

EiceDRIVER[™] 1ED38x0Mc12M Enhanced

Reference manual

Single-channel 5.7 kV (rms) isolated gate driver IC with I2C configurability for DESAT, Soft-off, UVLO, Miller clamp and optional two-level turn-off

Features

- 650 V, 1200 V, 1700 V, 2300 V IGBTs, SiC, and Si MOSFETs
- 40 V absolute maximum output supply voltage
- ±3 A, ±6 A, and ±9 A typical sinking and sourcing peak output current
- Separate source and sink outputs for hard switching or optional two-level turn-off and with active Miller clamp
- I2C bus for parameter configuration and status register readout
- Precise, adjustable, and temperature compensated V_{CEsat} detection (DESAT) with fault output
- Adjustable IGBT soft turn-off after desaturation detection
- Operation at high ambient temperature up to 125 °C with over-temperature shut down at 160 °C (±10 °C)
- Tight IC-to-IC propagation delay matching (t_{PDD,max} = 30 ns)
- Undervoltage lockout protection with hysteresis for input and output side with active shut-down
- Configurable feedback or fault-off behavior for comparator result of integrated ADC
- High common-mode transient immunity CMTI = 200 kV/μs
- Small space-saving DSO-16 fine-pitch package with large creepage distance (>8 mm)
- Safety certification
 - UL 1577 recognized (File E311313) with $V_{ISO,test}$ = 6840 V (rms) for 1 s, V_{ISO} = 5700 V (rms) for 60 s
 - IEC 60747-17/VDE 0884-11 approval (pending) with V_{IORM} = 1767 V (peak, reinforced)
- Refer to the product datasheet for electrical parameters and certification details

Potential applications

- Industrial motor drives compact, standard, premium, servo drives
- Solar inverters
- UPS systems
- Welding
- Commercial and agricultural vehicles (CAV)
- Commercial air-conditioning (CAC)
- High-voltage isolated DC-DC converters
- Isolated switch mode power supplies (SMPS)

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

PG-DSO-16

Device information

Product type	Output current	Isolation class	Marking	OPN
1ED3830MC12M	3 A (typ)	reinforced	3830MC12	1ED3830MC12MXUMA1
1ED3860MC12M	6 A (typ)	reinforced	3860MC12	1ED3860MC12MXUMA1
1ED3890MC12M	9 A (typ)	reinforced	3890MC12	1ED3890MC12MXUMA1
1ED3830MU12M	3 A (typ)	UL 1577	3830MU12	1ED3830MU12MXUMA1
1ED3860MU12M	6 A (typ)	UL 1577	3860MU12	1ED3860MU12MXUMA1
1ED3890MU12M	9 A (typ)	UL 1577	3890MU12	1ED3890MU12MXUMA1

Device information

Description

The 1ED38x0Mc12M family (X3 Digital) consists of galvanically isolated single channel gate driver ICs in a small PG-DSO-16 package with a large creepage and clearance of 8 mm. The gate driver ICs provide a typical peak output current of 3 A, 6 A, and 9 A.

Adjustable control and protection functions are included to simplify the design of highly reliable systems. All parameter adjustments are done from the input side via the I2C interface (pin SDA and SCL).

All logic I/O pins are supply voltage dependent 3.3 V or 5 V CMOS compatible and can be directly connected to a microcontroller.

The data transfer across the galvanic isolation is realized by the integrated coreless transformer technology.

Figure 1 Typical ap

Table of contents

Table of contents

	Table of contents 3
1	Block diagram
2	Related products
3	Functional description
3.1	Start-up and fault clearing
3.2	Supply
3.2.1	Input side undervoltage lockout, <i>VCC1</i> UVLO
3.2.2	Output side under-voltage lockout, <i>VCC2</i> UVLO 11
3.2.3	Output side undervoltage lockout, <i>VEE2</i> UVLO12
3.3	Input side logic
3.3.1	IN non-inverting driver input
3.3.2	<i>RDYC</i> ready status output, fault-off and fault clear input
3.3.2.1	Ready sources and configuration of not ready events
3.3.2.2	RDYC fault-off input
3.3.2.3	<i>RDYC</i> fault clear input
3.3.3	<i>FLT_N</i> status output and fault-off input15
3.3.3.1	Fault sources and configuration of fault events15
3.3.3.2	<i>FLT_N</i> fault-off input
3.3.4	I2C bus
3.3.4.1	I2C bus byte format
3.3.4.2	I2C bus read/write operation
3.3.4.3	I2C bus address
3.4	Operating states
3.4.1	OFF state
3.4.2	Address configuration state
3.4.3	Parameter configuration state
3.4.4	Parameter transfer state
3.4.5	Normal operation state
3.4.6	Not ready state
3.4.7	Fault state
3.4.8	Soft-reset, restore and recovery25
3.4.8.1	Soft-reset
3.4.8.2	Automatic configuration restore from input side
3.4.8.3	Automatic configuration recovery from output side
3.5	Measurement
3.6	Monitoring
3.7	Desaturation protection
3.7.1	DESAT behavior
3.7.2	DESAT adjustment

Table of contents

3.7.2.1	DESAT1 adjustment
3.7.2.2	DESAT2 adjustment
3.8	Gate driver output
3.8.1	Turn-on behavior
3.8.2	Turn-off and fault turn-off behavior
3.8.2.1	Hard switching turn-off
3.8.2.2	Two-level turn-off
3.8.2.2.1	Two-level turn-off behavior at normal operating conditions
3.8.2.2.2	Two-level turn-off behavior at overload condition
3.8.2.2.3	Two-level turn-off short pulse behavior 37
3.8.2.2.4	Two-level turn-off short pulse behavior with slow turn-on ramp speed
3.8.2.3	Soft turn-off
3.8.2.4	Switch-off timeout until forced switch-off
3.8.3	Active shut-down
3.8.4	Active Miller clamp
3.8.4.1	CLAMP output types
3.9	Short circuit clamping
4	Register description 42
4.1	Configuration registers
4.1.1	I2CADD: I2C address of gate driver
4.1.2	I2CGADD: I2C group address of gate driver
4.1.3	I2CCFGOK: I2C address configuration access45
4.1.4	PSUPR: Input pin filter times for <i>IN</i> , <i>RDYC</i> , <i>FLT_N</i> , and I2C
4.1.5	FCLR: <i>FLT_N</i> clear behavior by RDYC or timer
4.1.6	RECOVER: Input and output configuration recovery modes
4.1.7	UVTLVL: UVLO threshold level for VCC2 and VEE2
4.1.8	UVSVCC2C: VCC2 soft UVLO enable and threshold level
4.1.9	UVSVEE2C: <i>VEE2</i> soft UVLO enable and threshold level
4.1.10	ADCCFG: ADC enable and compare polarity51
4.1.11	VEXTCFG: <i>CLAMP</i> pin voltage compare limit53
4.1.12	OTWCFG: Over-temperature warning level and action
4.1.13	D1LVL: DESAT disable and DESAT1 voltage threshold level
4.1.14	D1FILT: DESAT1 filter time and type55
4.1.15	D2LVL: DESAT2 enable during TLTOff, influence on fault off, and voltage threshold level 56
4.1.16	D2FILT: DESAT2 filter time and type58
4.1.17	D2CNTLIM: DESAT2 event counter limit
4.1.18	D2CNTDEC: DESAT2 event count down60
4.1.19	DLEBT: DESAT leading edge blanking time 61
4.1.20	F2ODLY: Delay from fault event to gate driver off62
4.1.21	DTECOR: DESAT temperature compensation63
1122	DRVEOEE: Type of fault switch-off 64

Table of contents

4.1.23	DRVCFG: Type of normal switch-off and TLTOff gate charge range
4.1.24	TLTOC1: TLTOff level and ramp A
4.1.25	TLTOC2: TLTOff duration and ramp B67
4.1.26	CSSOFCFG: Soft turn-off current
4.1.27	CLCFG: CLAMP and pin monitoring filter time and type, CLAMP output types and disable 68
4.1.28	SOTOUT: Switch-off timeout time and fault signaling
4.1.29	CFGOK: Register configuration lock
4.1.30	CLEARREG: Clear event counter registers for DESAT2, VCC1 UVLO, VCC2 UVLO, event flags,
	and soft-reset
4.2	Status registers
4.2.1	Sticky bits
4.2.2	RDYSTAT: Status of input side, output side, and gate driver IC
4.2.3	SECUVEVT: Output side UVLO events causing a not ready state (sticky bits)
4.2.4	GFLTEVT: Indicator of active fault handling
4.2.5	FLTEVT: Fault status and events of input side and output side
4.2.6	PINSTAT: Status of pins
4.2.7	COMERRST: Status of input to output communication
4.2.8	CHIPSTAT: Logic status of gate driver 80
4.2.9	EVTSTICK: Event indicator (sticky bits)
4.2.10	UV1FCNT: Counter of unfiltered <i>VCC1</i> UVLO events
4.2.11	UV2FCNT: Counter of unfiltered VCC2 UVLO events
4.2.12	D2ECNT: Counter of DESAT2 events83
4.2.13	ADCMVDIF: Filtered ADC calculation result of <i>VCC2</i> to <i>GND2</i>
4.2.14	ADCMGND2: Filtered ADC result of <i>GND2</i> to <i>VEE2</i>
4.2.15	ADCMVCC2: Filtered ADC result of VCC2 to VEE2
4.2.16	ADCMTEMP: Filtered ADC result of gate driver temperature
4.2.17	ADCMVEXT: Filtered ADC result of <i>CLAMP</i> to <i>VEE2</i>
5	Application notes
5.1	Reference layout for thermal data
5.2	Printed circuit board guidelines
	Revision history
	Disclaimer

1 Block diagram

Figure 2 Block diagram

2 Related products

2 Related products

Note:

Please consider the gate driver IC power dissipation and insulation requirements for the selected power switch and operating condition.

Product group	Product name	Description
TRENCHSTOP [™]	IKQ75N120CS6	High Speed 1200 V, 75 A IGBT with anti-parallel diode in TO247-3
IGBT Discrete	IKW15N120BH6	High Speed 1200 V, 15 A IGBT with anti-parallel diode in TO247
	IHW40N120R5	Reverse conducting 1200 V, 40 A IH IGBT with integrated diode in TO247
CoolSiC [™] SiC	IMBF170R650M1	1700 V, 650 m Ω SiC MOSFET in TO263-7 package
MOSFET Discrete	IMW120R045M1	1200 V, 45 m Ω SiC MOSFET in TO247-3 package
	IMZ120R350M1H	1200 V, 350 m Ω SiC MOSFET in TO247-4 package
	IMZA65R027M1H	650 V, 27 mΩ SiC MOSFET in TO247-4 package
	IMW65R107M1H	650 V, 107 mΩ SiC MOSFET in TO247-3 package
CoolSiC [™] SiC	F\$45MR12W1M1_B11	EasyPACK [™] 1B 1200 V / 45 mΩ sixpack module
MOSFET Module	FF6MR12W2M1_B11	EasyDUAL [™] 2B 1200 V, 6 mΩ half-bridge module
	F3L11MR12W2M1_B74	EasyPACK [™] 2B 1200 V, 11 mΩ 3-Level module in Advanced NPC (ANPC) topology
	F4-23MR12W1M1_B11	EasyPACK [™] 1B 1200 V, 23 mΩ fourpack module
TRENCHSTOP [™]	F4-200R17N3E4	EconoPACK [™] 3 1700 V, 200 A fourpack IGBT module
IGBT Modules	F\$150R17N3E4	EconoPACK [™] 3 1700 V, 150 A sixpack IGBT module
	FF650R17IE4	PrimePACK [™] 3 1700 V, 650 A half-bridge dual IGBT module
	FF1000R17IE4	PrimePACK [™] 3 1700 V, 1000 A half-bridge dual IGBT module
	FF1200R17IP5	PrimePACK [™] 3+ 1700 V, 1200 A dual IGBT module
	FF1500R17IP5	PrimePACK [™] 3+ 1700 V, 1500 A dual IGBT module
	FF1500R17IP5R	PrimePACK [™] 3 1700 V, 1500 A dual IGBT module
	FF1800R17IP5	PrimePACK [™] 3+ 1700 V, 1800 A dual IGBT module
	FP10R12W1T7_B11	EasyPIM [™] 1B 1200 V, 10 A three phase input rectifier PIM IGBT module
	FS100R12W2T7_B11	EasyPACK [™] 2B 1200 V, 100 A sixpack IGBT module
	FP150R12KT4_B11	EconoPIM [™] 3 1200V three-phase PIM IGBT module
	FS200R12KT4R_B11	EconoPACK [™] 3 1200 V, 200 A sixpack IGBT module

3 Functional description

The 1ED38x0Mc12M family (X3 Digital) consists of galvanically isolated single channel gate driver ICs with an extensive digital adjustable feature parameter set. All adjustments are done from low voltage input side during start up via I2C bus. The configuration is stored into registers.

