |      |      |      |
| Icc             | VCC idle current                                  | In play mode, no audio present                   |      | 16   |      | mA   |
| Isd             | VCC shutdown current                              | SDB mode, V <sub>MUTE</sub> =0V                  |      | 5    | 20   | μA   |
| Output Po       | ower                                              |                                                  |      |      |      |      |
|                 |                                                   | 8Ω, THD≤1%,1kHz,T <sub>A</sub> =25°C             |      | 5.8  |      |      |
| Б               | Output power per channel                          | 8Ω, THD=10%,1kHz,T <sub>A</sub> =25°C            |      | 7    |      | 147  |
| Po              | With AGC                                          | 4Ω, THD≤1%,1kHz,T <sub>A</sub> =25°C             |      | 9    |      | W    |
|                 |                                                   | 4Ω, THD=10%,1kHz,T <sub>A</sub> =25°C            |      | 10.2 |      |      |
| η               | Power efficiency                                  | 8Ω, Po=6W (THD=10%)                              |      | 88   |      | %    |
| Audio Per       | formance                                          |                                                  |      |      |      |      |
| V <sub>NO</sub> | Noise voltage at output                           | Gain=20dB, zero input, and A-weighting           |      | 80   |      | μV   |
| CMRR            | Common-mode rejection ratio                       | f=1kHz, 100mVrms referenced to GND,<br>Gain=20dB |      | 63   |      | dB   |
| PSRR            | Power supply rejection ratio                      | V <sub>cc</sub> =12VDC+1Vrms, f=1kHz             |      | 70   |      | dB   |
| THD+N           | Total harmonic<br>distortion+noise                | P <sub>o</sub> =1W, f=1kHz                       |      | 0.15 |      | %    |
| fs              | Switching frequency                               |                                                  |      | 400  |      | kHz  |
|                 | Voltage gain (V <sub>OUT</sub> /V <sub>IN</sub> ) | Source impedance=0 $\Omega$ , P <sub>0</sub> =1W | 19   | 20   | 21   |      |
| Coin            |                                                   |                                                  | 25   | 26   | 27   | - dB |
| Gain            |                                                   |                                                  | 31   | 32   | 33   |      |
|                 |                                                   |                                                  | 35   | 36   | 37   |      |




**ELECTRICAL CHARACTERISTICS (CONTINUE)**  $T_A = 25^{\circ}C$ ,  $V_{CC} = 12V$ ,  $R_L = 8\Omega$ ,  $P_O = 1W/CH$ , AES17 filter (unless otherwise noted).

| Symbol              | Parameter                                            | Condition                                     | Min. | Тур. | Max. | Unit |
|---------------------|------------------------------------------------------|-----------------------------------------------|------|------|------|------|
| PWM Out             | out Stage                                            |                                               |      |      |      |      |
| R <sub>FET</sub>    | FET drain-to-source resistance                       | TJ=25°C                                       |      | 500  |      | mΩ   |
| VOFFSET             | Output offset voltage                                | Zero input signal, Gain=20dB                  |      | ±5   |      | mV   |
| VCC Over            | Voltage Protection                                   |                                               |      |      |      |      |
| Vov_set             | VCC over voltage shutdown set                        |                                               | 27   | 28   | 29   | V    |
| Vov_hys             | VCC over voltage shutdown<br>hysteresis              |                                               |      | 0.6  |      | V    |
| VCC Unde            | er voltage Protection                                |                                               |      |      |      |      |
| VUV_SET             | VCC under voltage shutdown set                       |                                               | 3.6  | 4    | 4.4  | V    |
| V <sub>UV_HYS</sub> | VCC under voltage shutdown<br>hysteresis             |                                               |      | 0.25 |      | V    |
| VDD                 |                                                      |                                               |      |      |      |      |
| V <sub>VDD</sub>    | VDD pin voltage                                      |                                               | 4.5  | 5    | 5.5  | V    |
| Over Tem            | perature (OT) Protection                             |                                               |      |      | •    |      |
| Tot_sd              | Junction temperature for over temperature shutdown   |                                               |      | 170  |      | °C   |
| Tot_hys             | Junction temperature for over temperature hysteresis |                                               |      | 20   |      | °C   |
| Over Curr           | ent (OC) Shutdown Protection                         |                                               |      |      |      |      |
| Імах                | Maximum current<br>(Peak output current)             |                                               |      | 3.5  |      | А    |
| SDB Pin             |                                                      |                                               |      |      |      |      |
| I <sub>SDB</sub>    | SDB pin current                                      |                                               |      | 0.1  | 0.2  | μA   |
| DC Detect           | :                                                    |                                               |      |      |      |      |
| VDC                 | DC detect threshold                                  |                                               |      | 2.9  |      | V    |
| t <sub>DC</sub>     | DC detect step response time                         |                                               |      |      | 700  | ms   |
| Fault Rep           | ort                                                  |                                               |      |      |      |      |
| Voh_fault           | FAULTB pin output voltage for logic<br>high          |                                               | 2.4  |      |      | V    |
| Vol_fault           | FAULTB pin output voltage for logic low              | External 47 $\Omega$ pull up resistor to 3.3V |      |      | 0.5  | V    |