To start-up the gate driver IC for normal operation both input and output sides of the gate driver IC need to be powered.

The 1ED38x0Mc12M family (X3 Digital) is designed to support various supply configurations on the input and output side. On the output side unipolar and bipolar supply is possible.

The output stage is realized as rail-to-rail. There the gate driver voltage follows the supply voltage without an additional voltage drop. In addition it provides an easy clamping of the gate voltage during short circuit of an external IGBT.

The *RDYC* status output reports correct operation of the gate driver IC like sufficient voltage supply. The *FLT_N* status output reports failures in the application like desaturation detection.

To ensure safe operation the gate driver IC is equipped with an input and output side under-voltage lockout circuit. The UVLO levels are optimized for IGBTs and MOSFETs, and are adjustable.

The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The gate driver IC reacts on a DESAT fault by turning off the IGBT with one of the following configurable turn-off methods:

- two-level turn-off
- adjustable soft-off
- hard switch-off

The two-level turn-off (TLTOff) is a voltage controlled turn-off function.

The soft turn-off function is used to switch-off the external IGBT in overcurrent conditions in a soft-controlled manner to protect the IGBT against collector emitter over-voltages.

An adjustable active Miller clamp function protects the IGBT from parasitic turn-on in fast switching applications.

The 1ED38x0 family also offers several measurement and monitoring functions. The monitoring functions can be divided into:

- hardware based functions and
- ADC measurement based functions.

3.1 Start-up and fault clearing

For normal operation both input and output sides of the gate driver IC need to be powered. A low level at the *FLT_N* pin always indicates a fault condition. In this case the IC starts internal mechanisms for fault clearing.

Input side start-up

- **1.** Voltage at *VCC1* reaches the input UVLO threshold: input side of gate driver IC starts operating
- 2. *FLT_N* follows input supply voltage
- 3. Input side is ready to communicate across I2C bus, awaiting user gate driver parameter configuration
- 4. Records parameters received across the I2C bus
- 5. Waits until output side is powered
- 6. Initiates internal start-up: Transfers configured values to output side
- **7.** Performs internal self-test

The complete start-up time t_{START1} depends on the duration of the user parameter configuration.

Output side start-up

- **1.** Voltage at *VCC2* reaches the output UVLO threshold: output side of gate driver IC starts operating
- 2. Activates OFF gate driver output: connected gate stays discharged
- 3. Waits until input side is powered

3 Functional description

- 4. Initiates internal start-up: Receives configured values from input side
- 5. Performs internal self-test
- The complete start-up time t_{START2} depends on the duration of the user parameter configuration.

The gate driver IC releases *RDYC* to high to signal a successful start-up and its readiness to operate. The gate driver IC will follow the status of the *IN* signal.

Clearing a fault with *RDYC* to low cycle

- **1.** Set *IN* to low
- 2. Set *RDYC* to low for a duration longer than the fault clear time *t*_{CLRMIN}
- 3. Release *RDYC* to high
 - **a.** If the source of the fault is no longer present, *FLT_N* is released to high
 - **b.** If another fault source is active, *FLT_N* stays low and the cycle needs to be repeated
- 4. Continue PWM operation

Clearing a fault by self clear timer

- **1.** Set *IN* to low
- 2. Self clear timer starts counting
- 3. Self clear timer reaches self clear time
 - **a.** If the source of the fault is no longer present, *FLT_N* is released to high
 - **b.** If another fault source is active, *FLT_N* stays low and the timer restarts
- 4. Continue PWM operation

3.2 Supply

The 1ED38x0Mc12M family (X3 Digital) is designed to support various supply configurations. The input side can be used with a 3.3 V or 5 V supply.

The output side requires either an unipolar supply (*VEE2* = *GND2*) or a bipolar supply.

- Individual supply voltages between VCC2 and GND2 or GND2 and VEE2 shall not exceed 25 V.
- The total supply voltage between *VCC2* and *VEE2* shall not exceed 35 V.

To ensure safe operation of the gate driver IC, it is equipped with an input and output side undervoltage lockout circuit.

Unipolar supply

In unipolar supply configuration the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2. *GND2* and VEE2 are connected together and this common potential is connected to the IGBT emitter.

Figure 3 Application example with unipolar supply

Bipolar supply

For bipolar supply the gate driver IC is typically supplied with a positive voltage of 15 V at VCC2 and a negative voltage of -8 V or -15 V at VEE2 relative to GND2.

Between VCC2 and VEE2 the maximum potential difference is 35 V.

Figure 4 Application example with bipolar supply

Negative supply prevents a parasitic turn-on due to the additional voltage margin to the gate turn-on threshold.

VEE2 over GND2 supply connection check

The gate driver IC has a built-in connection check for *VEE2*. A loss of *VEE2* connection will be detected and signaled via *RDYC*.

3.2.1 Input side undervoltage lockout, VCC1 UVLO

To ensure correct operation of the input side and safe operation of the application the gate driver IC is equipped with an input supply undervoltage lockout for *VCC1*.

UVLO behavior during start-up:

- **1.** The voltage at the supply terminal *VCC1* reaches the *V*_{UVL01H} threshold
- 2. The gate driver IC waits on the address and parameter configuration and synchronizes it with the output side
- 3. The IC releases the *RDYC* output to **high** and is ready to operate.

The complete start-up time t_{START1} depends on the duration of the user parameter configuration.

UVLO behavior during shut-down:

• If the supply voltage V_{VCC1} of the input side drops below V_{UVLO1L} the *RDYC* signal is switched to **low** and the output will be switched off.

The fault signal *FLT_N* follows the input supply voltage.

3 Functional description

Figure 5 UVLO VCC1 behavior

The gate driver IC supports an alternative UVLO detection in order to provide the means of analyzing the quality of the *VCC1* power supply. The number of unfiltered UVLO comparator output transitions is stored in the register *UV1FCNT*.UV1F_CNT and can be read out via I2C bus.

3.2.2 Output side under-voltage lockout, VCC2 UVLO

To ensure correct operation of the output side and safe operation of the IGBT in the application, the gate driver IC is equipped with an output supply undervoltage lockout for *VCC2* versus *GND2*.

UVLO behavior during start-up:

- If the voltage at the supply terminal VCC2 reaches the V_{UVLO2H} threshold the gate driver first needs to transfer the input side configuration to the output side before the *RDYC* output is released to **high**.
- The rising voltage at the output side triggers a soft-reset at the input side unless
 - a new set of parameters has been written while the output side was off or
 - the *RECOVER*.RESTORE bit was already set to 1_B.

In that cases, the gate driver transfers the configuration to the output side and releases the *RDYC* output to **high**.

The complete start-up time t_{START2} depends on the duration of the user parameter configuration. UVLO behavior during shut-down:

• If the supply voltage V_{VCC2} of the output side drops below V_{UVLO2L} the *RDYC* signal is switched to **low** and the output will be switched off.

3 Functional description

Figure 6 UVLO VCC2 behavior

Any *V*_{UVLO2L} event will lead to a fault-off and a *RDYC* low level. The actual UVLO threshold selection is done in register *UVTLVL*.UVVCC2TL. Going below this threshold will set the UVLO event register bit *SECUVEVT*.UV_VCC2. If the supply voltage drops further the output side resets and needs a restart to configure its parameters again. If the supply voltage recovers immediately without triggering a reset the gate driver IC will also release *RDYC* to high.

The gate driver IC is supporting an alternative UVLO detection in order to provide the means of analyzing the quality of the *VCC2* power supply. The number of unfiltered UVLO2 comparator output transitions is stored in the register **UV2FCNT**.UV2F_CNT and can be read out via I2C bus.

In addition the 1ED38x0 family offers the feature to measure, monitor and readout the *VCC2* voltage through an integrated ADC to tune the system behavior and adjust according to system/IGBT requirements.

3.2.3 Output side undervoltage lockout, VEE2 UVLO

The 1ED38x0 family offers three adjustable UVLO thresholds for the negative *VEE2* supply rail tailored for the typical operation conditions like -5 V or -8 V or -15 V supply versus *GND2*. Start up/shut down behavior is identical to a *VCC2* UVLO event assuming the *VEE2* UVLO is configured.

VEE2 UVLO is handled in the undervoltage event register *SECUVEVT*.UV_VEE2, an *V*_{UVLO3L} event will lead to a fault off and a *RDYC* low level. Configure the negative UVLO level in register *UVTLVL*.UVVEE2TL. A 00_B in this register disables the *VEE2* UVLO, e.g. for unipolar supply.

In addition the 1ED38x0 family offers the feature to measure, monitor, and readout the *VEE2* voltage through an integrated ADC to tune the system behavior and adjust according to system/IGBT requirements.

3.3 Input side logic

The input threshold levels are always CMOS compliant. The threshold levels are 30% of *VCC1* for low level and 70% of *VCC1* for high level.

The pins *IN* and *SCL* are for input only, and the pins *SDA*, *FLT_N*, and *RDYC* are input/output pins.

3.3.1 IN non-inverting driver input

The input pin has a positive logic. To turn on the associated IGBT apply a logic high signal at the *IN* pin. The 1ED38x0 family offers the adjustment of the *IN* input filter time with two trimmed values of typical 103 ns and 183 ns, as described in register *PSUPR*. The selected filter time directly influences the propagation delay.

3.3.2 *RDYC* ready status output, fault-off and fault clear input

The *RDYC* pin is a logic input and open drain output and has three different functions:

- *RDYC* as ready status output of all ready sources
- RDYC as fault-off input
- RDYC as fault clear input

In a typical application the *RDYC* pins of all gate driver ICs in the inverter are connected together and form a single wire *RDYC* signal.

An external pull-up resistor is required to ensure *RDYC* status output during operation.

3.3.2.1 Ready sources and configuration of not ready events

Not ready events are signaled at *RDYC* pin by switching the pin voltage to *GND1*. The gate driver offers configurable and non configurable not ready events.