Note 6: Guaranteed by design.



#### FUNCTIONAL BLOCK DIAGRAM





#### APPLICATION INFORMATION

#### OVERVIEW

The IS32AP2120 is a mono digital audio amplifier, ideal for use in automotive emergency call (eCall), telematics, instrument cluster, and infotainment applications. The device provides up to 6W into  $8\Omega$  at less than 10% THD+N from a 12V automotive battery. The wide operating voltage range and excellent efficiency make the device ideal for start-stop support or running from a backup battery when required.

#### ANALOG AUDIO INPUT AND PREAMPLIFIER

The differential input stage of the amplifier cancels common-mode noise that appears on the inputs. For a differential audio source, connect the positive lead to IN+ and the negative lead to IN-. The inputs must be ac-coupled to minimize the output dc-offset and ensure correct ramping of the output voltages. For good transient performance, the impedance seen at each of the two differential inputs should be the same.

The gain setting impacts the input level of GAIN0 and GAIN1 pins. See Table 1 for typical values.

 Table 1
 Gain Setting

| v    |             |
|------|-------------|
| Gain | GAIN1,GAIN0 |
| 20dB | 00          |
| 26dB | 01          |
| 32dB | 10          |
| 36dB | 11          |

#### PULSE-WIDTH MODULATOR (PWM)

The PWM converts the analog signal from the preamplifier into a switched signal of varying duty cycle. This is the critical stage that defines the Class-D architecture. In the IS32AP2120, the modulator is an advanced design with high bandwidth, low noise, low distortion, and excellent stability.

The pulse-width modulation scheme allows increased efficiency at low power. Each output is switching from 0V to VCC. The OUT+ and OUT- pins are in phase with each other with no input, so that there is little or no current in the speaker. The duty cycle of OUT+ is greater than 50% and OUT- is less than 50% for positive output voltages. The duty cycle of OUT- is greater than 50% and that of OUT+ is less than 50% for negative output voltages. The voltage across the load is at 0V through most of the switching period, reducing power loss.

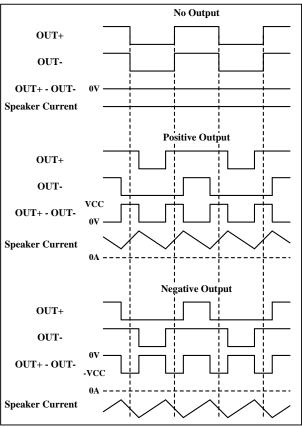



Figure 2 BD Mode Modulation

#### GATE DRIVE

The gate driver accepts the low-voltage PWM signal and level shifts it to drive a high-current, full-bridge, power FET stage. The device uses proprietary techniques to optimize EMI and audio performance.

#### **POWER FETS**

The BTL output comprises four matched N-channel FETs for high efficiency and maximum power transfer to the load.

#### HARDWARE CONTROL PINS

There are three discrete hardware pins for real-time control and indication of device status.

**FAULTB** pin: This active-low open-drain output pin indicates the presence of a fault condition which requires the device to go into the Hi-Z mode. On assertion of this pin, the device has protected itself and the system from potential damage.

**SDB** pin: Assertion of this active-low pin sends the device goes into a complete shutdown, limiting the current draw.



#### **PROTECTION AND MONITORING**

**Undervoltage (UV)** - The undervoltage (UV) protection detects low voltages on VCC. In the event of an undervoltage condition, the device will assert the FAULTB pin.

**Overvoltage (OV)** - OV protection detects high voltages on VCC. If VCC reaches the overvoltage threshold, the device will assert the FAULTB pin.

**Overcurrent Shutdown (OCSD)** - The overcurrent shutdown forces the output into Hi-Z. The device will assert the FAULTB pin.