Ready source	Status register bit(s)	Configuration register bit(s)	Configuration description
Internal signal transmission	COMERRST .CRC_PRI, .CR C_SEC, .PCT_COM, .CRC_C OM, .DCT_COM	n.a.	non-configurable, always enabled
VEE2 over GND2	n.a gate driver in reset	n.a.	non-configurable, always enabled
VCC1 supply UVLO	n.a gate driver in reset	n.a.	non-configurable, always enabled
VCC2 supply UVLO ¹⁾	SECUVEVT.UV_VCC2	n.a.	non-configurable, always enabled
VCC2 supply soft UVLO ²⁾	SECUVEVT.UVSVCC2	UVSVCC2C.UVSVCC2E	1 _B enables soft UVLO monitoring
		UVSVCC2C.UVSVCC2L	configures soft UVLO level
		ADCCFG.VINT_EN	1 _B enables ADC for internal voltages
VEE2 supply UVLO ¹⁾	SECUVEVT.UV_VEE2	UVTLVL.UVVEE2TL	>0 _D enables UVLO monitoring

Table 1Ready sources and configuration registers

3 Functional description

Table 1

Ready source	Status register bit(s)	Configuration register bit(s)	Configuration description		
VEE2 supply soft UVLO ²⁾	SECUVEVT.UVSVEE2	UVSVEE2C.UVSVEE2E	1 _B enables soft UVLO monitoring		
		UVSVEE2C.UVSVEE2L	configures soft UVLO level		
		ADCCFG.VINT_EN	1 _B enables ADC for internal voltages		
Gate driver configuration	CHIPSTAT.CONFIG, CHIPSTAT.ACTIVE	I2CCFGOK.I2CCFGOK	1 _B locks user address configuration		
		CFGOK.USER_OK	1 _B locks user configuration		

Ready sources and configuration registers (continued)

1) A complete loss of secondary supply voltage followed by a power-up can result in a soft-reset on the input side requiring a parameter re-configuration.

2) If soft UVLO is enabled, but ADC measurement is not enabled a soft UVLO event will be signaled due to ADC output value of 00_H.

3.3.2.2 *RDYC* fault-off input

Pulling *RDYC* to low disables the operation of the gate driver IC. The gate driver IC ignores *IN* signals as long as the *RDYC* pin stays low and the IC uses its fault-off function to switch-off the IGBT.

The defined minimum adjustable pulse width (*PSUPR*.IN_SUPR) makes the IC robust against glitches at *RDYC*. The gate driver ignores pulses with a shorter duration.

Figure 7 RDYC short pulse behavior of external manipulation of the RDYC pin

After an external *RDYC* low signal the IC is actively pulling *RDYC* to low until the voltage at *ON* pin falls below the *VEE2*+2 V threshold.

The *RDYC* fault-off input is active low.

3.3.2.3 *RDYC* fault clear input

To use the *RDYC* as fault clear input, the register bit *FCLR*.FCLR_CFG needs to be 0_B . Setting *RDYC* to low for longer than the fault clear time t_{CLRMIN} will reset the stored fault signal at pin *FLT_N* with the rising edge of *RDYC*. Additionally the following conditions have to be met as well:

- PWM /N pin level needs to be low,
- voltage at ON pin has dropped below the VEE2+2 V threshold, and
- triggering fault condition is no longer present.

The typical fault clear time t_{CLRMIN} is 1.0 µs.

3 Functional description

Figure 8 RDYC fault clear timing

Figure 9 RDYC fault clear rising edge to FLT_N

3.3.3 *FLT_N* status output and fault-off input

The *FLT_N* pin is a logic input and open drain output and has two different functions:

- *FLT_N* as fault-status output for fault sources
- *FLT_N* as fault-off input

In a typical application the *FLT_N* pins of all gate driver ICs in the inverter are connected together and form a single wire *FLT_N* signal.

An external pull-up-resistor is required to ensure *FLT_N* status output during operation.

3.3.3.1 Fault sources and configuration of fault events

Fault events are signaled at *FLT_N* pin by switching the pin voltage level to *GND1*. The gate driver offers configurable and non-configurable fault events.

Fault source	Status register bit(s)	Configuration register bit	Configuration description			
Over temperature protection	FLTEVT .OTP_EVT	n.a.	non-configurable, always enabled			
Over temperature warning	FLTEVT.OTW_EVT	OTWCFG.OTW_ACFG	0 _B disables OTW event			
Desaturation detection of IGBT	FLTEVT .D1_EVT, .D2_EVT	D1LVL.D_DIS	1 _B disables DESAT completely, no event monitoring			
Secondary desaturation detection of IGBT	FLTEVT.D2_EVT	D2LVL.D2_ACFG	0 _B disables DESAT2 event			
Switch-off timeout	FLTEVT.SOTO_EVT	SOTOUT.SOTOUT_F	0 _B disables timeout event			
CLAMP pin voltage limit	FLTEVT.VEXTFLT	ADCCFG.VEXTL_EN	0 _B disables limit event			

 Table 2
 Fault sources and configuration registers

3 Functional description

The status register bits still highlight a possible fault event even if their configuration register disables the triggering of *FLT_N*. The desaturation detection configuration with register bit *D1LVL*.D_DIS however disables this part of the integrated circuit and therefore disables also both DESAT events.

3.3.3.2 *FLT_N* fault-off input

Pulling *FLT_N* to low disables the operation of the gate driver IC. The gate driver IC ignores *IN* signals as long as the *FLT_N* pin stays low and the IC uses its fault-off function to switch-off the IGBT.

The defined minimum adjustable pulse width (*PSUPR*.IN_SUPR) makes the gate driver IC robust against glitches at *FLT_N*.

After a low at the *FLT_N* pin either internally or externally applied, the fault event is latched until cleared. The *FLT_N* fault-off input is active low.

Figure 11 FLT_N short pulse behavior of external manipulation of the FLT_N pin cleared by RDYC

3.3.4 I2C bus

The 1ED38x0 family is equipped with a standard I2C bus interface to configure various parameters of the gate driver IC and read out measurement and monitoring registers.

Key I2C features include:

- I2C bus slave device implementing all mandatory slave bus protocols for the specification UM10204 rev. 6
- 7 bit device addresses for individual and group addressing
- Initial I2C device address: 1A_H (MSB aligned, bits 7:1)
- Signal voltage level compatible to 3.3 V and 5 V
- Supported bus speeds at gate driver data pin (SDA) and clock pin (SCL):
 - standard-mode (Sm), with bit rates up to 100 kbit/s
 - fast-mode (Fm), with bit rates up to 400 kbit/s
 - fast-mode plus (FM+), with bit rates up to 1 Mbit/s

3 Functional description

All I2C bus commands start with a start condition and stops with a stop condition. The data at the *SDA* pin gets valid if *SCL* level is above the CMOS level threshold and the filter time has elapsed.

3.3.4.1 I2C bus byte format

All register addresses and data bytes of the 1ED38x0 family are 8 bit values. The serial data line (*SDA*) transmits and receives with the most significant bit (MSB) first.

There are two register areas implemented:

- register addresses from 00_H to 25_H are used for configuration and
- register addresses from 26_H to 37_H are used as status registers.

Figure 13 Write byte format (starting at register address)

The addressing byte is transmitted MSB first and includes the 7 bit I2C address followed by the \overline{Wr}/Rd bit at LSB position. Throughout this documentation, the hexadecimal device addresses are always written in this 8 bit format. In the configuration registers the 7 bit I2C addresses are aligned to LSB without the \overline{Wr}/Rd bit.

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Address register byte	res	A6	A5	A4	A3	A2	A1	A0
SDA addressing byte	A6	A5	A4	A3	A2	A1	A0	W/R
Default address: 1Ан	0	0	0	1	1	0	1	0

Figure 14 I2C address alignment in register and during transmission

All registers have a data size of 8 bit, but not all bits are implemented in all registers. Not implemented data bits read as 0_B unless specified otherwise.

3.3.4.2 I2C bus read/write operation

Read and write operations are controlled by the I2C master (microcontroller).

Write byte (starting at specific register address)	
1 7 1 1 8 1 1 S Slave address Wr Ack Register address Ack Data byte Ack P	
Write n-bytes (starting at specific register address)	
1 7 1 1 8 1 8 1 8 1 1 S Slave address Wr Ack Register address Ack Data byte (add.) Ack Data byte (add.+1) Ack Data byte (add.+n) Ack P	
Read byte (starting at specific register address)	
1 7 1 1 8 1 1 7 1 1 8 1 1 S Slave address Wr Ack Register address Ack S Slave address Rd Ack Data byte Nack P	
Read n-bytes (starting at specific register address)	
1 7 1 1 8 1 1 7 1 1 8 1 8 1 S Slave address Wr Ack Register address Ack S Slave address Rd Ack Data byte (add.) Ack Data byte (add.+1) Ack Data byte	8 1 1 ∋ (add.+n) Nack P
Read byte (starting at first status register)	
1 7 1 1 8 1 1 S Slave address Rd Ack Data byte Nack P	
Read n-bytes (starting at first status register)	
1 7 1 1 8 1 8 1	

Figure 15 Read/write operation

Write byte and write n-bytes to register

- **1.** I2C master (microcontroller) to initiate write with start bit followed by 7 bit slave address (gate driver) and write bit
- 2. Target gate driver answers with acknowledge (ACK)
- 3. Master to send 8 bit target register address
- 4. Target gate driver answers with ACK and sets internal register address
- 5. Master to send the data byte for current register
- 6. Target gate driver answers with ACK if target register is writable and increases internal register address by $1_{\rm H}$
- 7. Steps 5 and 6 can be repeated to send multiple bytes to consecutive registers
- 8. Master finalizes data write by sending a stop bit

Read byte and read n-bytes from specific register

- 1. I2C master (microcontroller) to initiate write with start bit followed by 7 bit slave address (gate driver) and write bit
- 2. Target gate driver answers with acknowledge (ACK)
- 3. Master to send 8 bit target register address
- 4. Target gate driver answers with ACK and sets internal register address
- 5. Master begins new read session with start bit followed by 7 bit slave address (gate driver) and read bit
- 6. Target gate driver answers with acknowledge (ACK)
- 7. Target gate driver sends 8 bit data byte from current register and increases internal register address by 1_H
- 8. Master is responsible for ACK/NACK to control read of consecutive registers
 - **a.** When responding with ACK, the master is waiting for another data byte and the sequence continues at number 7
 - **b.** When responding with NACK, the master terminates the read session
- **9.** Master finalized data read by sending a stop bit

Read byte and read n-bytes from status register

- 1. I2C master (microcontroller) to initiate read with start bit followed by 7 bit slave address (gate driver) and read bit
- 2. Without a preceding register write the gate driver sets the internal register address to the first status register
- 3. Target gate driver answers with acknowledge (ACK)
- 4. Target gate driver sends 8 bit data byte from current register and increases internal register address by 1_H
- 5. Master is responsible for ACK/NACK to control read of consecutive registers
 - **a.** When responding with ACK, the master is waiting for another data byte and the sequence continues at number 4
 - **b.** When responding with NACK, the master terminates the read session
- 6. Master finalized data read by sending a stop bit

3.3.4.3 I2C bus address

The gate driver IC has two configurable 7 bit addresses:

- device address *I2CADD*, e.g. for dedicated read out or configuration
- group address *I2CGADD* to configure all gate driver ICs in the same group within one write cycle

Both addresses have to be set at start up. Configured addresses have to differ from the initial LSB aligned I2C device address $0D_{\rm H}$.

Address configuration after power up

The gate driver IC is configured to start up with the initial I2C device address. To set the device addresses the input side has to be powered up and *VCC1* is stable above the turn-on undervoltage lockout level. At this point, the gate driver IC is still in OFF state.

Address configuration steps:

- **1.** Set *RDYC* to low to deactivate the gate driver IC
- 2. Set *IN* to high to select the gate driver IC (chip select, IC enters address configuration state)
- 3. Send an I2C write command with 4 data bytes to the initial MSB aligned I2C device address 1A_H
 - a. Data byte 1: Target device register address 00_H (Register/2CADD)
 - **b.** Data bytes 2, 3: 7 bit device address and 7 bit group address aligned from bit 6 to bit 0
 - **c.** Data byte 4: value for *I2CCFGOK* = 01_{H} , to accept and lock the address registers
- **4.** All data bytes will be acknowledged by the gate driver IC to indicate successful transmission and address acceptance, the gate driver IC enters parameter configuration state
- 5. Release *IN* and *RDYC*, the gate driver IC is now addressable using the addresses transferred

Address configuration during gate driver operation

To re-configure the I2C addresses while the gate driver IC is already in normal operation mode it needs to be switched to the address configuration state by executing the following steps:

- **1.** Set *RDYC* to low, entering not ready state
- 2. Send an I2C write command with 2 data bytes to the current device address
 - a. Data byte 1: Target device register address 1C_H (Register CFGOK)
 - **b.** Data byte 2: Value 00_H, to enter parameter configuration state

3. Send again an I2C write command with 2 data bytes to the current device address

- a. Data byte 1: Target device register address 02_H (Register I2CCFGOK)
- **b.** Data byte 2: Value 00_H, to enter address configuration state and unlock address registers
- **4.** Follow the steps 2 to 5 of the address configuration after power up to complete the address reconfiguration

Address configuration notes

- Attention: The gate driver IC does not acknowledge (NACK) a write of 01_H to I2CCFGOK if the address registers contain an invalid address.
- *Note:* Reserved I2C bus addresses are not allowed but will be neither checked nor will the gate driver IC send a NACK (not acknowledge) in response to such an address.

3.4 Operating states

The 1ED38x0 family of gate driver ICs can take the following states:

- OFF state, device not powered
- Address configuration state, the I2C addresses can be set, gate driver IC is not active
- Parameter configuration state, the gate driver parameters can be set and changed, gate driver IC is not active
- Parameter transfer state, the gate driver IC is transferring the parameters from input side to output side, gate driver IC is not active
- Normal operation, gate driver IC is active, ON and OFF outputs are following the IN signal, registers are read only
- Not ready state, gate driver IC is switched off according to fault off settings, status signaled by a low at *RDYC* pin
- Fault state, gate driver IC is switched off according to fault off settings, status signaled by a low at *FLT_N* pin
- See later section for additional sub states on fault clear, soft-reset, recover, and restore of parameter configuration after power loss

Figure 16 Operating state diagram

- Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for logic pins with low (0), high (1), or either (x)
- Register names in uppercase bold letters followed by the register bit name and value
- States in bubbles with transitions marked by arrows with conditions attached

3.4.1 OFF state

The OFF state is the default state of a non-powered gate driver IC. No operation is possible.

- Input side is not powered.
- Output side is off while powered or in active shut down while unpowered.
- All commands besides input chip power-up are ignored.

Signal condition to enter state:

VCC1 power down

3 Functional description

Signal condition to leave state:

• to address configuration state: VCC1 power ok, VCC1 has passed upper UVLO1 threshold, IN is high

3.4.2 Address configuration state

The address configuration state is used to enter or change the I2C device address and is the first state after the OFF state. The gate driver IC is ready to receive the device addresses.

Register access in this state:

- I2CADD, I2C device address: read/write
- *I2CGADD*, group address: read/write
- I2CCFGOK, address configuration access lock register: read/write

Signal condition to enter state:

- from OFF state: *VCC1* power ok, *VCC1* is passing upper UVLO1 threshold, *IN* is high
- from parameter configuration state: register bit I2CCFGOK.I2CCFGOK set to 0_B

Signal condition to leave state:

to parameter configuration state: registers I2CADD and I2CGADD set according to the I2C and gate driver IC address requirements, register bit I2CCFGOK.I2CCFGOK set to 1_B

3.4.3 Parameter configuration state

The parameter configuration state is used to configure or change device function and parameter and is the default state after address configuration state.

Register access in this state:

- address registers: read only
- I2CCFGOK: read/write
- configuration registers: read/write
- status register: read only

Signal condition to enter state:

- from address configuration state: register bit I2CCFGOK.I2CCFGOK set to 1_B
- from not ready state: register bit CFGOK.USER_OK set to 0_B
- from a soft-reset

Signal condition to leave state:

- to parameter transfer state: register bit CFGOK.USER_OK set to 1_B
- to address configuration state: register bit I2CCFGOK.I2CCFGOK set to 0_B

3.4.4 Parameter transfer state

The parameter transfer state is used to transfer the configuration registers from primary to secondary side. Register access in this state:

• status, configuration and address registers: read only

Signal condition to enter state:

- from parameter configuration state: register bit CFGOK .USER_OK set to 1_B
- Signal condition to leave state:
- to normal operation state: VCC2/VEE2 power okay and register bit RDYSTAT.SEC_RDY set to 1_B

3.4.5 Normal operation state

The normal operation state is used for status register read and PWM operation. Register access in this state:

• status, configuration and address registers: read only

Signal condition to enter state:

- from parameter transfer state: register bit *RDYSTAT*.SEC_RDY set to 1_B
- from fault state: intermediate states of fault clear flow
- from not ready state: *RDYC* signal released

Signal condition to leave state:

- to fault state: FLT_N signal externally pulled to low or register bit GFLTEVT.SEC_FLTN = 0_B indicating a fault source from output side
- to not ready state: RDYC signal pulled to low

3.4.6 Not ready state

The not ready state is used to indicate an inactive gate driver IC with PWM operation disabled. Register access in this state:

- **CFGOK** register: read/write
- status, configuration and address registers: read only
- Signal condition to enter state:
- from normal operation state: RDYC signal pulled to low
- Signal condition to leave state:
- to normal operation state: RDYC signal released
- to parameter configuration state: CFGOK.USER_OK set to 0_B

3.4.7 Fault state

The fault state is used during and after a fault turn off until the fault condition is cleared. Register access in this state:

status, configuration and address registers: read only

Signal condition to enter state:

from normal operation state: FLT_N signal externally pulled to low or register bit GFLTEVT.SEC_FLTN = 0_B indicating a fault source detected by the output side of the gate driver IC

Signal condition and flow to leave state:

3 Functional description

Figure 17 Fault clear using self clear timer

- Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for logic pins with low (0), high (1), or either (x)
- Register names in uppercase bold letters followed by the register bit name and value
- States in bubbles with transitions marked by arrows with conditions attached

Register bit FCLR.FCLR_CFG = 1_B (Fault clear using self-clear timer)

- 1. register bit *GFLTEVT*.SEC_FLTN = 1_B, indicating that the fault source is no longer triggering and the fault off sequence is completed
- **2.** register bit *FLTEVT*.VOUT_ST = 0_B , indicating that the output switch-off is done
- 3. *IN* pin switched to low to enter the fault clear pending state
- **4.** staying in fault clear pending for the duration of the configured self clear time *FCLR*.FSCLR_T without having a new fault trigger *GFLTEVT*.SEC_FLTN = 0_B
- **5.** after fulfilling the above conditions the gate driver IC releases the *FLT_N* pin and returns to normal operation state

Figure 18 Fault clear using *RDYC* pin

- Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for logic pins with low (0), high (1), or either (x)
- Register names in uppercase bold letters followed by the register bit name and value
- States in bubbles with transitions marked by arrows with conditions attached

Register bit *FCLR*.FCLR_CFG = 0_B (Fault clear using *RDYC* pin)

- 1. register bit *GFLTEVT*.SEC_FLTN = 1_B, indicating that the fault source is no longer triggering and the fault off sequence is completed
- **2.** register bit *FLTEVT*.VOUT_ST = 0_B , indicating that the output switch-off is done
- 3. *IN* pin switched to low
- 4. *RDYC* pin switched to low to enter the fault clear pending state

3 Functional description

- 5. staying in fault clear pending for the duration of the fault clear time t_{CLRMIN} without having a new fault trigger **GFLTEVT**.SEC_FLTN = 0_B
- 6. *RDYC* pin released to high
- **7.** after fulfilling the above conditions the gate driver releases the *FLT_N* pin and returns to normal operation state

3.4.8 Soft-reset, restore and recovery

The 1ED38x0 family offers three configuration related modes:

- soft-reset of all configuration registers to return to their reset values
- automatic restore of all output registers after an output not ready event
- automatic recovery of all input registers after an input not ready event

Both restore and recovery are independent and can be enabled at the same time. The automatic restore or recovery can only work if one driver side stays supplied.

3.4.8.1 Soft-reset

The soft-reset configuration register bit *CLEARREG*.SOFT_RST allows to clear all configuration registers. Unless the automatic restore of output registers is configured, a soft-reset will also be triggered after a severe output side UVLO event.

After a reset the registers will have their reset values and the gate driver IC returns to the parameter configuration state. The I2C address registers *I2CADD*, *I2CGADD*, and *I2CCFGOK* will not be affected, only the configuration registers need a new set of parameters.

3.4.8.2 Automatic configuration restore from input side

The gate driver IC is equipped with an advanced configuration restore function. If the output side lost its configuration (e.g. *VCC2* UVLO triggered soft-reset) the input side is trying to restore the data from the input side to the output side as soon as the output side is ready again.

The function is configured in register bit **RECOVER**.RESTORE

- 0_B = restore not active, the gate driver IC will
 - perform a soft-reset,
 - clear parameter configuration bit **CFGOK**.USER_OK to 0_B, and
 - stay in parameter configuration state and wait for the user to re-configure the settings
- 1_B = restore active, the gate driver IC will
 - restore the output side and
 - release RDYC and enter normal operation state

3 Functional description

Figure 19

State diagram of output configuration restore from input side

- Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for logic pins with low (0), high (1), or either (x)
- Register names in uppercase bold letters followed by the register bit name and value
- States in bubbles with transitions marked by arrows with conditions attached

The output side power down state is a not ready state where additional conditions apply. The regular path to parameter configuration state is also possible. Otherwise the gate driver IC leaves this state to parameter transfer state after a successful output side power up. After the register transfer the status register bit **RDYSTAT**.SEC_RDY will be set to 1_B and the gate driver IC returns to normal operation state.

A successful restore will be signaled by the sticky bit in the register bit **EVTSTICK**.SRESTORE.

3.4.8.3 Automatic configuration recovery from output side

The gate driver IC is equipped with an advanced configuration recovery function. If the input side lost its configuration (e.g. UVLO event at *VCC1*) the input side is trying to recover the data from the output side as soon as the input side is ready again.

The function is configured in register *RECOVER*.RECOVER:

- 0_B recover not active, gate driver IC will
 - perform a soft-reset,
 - clear parameter configuration bit CFGOK.USER_OK and I2CCFGOK.I2CCFGOK to 0_B, and
 - returns to OFF state
- 1_B recover active, gate driver IC will
 - recover the configuration from the output side,
 - release RDYC, and
 - enter normal operation state

Figure 20 State diagram of input configuration recover from output side

- Pin names in uppercase italic letters, supply pin status listed as either okay (ok) or not okay (nok) and for logic pins with low (0), high (1), or either (x)
- Register names in uppercase bold letters followed by the register bit name and value
- States in bubbles with transitions marked by arrows with conditions attached

3 Functional description

The input side power down state is an extended off state. The gate driver IC leaves this state to parameter transfer state after a successful input side power up. After the register transfer the status register *RDYSTAT*.PRI_RDY will be set to 1_B and the gate driver IC returns to normal operation state. A successful recover will be signaled by the sticky bit in the register *EVTSTICK*.SRECOVER.

3.5 Measurement

The 1ED38x0 family offers several measurement functions and uses a free running successive-approximationregister analog-to-digital converter (SAR-ADC). The SAR-ADC has a 8 bit resolution and the results are digitally filtered with a three-point-two pass moving average filter.