**DC Detect** - This circuit checks for a DC offset continuously during normal operation at the output of the amplifier. If a DC offset occurs, the device will assert the FAULTB pin. Note that the DC detection threshold follows VCC changes. **Overtemperature Shutdown (OTSD)** - The device shuts down when the die junction temperature reaches the overtemperature threshold. The device will assert the FAULTB pin. Recovery is automatic when the temperature returns to a safe level.

# AGC (AUTOMATIC GAIN CONTROL) CONTROL FUNCTION

This is the function to control the output in order to obtain a maximum output level without distortion when an excessive input is applied which would otherwise cause clipping at the differential signal output. That is, with the AGC function, IS32AP2120 lowers the gain of the digital amplifier to an appropriate value so as not to cause clipping at the differential signal output.

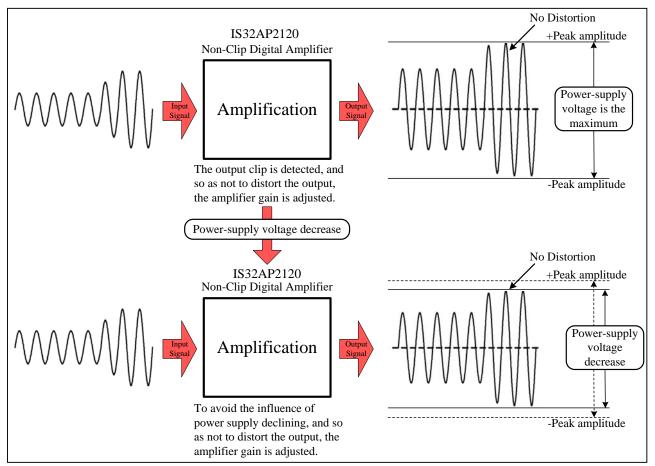



Figure 3 Operation Outline of Clip-less Function



The attack time and the release time of AGC control as below Table 1). The attack time is a time interval that gain falls from no AGC attenuation to target attenuation with a big signal input enough. And the Release Time is a time from target attenuation to no AGC attenuation.

#### Table 1 Attack Time and Release Time

| Attack Time | Release Time |
|-------------|--------------|
| 5ms         | 2.0s         |

With the AGC function of IS32AP2120, the optimum output power can be obtained along with the minimal distortion. The Figure 4 shows the outcome of AGC function.

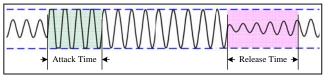



Figure 4 AGC Function ON

#### SPREAD SPECTRUM FUNCTION

The spread spectrum function eliminates the need for output filters, ferrite beads or chokes. In spread spectrum mode, the switching frequency varies randomly by 16% about a 400kHz center frequency, reducing the wideband spectral contend, improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency Class-D exhibits large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the IS32AP2120 spreads that energy over a larger bandwidth. The cycle-to-cycle variation of the switching period does not affect the audio reproduction, efficiency, or PSRR.

#### **DYNAMIC TEMPERATURE CONTROL (DTC)**

The DTC function is designed to protect the loudspeaker from over heating. As the junction temperature is higher than OT\_W, the gain of amplifier will decrease step by step every 0.25s. Finally, as the junction temperature is lower than OT\_R, the attenuated gain steps will be released step by step every 0.5s. If DTC can't suppress the temperature and the temperature reach to the OT trip point (170°C), the amplifier will be shutdown. The OT hysteresis temperature equals to OT\_R. Typically, OT\_W is 160°C and OT\_R is 145°C.

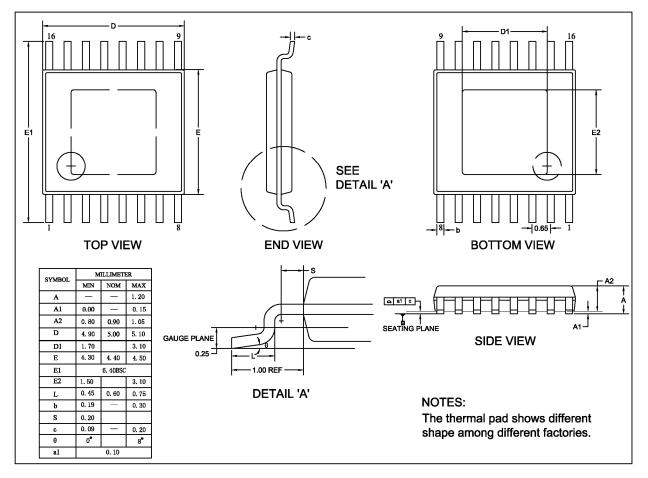



Figure 5 Dynamic Temperature Control Function



#### PACKAGE INFORMATION

#### eTSSOP-16