Following internal and external parameter measurements are available:

- ADCMVCC2 Measurement VCC2 to VEE2
- **ADCMVDIF** Measurement and calculation VCC2 to GND2
- ADCMGND2 Measurement GND2 to VEE2
- ADCMTEMP Measurement junction temperature T_J
- ADCMVEXT Measurement external voltages, e.g. NTC

Measurement result registers will be updated sequentially depending on selected sample sources. The update rate is typically below 100 $\mu s.$

The SAR-ADC configuration register *ADCCFG* is used to activate measurement channels and external voltage compare behavior. Measurement of internal junction temperature is always active. Activated SAR-ADC measurements also enable monitoring functions.

3.6 Monitoring

The 1ED38x0 family offers many monitoring functions. The monitoring functions can be divided into:

Hardware based functions

The hardware based monitoring functions use dedicated hardware, e.g. fast UVLO.

ADC-based functions

The ADC-based functions gather measured values of different parameters and compare them with limit values. Enable ADC measurement to use related ADC-based monitoring functions.

Both groups contain non-configurable and configurable functions.

Non-configurable hardware monitoring:

- VEE2 over GND2, e.g. VEE2 connection failure
- Turn-off monitoring, V_{ON} > VEE2+2 V (FLTEVT.VOUT_ST = 1_B)
- Gate voltage monitoring below VEE2+2 V (*PINSTAT*.ON_PIN = 1_B)
- Gate voltage monitoring above VCC2-2 V (*PINSTAT*.OFF_PIN = 1_B)
- Gate voltage monitoring above V_{TLTOFF} (**PINSTAT**.TLTO_LVL = 1_B)
- Pin status monitoring of *IN* pin high (*PINSTAT*.PWM_IN = 1_B)
- Pin status monitoring of *RDYC* pin high (*PINSTAT*.RDYC = 1_B)
- Pin status monitoring of *FLT_N* pin high (*PINSTAT*.FLT_N = 1_B)
- *VCC1* supply voltage UVLO spike detection (*UV1FCNT*)
- VCC2 supply voltage UVLO spike detection (UV2FCNT)

Configurable hardware monitoring:

- Normal VCC2 supply UVLO event (SECUVEVT.UV_VCC2)
- Normal VEE2 supply UVLO event (SECUVEVT.UV_VEE2)
- Switch-off timeout, V_{ON} > VEE2+2 V and maximal switch-off timeout time elapsed (*FLTEVT*.SOTO_EVT)

Non-configurable ADC-based monitoring:

- Over temperature protection event (*FLTEVT*.OTP_EVT)
- Configurable ADC-based monitoring:
- VCC2 supply soft UVLO event (SECUVEVT.UVSVCC2)
- VEE2 supply soft UVLO event (SECUVEVT.UVSVEE2)
- External voltage compare event (*FLTEVT*.VEXTFLT)
- Over temperature warning event (*FLTEVT*.OTW_EVT)

Gate driver reaction to VEE2 over GND2 detected

A VEE2 over GND2 event triggers the following sequence:

- **1.** IC detects *VEE2* over *GND2*
- 2. IC initiates an output side reset, including
 - Activation of active shutdown as a safety measure
 - Resetting all configuration registers to their reset values
 - Ignoring all PWM signals and reporting a not ready state
- 3. IC listens to its previously configured I2C address
 - If *RECOVER*.RESTORE = 1_B, the gate driver IC will restore the output side configuration from the input side
 - If *RECOVER*.RESTORE = 0_B, the gate driver IC performs a soft-reset and waits for a re-configuration via I2C bus
- **4.** After the configuration of the output side is valid again, the IC continues operation
- *Note:* To avoid unintended VEE2 over GND2 detection, take extra care in power supply design, routing, and capacitive blocking at these pins.

3.7 Desaturation protection

The desaturation detection circuit protects the external IGBT from destruction at a short circuit. The desaturation protection follows the given sequence:

- 1. Voltage at *DESAT* pin reaches DESAT threshold level, e.g. 9.18 V, for a period of time exceeding the filter time
- 2. Gate driver IC output switches the external IGBT off, using the defined fault off method
- 3. Gate driver IC switches *FLT_N* pin to low to indicate the fault to a connected microcontroller
- 4. Short circuit situation is resolved
 - after the voltage at the ON pin has dropped below the VEE2+2 V threshold,
 - no other fault condition is present,
 - the input has been turned off and
 - the fault has been cleared using the defined fault clear method

Figure 21 DESAT circuit (only relevant pins shown)

The high-precision internal current source results in a minimum impact on the DESAT detection variation.

3.7.1 DESAT behavior

The DESAT function offers a leading edge blanking time and filters to optimize the DESAT detection for application usage.

The leading edge blanking inhibits threshold detection during an IGBT turn on phase. The typical IGBT turn on behavior starts with charging of the gate, commutation of the application load current and finally V_{CE} voltage decrease to V_{CEsat} voltage levels. To prevent the gate driver IC from detecting a false DESAT event, leading edge blanking pauses the DESAT circuit until the time $t_{DESATleb}$ has elapsed.

Following the leading edge blanking time, the gate driver IC forces the DESAT current into the external DESAT circuit. The current typically flows through a protection resistor, a fast high voltage diode and the collector-emitter path of the IGBT. The resulting voltage at the *DESAT* pin is the sum of the voltage drop across this path.

During a short circuit condition, the V_{CE} voltage increases, resulting in a reverse polarity condition of the DESAT diode. The remaining DESAT current also increases the voltage level at the *DESAT* pin and triggers the DESAT threshold. If the pin voltage level stays above the threshold for the duration of the DESAT filter time $t_{DESATfilter}$, the gate driver IC registers the DESAT event and acts accordingly.

The internal processing time after DESAT threshold crossing, filtering and beginning of fault-off is defined as t_{DESATOUT} . The duration of the gate discharge during fault-off is defined as $t_{\text{FLTOFFtot}}$ and is depending on the defined fault off function and the gate load.

3 Functional description

3.7.2 DESAT adjustment

The 1ED38x0 family has two sets of DESAT sensors with individual configuration registers to tailor the gate driver IC to different requirements for overcurrent turn-off or monitoring.

3.7.2.1 DESAT1 adjustment

DESAT1 is the classical desaturation detection function, and its behavior is adjustable by the following parameters:

- DESAT1 voltage threshold level, register field **D1LVL**.D1_V_LVL
- DESAT voltage temperature compensation, register field DTECOR.DTE_COEF/DTE_OS
- DESAT leading edge blanking time, register field **DLEBT**.D_LEB_T
- DESAT1 filter time, register field **D1FILT**.D1FILT_T
- DESAT1 filter type, register field **D1FILT**.D1FILT_C

A DESAT1 event sets the fault status event bit D1_EVT in the register field *FLTEVT*, starts a fault turn-off sequence and signals via *FLT_N* to low a fault status event.

3.7.2.2 DESAT2 adjustment

DESAT2 is an additional and partly independent desaturation detection sensor and its behavior is configurable by the following parameters.

- DESAT2 voltage threshold level, register **D2LVL**.D2_V_LVL
- DESAT voltage temperature compensation, register DTECOR.DTE_COEF/DTE_OS
- DESAT leading edge blanking time, register *DLEBT*.D_LEB_T
- DESAT2 filter time, register **D2FILT**.D2FILT_T
- DESAT2 filter type, register **D2FILT**.D2FILT_C
- DESAT2 event counter limit, register D2CNTLIM.D2CNTLIM
- DESAT2 long time filter, IN counter decrement DESAT2 events, register **D2CNTDEC**.D2CNTDEC

3 Functional description

- DESAT2 enable during two-level turn-off, register D2LVL.D2_TLCFG
- DESAT2 action configuration, register D2LVL.D2_ACFG

The DESAT2 detection block and its configuration suites various application use cases. Besides the DESAT voltage filter for noise and spike filtering, the 1ED38x0 family supports with two counters a long time filter setup. With this setup the DESAT2 can be tailored to different applications.

- Duplication of DESAT1 with different voltage and timing setting: different noise filter settings compared to DESAT1, e.g. short DESAT1 filter time and high DESAT1 threshold for fast events (low impedance short circuit) and long DESAT2 filter time and lower DESAT2 threshold for slow events (high impedance short circuit)
- Repetitive DESAT event detection:

fast DESAT2 detection (DESAT2 filter time shorter than DESAT1 filter time) and event counter or DESAT2 event density in relation to *IN* input; density detection is used if the effect is mainly a thermal effect of short DESAT events

- Monitoring of DESAT2 events:
 - with lower voltage and filter settings than DESAT1 for margin analysis, either through counting events or through event density
 - with lower voltage and filter settings than DESAT1 for early warning
 - tuning of two-level turn-off to monitor under which operating conditions the IGBT desaturates during the TLTOff plateau.

Therefore the DESAT2 fault status bit *FLTEVT*.D2_EVT is set either at a single DESAT2 event or after multiple counted DESAT2 events.

DESAT2 action configuration is set in the register bit **D2LVL**.D2_ACFG:

Table 3 DESAT2 action configuration and status bit clearing

It determines the behavior of the gate driver IC after the configured DESAT2 fault status occurred. This bit also defines how the corresponding status register bit *FLTEVT*.D2_EVT can be cleared.

Action configuration	Behavior	Clearing status bit
D2LVL .D2_ACFG = 0 _B	Monitoring only, no autonomous turn- off, no <i>FLT_N</i> signaling	Clear event counter D2ECNT by setting CLEARREG .D2E_CL = 1 _B
D2LVL .D2_ACFG = 1 _B	Monitoring; start fault-off sequence; <i>FLT_N</i> signaling	defined fault clear method

3.8 Gate driver output

The gate driver output side uses MOSFETs to provide a rail-to-rail output. Therefore, the gate drive voltage follows the supply voltage closely.

Due to the low internal voltage drop, the switching behavior of the IGBT is predominantly governed by the external gate resistor. The gate driver IC offers separate sink and source outputs to adapt the gate resistor for turn-on and turn-off separately without additional bypass components.

The cell value x in the following table is placeholder for high or low and indicates that this pin does not influence the resulting gate driver output state. The arrow (\Rightarrow) in cells indicate the transition initiated by the pin of the logic input and gate driver supply pins resulting in a transition to the gate driver output state as listed.

Table 4Driver output state including transition behavior

Logic input and gate driver supply					Gate driver	output		
IN	RDYC	FLT_N	VCC1	VCC2	ON	OFF		
Static gate driver output state: on and off								
high	high	high	high	high	high	tri-state		
low	high	high	high	high	tri-state	low		
Transition	to not ready and s	tatic not ready s	state					
x	high → low	high	high	high	→ tri-state	→ fault off		
x	low	high	high	high	tri-state	low		
Transition	to fault and static	fault state	L.	·				
x	high	high → low	high	high	→ tri-state	→ fault off		
x	high	low	high	high	tri-state	low		
Transition	with VCC1 power l	oss and unsupp	lied input side	·				
x	x	x	high → low	high	→ tri-state	→ fault off		
x	x	x	low	high	tri-state	low		
Transition	with VCC2 power l	oss and unsupp	lied output sid	e				
x	x	x	х	high → low	→ tri-state	→ fault off		
x	x	x	x	low	tri-state	active shut down		

3.8.1 Turn-on behavior

The 1ED38x0Mc12M family (X3 Digital) is optimized for hard switching turn-on. A turn-on command switches the *ON* pin internally to *VCC2*.

3.8.2 Turn-off and fault turn-off behavior

The gate driver IC supports different turn-off sequences to adapt to different applications and IGBT currents during normal switching operation and in the case of a fault.

Turn-off reason	Turn-off sequence			Remark
	Hard switching	Two-level turn-off	Soft turn-off	
normal off	Х	Х		adjustable
fault turn-off	Х	Х	X	adjustable

The gate driver turn-off behavior can be configured in register **DRVCFG**.STD_OFF.

The gate driver fault turn-off behavior can be configured in register **DRVFOFF**.DRV_FOFF.

In some topologies the fault turn-off needs to be delayed for individual switch positions. The fault turn-off delay time $t_{FAULTOFFn}$ is adjustable in the register **F2ODLY**.F2O_DLY.

The gate driver monitors the gate voltage and sets the register bit *FLTEVT*.VOUT_ST to 1_B as long as the voltage at the *ON* pin is above *VEE2* + 2 V.

Once started, the fault turn-off sequence cannot be interrupted by an *IN* = low turn-off signal.

3 Functional description

Figure 24 Fault turn-off sequence initiated by DESAT event

3.8.2.1 Hard switching turn-off

Hard switching turn-off supports fast switching applications and applications with emitter-follower booster stages. The switching behavior of the IGBT is controlled by adjusting the external gate resistance between the *OFF* pin and the IGBT gate.

3.8.2.2 Two-level turn-off

The two-level turn-off (TLTOff) is a voltage controlled turn-off function.

Two-level turn-off supports secure IGBT turn-off even under overload conditions with low V_{CE} overshoot. It also operates in applications with emitter-follower booster stages, typical for high power applications with larger di/dt. With two-level turn-off the switching behavior of the IGBT is controlled by the plateau voltage and the ramp speed.

The gate driver IC is switching the IGBT gate off by discharging from positive supply to an intermediate voltage level plateau to reduce a collector over current and continued turn-off thereafter. In detail this includes:

- **1.** Discharge gate from *VCC2* voltage level to intermediate voltage level with the controlled voltage ramp A.
- **2.** At the intermediate gate voltage level the IGBT collector current is being limited at overload application conditions.
- **3.** The configured duration of ramp A and intermediate voltage level depends on individual application requirements.
- **4.** Finally the gate voltage is further reduced by the controlled voltage ramp B until the IGBT is completely switched off and the gate voltage reaches *VEE2*.

The gate driver two-level turn-off function can be activated in register**DRVCFG**.STD_OFF. The behavior can be adjusted with four parameters in the registers **TLTOC1** and **TLTOC2**.

3 Functional description

In the two-level turn-off mode, the turn-on propagation delay is a function of the plateau time and the gate driver propagation delay without TLTOff function t_{PDon} . This means the gate driver propagation delay will be enlarged by the plateau time for turn-on to ensure a constant on-time of the switch. The two-level turn-off does not change the on-time of an *IN* pulse. The TLTOff voltage will be controlled in a closed loop at the *OFF* output pin of the gate driver IC.

For switch-off initiated by:

- the *IN* signal, the gate driver IC is starting the TLTOff sequence after the propagation delay
- the DESAT function, the gate driver switch-off is delayed by desaturation sense to OFF delay and an optional fault-off delay
- a non-DESAT fault event or a not ready event on output side, the gate driver switch-off occurs immediately or after an optional fault-off delay

After the elapsed plateau time the gate driver IC switches from the plateau voltage down to VEE2 voltage.

fault event output side	
ON + OFF	

Figure 26 Two-level turn-off after fault event (output side)

For switch-off initiated by:

• *FLT_N* or *RDYC* signal or an internal fault event from input side, the output is switched off after the propagation delay with an optional fault off delay using the defined fault off function

Figure 27 Two-level turn-off after fault event (input side)

3.8.2.2.1 Two-level turn-off behavior at normal operating conditions

Operating the external IGBT at or below nominal current using the two-level turn-off function has almost no influence on turn-off switching losses.

3 Functional description

3.8.2.2.2 Two-level turn-off behavior at overload condition

The two-level turn-off function introduces an additional second turn-off voltage level at the gate driver IC output. This intermediate turn-off voltage level ensures lower V_{CE} overshoots at turn-off by reducing the gate emitter voltage of the external IGBT at short circuits or overcurrent events.

The lower V_{GE} level is limiting the current capability of an IGBT before turn-off. The lower collector current is reducing the collector emitter voltage overshoot induced by parasitic inductances of the high power path (module, DC-link capacitor) and high dI_C/dt .

The two-level turn-off function is designed to discharge the IGBT gate at the end of the on interval to a gate emitter voltage which forces the IGBT output characteristic into a current limiting mode. The required two-level turn-off timing depends on the used gate resistor, the gate charge, the stray inductance, and the overcurrent at the beginning of the two-level turn-off interval.

Two-level turn-off behavior at overload condition

3 Functional description

3.8.2.2.3 Two-level turn-off short pulse behavior

The two-level turn-off function introduces a longer propagation delay for pulse matching. The short input pulse behavior is therefore different compared to hard switch-off.

Table 6Two-level turn-off short pulse scenarios

Pulse duration	On pulse	Off pulse	
Pulse < input pulse suppression time <i>t</i> _{INMIN}	suppressed	suppressed	
Pulse < two level turn off time <i>t</i> _{TLTOFF}	suppressed	processed	
Pulse > two level turn off time t_{TLTOFF}	processed	processed	

Figure 30 Two-level turn-off behavior on short on-pulse

Turn-on pulses shorter than the TLTOff plateau time but longer than the input pulse suppression time will be suppressed by the two-level turn-off function (in figure: first two turn-on pulses). The output stage stays low and the switch stays off. On pulses longer than the TLTOff plateau time will be processed by the two-level turn-off function (in figure: last turn-on pulse). The output stage will be turned on after the TLTOff time is elapsed. The gate of the switch will be charged.

Figure 31 Two-level turn-off behavior on short off-pulse

Turn-off pulses longer than the input pulse suppression time will be processed by the two-level turn-off function (in figure: last two turn-off pulses). The output stage turns off the IGBT with the TLTOff sequence. The driver stays off for the requested off time to respect the off-time pulse matching.

The gate driver output impedance influences the two-level turn-off waveform.

3.8.2.2.4 Two-level turn-off short pulse behavior with slow turn-on ramp speed

The gate driver IC turn-on ramp speed is limited and influences the two-level turn-off short turn-on pulse behavior. The gate driver IC behaves differently depending on the gate voltage reached at the time of turn-off:

- TLTOff plateau voltage V_{TLTOFF} not reached: Skipping TLTOff duration and immediately turn-off using ramp B
- V_{TLTOFF} reached for a shorter time than the CLAMP and pin status monitoring time t_{CLAMPfilter}: Skipping TLTOff duration and immediately turn-off using ramp B
- *V*_{TLTOFF} reached and *t*_{CLAMPfilter} (*CLCFG*.CLFILT_T) elapsed: Normal two-level turn-off using ramp A, plateau and ramp B. Input to output pulse matching is only valid for this case.

3 Functional description

Figure 33 Two-level turn-off short on pulse and slow gate voltage rise

Short turn-off pulses do not change the general behavior. A slow turn-off ramp will be interrupted by the next turn-on request.

3.8.2.3 Soft turn-off

The soft turn-off function protects the IGBT against collector-emitter overvoltage during turn off in an overcurrent condition. It turns-off the IGBT with a reduced gate current to reduce the di/dt induced overvoltage.

The IGBT gate is connected via *OFF* to an internal current sink circuit. The discharge current is typically lower than the hard switch-off current used for normal operation. Since soft turn-off is a single event after a failure, the gate driver IC can handle the additional power dissipation internally.

The soft turn-off function is implemented as a current source which can be adjusted with a 4 bit value in the register **CSSOFCFG**.

The adjustable range depends on the current strength of the gate driver IC:

- 1ED3830M: 15 mA 233 mA
- 1ED3860M: 29 mA 466 mA
- 1ED3890M: 44 mA 699 mA

3.8.2.4 Switch-off timeout until forced switch-off

The gate driver IC is equipped with a switch-off timeout monitoring feature. In case the pin monitoring comparator has not registered an off-state within the timeout time this feature activates a forced switch-off. In addition, the gate driver IC:

- sets the switch-off timeout event bit, and
- latches the fault and activates the FLT_N output, depending on the switch-off timeout function bit in register SOTOUT

The monitoring feature secures the IGBT switch-off in case of a connection failure between the *OFF* output and the IGBT gate or a faulty gate resistor. In a forced switch-off all available output switch-off paths (*OFF* and *CLAMP*) will be used to hard switch-off the IGBT after such an event.

The switch-off timeout is tailored to the different turn-off scenarios.

In case a very short switch-off timeout time is chosen, the *CLAMP* will activate at a higher gate voltage which results in a hard turn-off. Even with the *CLAMP* output disabled, the gate driver IC will activate the hard switch-off at the *OFF* pin.

3 Functional description

Figure 34 Switch-off timeout behavior

The timing diagram shows the switch-off timeout behavior from the moment of *OFF* output activation until the timeout has elapsed and the *CLAMP* output is activated.

3.8.3 Active shut-down

The active shut-down feature ensures a safe IGBT off-state, if the output chip is not supplied. It protects the IGBT against a floating gate. The IGBT gate is always clamped via *OFF* to *VEE2*.

3.8.4 Active Miller clamp

The 1ED38x0Mc12M family (X3 Digital) is equipped with a configurable active Miller clamp function to protect the IGBT from parasitic turn-on in fast switching applications.

After a turn-off command the gate driver IC follows the implemented sequence:

- **1.** Discharge of the IGBT gate while monitoring the voltage level at the *ON* pin
- 2. Detection of a voltage at the ON pin less than a level of VEE2 + 2.0 V
- 3. Filtering of the detection to avoid false CLAMP activation and not to influence regular turn-off behavior
- 4. Activating clamp function to keep IGBT gate at *VEE2* level

3.8.4.1 CLAMP output types

The CLAMP output stage offers two operating modes:

- direct gate clamping with an open drain output for medium clamping current
- pre-driver output, to clamp IGBT gate with external transistor for high clamping current

Direct gate clamping

Direct gate clamping with an open drain output is tailored for direct clamping of IGBT gate to *VEE2*. The output current capability is typically 2 A. Useful IGBT current rating for direct gate clamping is a collector current of typically smaller than 100 A. Connect the *CLAMP* pin directly to the gate with low inductive tracks.

3 Functional description

Figure 35

Application example with unipolar supply

Figure 36 Direct clamp output behavior

Pre-driver output

Track inductance and clamp output resistance reduces the clamping capability for large IGBTs. In this case, select the pre-driver output configuration with an external MOSFET.

The external small signal n-channel MOSFET transistor in combination with the pre-driver output enables clamping of high gate currents. Connect the MOSFET between the *CLAMP* output, *VEE2* pin, and IGBT gate. Due to the pre-driver configuration the clamp current is only limited by the external clamp MOSFET transistor. Depending on the external MOSFET a Miller current clamping up to 20 A can be reached. The clamping MOSFET has to be placed close to the IGBT gate to minimize track resistance and inductance.

Figure 37 Application example with bipolar supply and CLAMP pre-driver output

3 Functional description

Figure 38 Clamp pre-driver output behavior

3.9 Short circuit clamping

The integrated short circuit clamping diode limits the IGBT gate over voltage during a short circuit. The over voltage is typically triggered by the capacitive feedback of the Miller capacitance.

The internal diodes from *ON* and *CLAMP* to *VCC2* limit the gate driver voltage to a value slightly higher than the supply voltage. These diode paths are rated for a maximum current of 0.75 A and the duration of 6 µs. Add an external Schottky diode if higher currents are expected or a tighter clamping is desired. Also use an external diode if the active Miller clamping circuit uses the pre-driver output configuration.

Short circuit clamping circuitry

4 Register description

While writing to registers containing reserved fields, always use the specified reset value for the reserved fields.

Table 7 Reg	gister overview		
Register short name	Register long name	Offset address	Page number
Address registers			- I
I2CADD	I2C address of gate driver	000 _H	44
I2CGADD	I2C group address of gate driver	001 _H	44
I2CCFGOK	I2C address configuration access lock	002 _H	45
Configuration registers			
PSUPR	Input pin filter times for <i>IN</i> , <i>RDYC</i> , <i>FLT_N</i> , and I2C	003 _H	45
FCLR	<i>FLT_N</i> clear behavior by <i>RDYC</i> or timer	004 _H	46
RECOVER	Input and output configuration recovery modes	005 _H	47
UVTLVL	UVLO threshold level for VCC2 and VEE2	006 _H	48
UVSVCC2C	VCC2 soft UVLO enable and threshold level	007 _H	49
UVSVEE2C	VEE2 soft UVLO enable and threshold level	008 _H	50
ADCCFG	ADC enable and compare polarity	009 _H	51
VEXTCFG	CLAMP pin voltage compare limit (ADC)	00A _H	53
OTWCFG	Over-temperature warning level and action	00B _H	53
D1LVL	DESAT disable and DESAT1 threshold voltage level		54
D1FILT	DESAT1 filter time and type	00D _H	55
D2LVL	DESAT2 enable during TLTOff, influence on fault- off, and threshold level	00E _H	56
D2FILT	DESAT2 filter time and type	00F _H	58
D2CNTLIM	DESAT2 event counter limit to trigger FLTEVT .D2_EVT	010 _H	59
D2CNTDEC	DESAT2 event count down	011 _H	60
DLEBT	DESAT leading edge blanking time	012 _H	61
F2ODLY	Delay from fault event to gate driver off	013 _H	62
DTECOR	DESAT temperature compensation	014 _H	63
DRVFOFF	Type of fault switch-off	015 _H	64
DRVCFG	Type of normal switch-off and TLTOff gate charge range	016 _H	65
TLTOC1	TLTOff level and ramp A	017 _H	66
TLTOC2	TLTOff duration and ramp B	018 _H	67
CSSOFCFG	Soft-off current	019 _H	68

Table 7 Reg	Fable 7 Register overview (continued)								
Register short name	Register long name	Offset address	Page number						
CLCFG	<i>CLAMP</i> and pin monitoring filter time and type, <i>CLAMP</i> output types and disable	01A _H	68						
SOTOUT	Switch-off timeout time and fault signaling	01B _H	70						
CFGOK	Register configuration access lock	01C _H	71						
CLEARREG	01D _H	71							
res	reserved registers are read as 0 _H	01E _H -025 _H							
Status registers									
RDYSTAT	Status of input side, output side, and gate driver IC	026 _H	73						
res	reserved registers are read as 0 _H	027 _H							
SECUVEVT	Output side UVLO events causing a not ready state (sticky bits)	028 _H	74						
GFLTEVT	Indicator of active fault handling	029 _H	75						
FLTEVT	Fault status and events of input side and output side	02A _H	76						
PINSTAT	Status of pins	02B _H	78						
COMERRST	Status of input to output communication	02C _H	79						
CHIPSTAT	Logic status of gate driver IC	02D _H	80						
EVTSTICK	Event indicator (sticky bits)	02E _H	80						
UV1FCNT	Counter of unfiltered VCC1 UVLO events	02F _H	82						
UV2FCNT	Counter of unfiltered VCC2 UVLO events	030 _H	82						
D2ECNT	Counter of DESAT2 events	031 _H	83						
ADCMVDIF	Filtered ADC calculation result of VCC2-GND2	032 _H	83						
ADCMGND2	Filtered ADC result of GND2-VEE2	033 _H	84						
ADCMVCC2	Filtered ADC result of VCC2-VEE2	034 _H	84						
ADCMTEMP	Filtered ADC result of gate driver temperature	035 _H	85						
ADCMVEXT	Filtered ADC result of CLAMP-VEE2	036 _H	85						

Configuration registers 4.1

I2CADD: I2C address of gate driver 4.1.1

The gate drivers of the 1ED38x0 family have two configurable 7 bit addresses:

- device address I2CADD, e.g. for dedicated read out or configuration
- group address I2CGADD to configure all gate drivers in the same group within one write cycle

Both addresses have to be set at start up. Configured addresses have to differ from the initial LSB aligned I2C device address 0D_H.

I2CADD						Address:	000 _H
I2C address of	f gate driver					Reset Value:	$0D_{H}$
7	6	5	4	3	2	1	0
res				I2C_ADD			

none

rw

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
I2C_ADD	6:0	rw	LSB aligned 7 bit I2C address of gate driver
			accessible only if <i>I2CCFGOK</i> = 0 _B .
			Reset: 000 1101 _B

4.1.2 I2CGADD: I2C group address of gate driver

The gate drivers of the 1ED38x0 family have two configurable 7 bit addresses:

device address I2CADD, e.g. for dedicated read out or configuration

group address I2CGADD to configure all gate drivers in the same group within one write cycle

Both addresses have to be set at start up. Configured addresses have to differ from the initial LSB aligned I2C device address 0D_H.

I2CGADD	Address:	001_{H}
I2C group address of gate driver	Reset Value:	$0D_{H}$

1	6	5	4	3	2	1	0
res				I2C_GADD			
none				rw			

none

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
I2C_GADD	6:0	rw	LSB aligned 7 bit I2C group address of gate driver
			accessible only if $I2CCFGOK = 0_B$.
			Reset: 000 1101 _B

4.1.3 I2CCFGOK: I2C address configuration access

The gate driver is configured to start up with the common default address in OFF state. The register **I2CCFGOK** is used to block the write access to the address registers **I2CADD** and **I2CGADD** after configuration.

I2CCFGOK						Address:	002 _H
I2C address co	C address configuration access lock Res						
7	6	5	4	3	2	1	0
			res				I2CCFGOK
			none				rw

Field	Bits	Туре	Description
res	7:1	none	Reset: 0000000 _B
I2CCFGOK	0	rw	Locking flag to I2CADD/I2CGADD.
			1 _D Configured, write access to <i>I2CADD/I2CGADD</i> blocked
			0 _D Not configured, full access to <i>I2CADD/I2CGADD</i> enabled
			Reset: 0 _B

4.1.4 **PSUPR:** Input pin filter times for *IN*, *RDYC*, *FLT_N*, and I2C

The register **PSUPR** allows the adjustment of input pin filter times $t_{xMIN,n}$ for *IN*, *RDYC*, *FLT_N*, *SDA* and *SCL* with either a short or a long filter time. The selected filter time influences the propagation delay.

Input			ļļ
Filter output short filter time	t _{xMIN,0}	t _{xMIN,0}	
Filter output long filter time		★ xMIN,1	

Figure 40 Adjustable filter time for *IN*, *RDYC/FLT_N* and I2C

N_SUPR
0
00 _H
003 _H

none

Field	Bits	Туре	Description
res	7:1	none	Reset: 0000000 _B
IN_SUPR	0	rw	Input filter times
			<i>IN</i> , <i>RDYC</i> , and <i>FLT_N</i> :
			1 _D 200 ns

rw

(continued)

Field	Bits	Туре	Description
			0 _D 100 ns
			I2C pins SDA and SCL:
			1 _D 100 ns
			0 _D 50 ns
			Reset: 0 _B

4.1.5 FCLR: *FLT_N* clear behavior by RDYC or timer

Two methods are available for fault clearing, either self clear timer or clearing by RDYC to low cycle.

The register parameter **FCLR**.FCLR_CFG configures the fault clear method:

- 1_B activates the self clear timer method
- 0_B activates the *RDYC* to low cycle method

Self clear timer method

The register parameter **FCLR**.FSCLR_T configures the self clear time:

- 0_B to 400 μs
- 1_B to 1600 μs.

FLT source	
FLT_N short self clear	
FLT_N long self clear	

Figure 41 Self clear timer method: behavior of self clear time setting

RDYC to low cycle method

Setting *RDYC* to low for longer than the fault clear time *t*_{CLRMIN} will reset the stored fault signal at pin *FLT_N* with the rising edge of *RDYC*.

The typical fault clear time t_{CLRMIN} is 1.0 µs.

FLT_N clear method by RDYC to low cycle or self clear timer

FCLR					Address:	004 _H	
<i>FLT_N</i> clear behavior by <i>RDYC</i> or timer						Reset Value:	00 _H
_	ć	-		2	2		
7	6	5	4	3	2	1	0

 7
 6
 5
 4
 3
 2
 1
 0

 res
 FSCLR_T
 FCLR_CFG

 none
 rw
 rw

Field	Bits	Туре	Description
res	7:2	none	Reset: 000000 _B
FSCLR_T	1	rw	Self clear time
			1 _D 1600 μs
			0 _D 400 μs
			Reset: 0 _B
FCLR_CFG	0	rw	Clear method
			1 _D Using self clear timer
			0 _D By RDYC pin
			Reset: 0 _B

4.1.6 **RECOVER:** Input and output configuration recovery modes

The gate driver IC is equipped with an advanced configuration restore function for the input and output side.

Automatic configuration restore from input side

The function is configured in register bit **RECOVER**.RESTORE. The bit determines the actions taken after an output side configuration reset, caused for example by a preceding UVLO event. The output side supply voltage needs to be above UVLO thresholds for the actions to take place.

- 0_B = restore not active, the gate driver IC will
 - perform a soft-reset,
 - clear parameter configuration bit **CFGOK**.USER_OK to 0_B, and
 - stay in parameter configuration state and wait for the user to re-configure the settings
- 1_B = restore active, the gate driver IC will
 - restore the output side and
 - release *RDYC* and enter normal operation state

Automatic configuration recovery from output side

The function is configured in register **RECOVER**. RECOVER. The bit determines the actions taken after an input side configuration reset caused for example by a preceding UVLO event.

- 0_B recover not active, gate driver IC will
 - perform a soft-reset,
 - clear parameter configuration bit CFGOK.USER_OK and I2CCFGOK.I2CCFGOK to 0_B, and
 - returns to OFF state
- 1_B recover active, gate driver IC will
 - recover the configuration from the output side,
 - release RDYC, and
 - enter normal operation state

RECOVER

In	out and output config	guration recover	v modes	Reset Value.	00
	Jut and output com	guiation recover	y modes	Reset value.	UUH

005_H

Address:

7	6	5	4	3	2	1	0
res						RESTORE	RECOVER
		nor	ie			rw	rw

Field	Bits	Туре	Description
res	7:2	none	Reset: 000000 _B
RESTORE	1	rw	Output restore on power failure
			1 _D Restore from input side
			0 _D No restore from input side, soft reset
			Reset: 0 _B
RECOVER	0	rw	Input recover on power failure
			1 _D Recover from output side
			0 _D All registers return to reset values
			Reset: 0 _B

4.1.7 UVTLVL: UVLO threshold level for *VCC2* and *VEE2*

The register **UVTLVL** allows the configuration of:

- normal VCC2 supply UVLO
- normal VEE2 supply UVLO

Normal VCC2 UVLO configuration

Figure 43 VCC2 UVLO configuration for IGBT or MOSFET levels

Normal VCC2 supply UVLO uses the filtered VCC2 supply voltage, comparable to state of the art UVLO circuits. The normal UVLO ensures proper operating conditions for the gate driver IC itself as well as for many IGBT driving applications. There are two UVLO2 levels configurable in the register field **UVTLVL**.UVVCC2TL:

- Dedicated for MOSFET application with an UVLO lower than V_{UVLO2H,1,max} = 10.0 V
- Dedicated for IGBT application with an UVLO higher than V_{UVLO2H,0,max} = 12.6 V

Normal VEE2 UVLO configuration

Figure 44 VEE2 UVLO configuration for negative voltage supply levels

Normal *VEE2* supply UVLO uses the filtered VEE2 supply voltage, comparable to state of the art UVLO circuits. The register **UVTLVL**.UVVEE2TL allows the following settings:

- No negative supply UVLO monitoring
- High setting: Optimized for negative supply of -5 V, with an UVLO on level of typically -3.5 V
- Medium setting: Optimized for negative supply of -8 V, with an UVLO on level of typically -6 V
- Low setting: Optimized for negative supply of -15 V, with an UVLO on level of typically -12.0 V

UVTLVL	Address:	006 _H
UVLO threshold level for VCC2 and VEE2	Reset Value:	00 _H

7	6	5	4	3	2	1	0
		res			UVVCC2TL	UVVEE	2TL
		none			rw	rw	

Field	Bits	Туре	Description
res	7:3	none	Reset: 00000 _B
UVVCC2TL	2	rw	VCC2 UVLO threshold level
			1 _D Voltage threshold levels for normal level MOSFET
			0 _D Voltage threshold levels for IGBT
			Reset: 0 _B
UVVEE2TL	1:0	rw	VEE2 UVLO enable and threshold level
			3 _D Low, for -15 V negative supply
			2 _D Medium, for -8 V negative supply
			1 _D High, for -5 V negative supply
			0 _D no negative supply
			Reset: 00 _B

4.1.8 UVSVCC2C: VCC2 soft UVLO enable and threshold level

The VCC2 supply soft UVLO uses the measured VCC2 supply voltage from ADC. The measured value is compared against the soft UVLO levels (**UVSVCC2C**.UVSVCC2L) and the result is stored in the event register **SECUVEVT**.UVSVCC2. The ADC measurement is a strong filtered UVLO where fast changes and spikes are

ignored. The function can be configured e.g. to protect the IGBT from low gate voltages during longer time of operation or tune the system behavior in conjunction with power supply.

There are two register parameters which influence the soft VCC2 UVLO set up (besides VCC2 ADC measurement configurations):

- UVSVCC2C.UVSVCC2L: Soft UVLO level is adjustable between 9.5 V and 17.0 V
- UVSVCC2C.UVSVCC2E: Enable soft VCC2 UVLO function

The soft VCC2 UVLO event can influence the RDYC pin, depending on setting. If soft UVLO is enabled, but ADC measurement is not enabled (ADCCFG.VINT_EN = $0_{\rm B}$), a soft UVLO event will be signaled due to ADC output value of 00_H.

Figure 45

UVSVCC2C	Address:

UVSVCC2C	Address:	007 _H
VCC2 soft UVLO enable and threshold level	Reset Value:	00 _H

7	6	5	4	3	2	1	0
	res		UVSVCC2E		UVSV	CC2L	
	none		rw		rv	N	

2			
-			

Field	Bits	Туре	Description
res	7:5	none	Reset: 000 _B
UVSVCC2E	4	rw	VCC2 soft UVLO enable
			1 _D Enable
			0 _D Disable
			Reset: 0 _B
UVSVCC2L	3:0	rw	VCC2 soft UVLO threshold level
			15 _D 17 V
			14 _D 16.5 V
			steps of 0.5 V
			0 _D 9.5 V
			Reset: 0000 _B

UVSVEE2C: VEE2 soft UVLO enable and threshold level 4.1.9

The VEE2 supply soft UVLO uses the measured VEE2 supply voltage from ADC. The measured value is compared against the soft UVLO levels (UVSVEE2C.UVSVEE2L) and the result is stored in the event register **SECUVEVT.** UVSVEE2. The ADC measurement is a strong filtered UVLO where fast changes and spikes are ignored. The function can be configured e.g. to protect the IGBT from insufficient negative gate voltages during longer time of operation or tune the system behavior in conjunction with power supply.

4 Register description

There are two register parameters which influence the soft *VEE2* UVLO set up (besides *VEE2* ADC measurement configurations):

- **UVSVEE2C**.UVSVEE2L: Soft UVLO level is adjustable between -2.0 V and -17.0 V
- UVSVEE2C.UVSVEE2E: Enable soft VEE2 UVLO function

The soft *VEE2* UVLO event can influence the *RDYC* pin, depending on setting. If soft UVLO is enabled, but ADC measurement is not enabled (*ADCCFG*.VINT_EN = 0_B), a soft UVLO event will be signaled due to ADC output value of 00_H .

UVSVEE2C

VEE2 soft UVLO enable and threshold level

Address:	008 _H
Reset Value:	00 _H

7	6	5	4	3	2	1	0
	res		UVSVEE2E		UVSV	/EE2L	
	none		rw		r	w	

Field	Bits	Туре	Description
res	7:5	none	Reset: 000 _B
UVSVEE2E	4	rw	VEE2 soft UVLO enable
			1 _D Enable
			0 _D Disable
			Reset: 0 _B
UVSVEE2L	3:0	rw	VEE2 soft UVLO threshold level
			15 _D -17.0 V
			steps of 1 V
			0 _D -2.0 V
			Reset: 0000 _B

4.1.10 ADCCFG: ADC enable and compare polarity

The ADC configuration register is used to configure measurement channels and external voltage compare behavior. Measurement of internal junction temperature is always active.

- Register bit ADCCFG.VINT_EN: Enable internal voltage measurements VCC2 to GND2, VCC2 to VEE2, and GND2 to VEE2
- Register bit **ADCCFG**.VEXT_EN: Enable external sensor voltage measurement *CLAMP* pin to *VEE2*
- Register bit ADCCFG.VEXTLPOL: Compare polarity for event indicator
- Register bit **ADCCFG**.VEXTL_EN: Enable fault trigger on external sensor voltage compare

The external voltage compare will set an event flag each time the external voltage measurement passes an adjustable threshold (*VEXTCFG*.VEXT_LIM) in a configurable direction (**ADCCFG**.VEXTLPOL). This compare result event can also be configured to trigger a fault.

- ADCCFG.VEXT_EN: measurement and compare enable bit
 - .VEXT_EN = 1_B: ADC measurement of *CLAMP* pin voltage active. Disable the Miller clamp function to prevent impact on measurement (*CLCFG*.CL_DIS = 1_B)
 - .VEXT_EN = 0_B: ADC measurement of *CLAMP* pin voltage inactive
- ADCCFG.VEXTLPOL =: Polarity bit for voltage compare to trigger event
 - .VEXTLPOL = 1_B: set *FLTEVT*.VEXTFLT = 1_B on *ADCMVEXT*.VEXTVEE2 > *VEXTCFG*.VEXT_LIM
 - .VEXTLPOL = 0_B: set *FLTEVT*.VEXTFLT = 1_B on *ADCMVEXT*.VEXTVEE2 < *VEXTCFG*.VEXT_LIM
- ADCCFG.VEXTL_EN: trigger fault from event bit
 - .VEXTL_EN = 1_B : activate fault on *FLTEVT*.VEXTFLT = 1_B
 - .VEXTL_EN = 0_B: do not trigger fault on *FLTEVT*.VEXTFLT = 1_B

CLAMP pin				
(ADCMVEXT)	\sim	 <u> </u>		
Compare polarity	below		above	
FLTEVT. VEXTFLT				

Figure 47 CLAMP pin voltage compare polarity

ADCCFG

ADC enable and compare polarity

Address:	009 _H
Reset Value:	03 _H

7	6	5	4	3	2	1	0
res	5	VEXTL_EN	VEXTLPOL	VEXT_EN	VINT_EN	re	S
non	e	rw	rw	rw	rw	non	e

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
VEXTL_EN	5	rw	Enable CLAMP pin voltage limit compare to trigger fault
			1 _D Enable
			0 _D Disable
			Reset: 0 _B
VEXTLPOL	4	rw	Compare polarity to trigger <i>FLTEVT</i> .VEXTFLT event
			1 _D Trigger on <i>ADCMVEXT</i> > <i>VEXTCFG</i>
			0 _D Trigger on <i>ADCMVEXT < VEXTCFG</i>
			Reset: 0 _B
VEXT_EN	3	rw	Enable CLAMP pin voltage measurement and compare
			1 _D Enable
			0 _D Disable
			Reset: 0 _B
VINT_EN	2	rw	Enable supply voltage measurements (VCC2, VEE2, GND2)

(continued)

Field	Bits	Туре	Description
			1 _D Enable
			0 _D Disable
			Reset: 0 _B
res	1:0	none	Reset: 11 _B

4.1.11 VEXTCFG: *CLAMP* pin voltage compare limit

The external voltage compare will set an event flag (*FLTEVT*.VEXTFLT) each time the external voltage measurement (*ADCMVEXT*) passes this adjustable threshold (**VEXTCFG**.VEXT_LIM) in a configurable direction (*ADCCFG*.VEXTLPOL). This compare result event can also be configured to trigger a fault *ADCCFG*.VEXTL_EN).

• VEXTCFG.VEXT_LIM: 8 bit threshold value for external voltages compare

CLAMP pin voltage (ADCMVEXT)		/		
Compare polarity	below		above	
FLTEVT. VEXTFLT				

Figure 48

CLAMP pin voltage compare level V_{CMPLVL}

VEXTCFG		Address:	00A _H				
<i>CLAMP</i> pin vo	ltage compare	Reset Value:	00 _H				
7	6	5	4	3	2	1	0
VEXT_LIM							
rw							

Field	Bits	Туре	Description
VEXT_LIM	7:0	rw	8 bit voltage compare limit
			Reset: 00 _H

4.1.12 OTWCFG: Over-temperature warning level and action

In contrast to the non-adjustable gate driver over-temperature protection, the adjustable over-temperature warning level is used to signal an application specific non-proper operation condition, which may influence life time.

The measured temperature is compared to the over-temperature warning level **OTWCFG**.OTW_LVL. If temperature has reached the threshold, the gate driver IC reacts according to over-temperature warning action configuration **OTWCFG**.OTW_ACFG with a fault turn-off sequence or only signaling the event in *FLTEVT*.OTW_EVT.

The over-temperature warning circuit always triggers the fault event bit *FLTEVT*.OTW_EVT on exceeding the configured threshold.

4 Register description

Over-temperature w	varning level and action
· · · · · · · · · · · · · · · · ·	

OTWCFG		Address:	00B _H				
Over-temperature warning level and action						Reset Value:	00 _H
7	6	5	4	3	2	1	0
res			OTW_ACFG		OTW_LVL		
none			rw		rw		

Field	Bits	Туре	Description
res	7:4	none	Reset: 0000 _B
OTW_ACFG	3	rw	Additional OTW action
			1 _D Trigger fault
			0 _D No additional action
			Reset: 0 _B
OTW_LVL	2:0	rw	OTW temperature threshold level
			7 _D 95°C
			steps of 6.4°C
			0 _D 140°C
			Reset: 000 _B

D1LVL: DESAT disable and DESAT1 voltage threshold level 4.1.13

The register D1LVL allows the configuration of the following parameters:

DESAT1 voltage threshold level

The gate driver IC supports an adjustable DESAT voltage threshold level. The adjustment is used to adapt the driver to a variety of switches with different over current behavior, especially ohmic vs. bipolar behavior. With the register value **D1LVL**.D1_V_LVL a DESAT voltage threshold level can be selected out of 32 values between 1.85 V and 9.18 V.

DESAT enable/disable

The register bit **D1LVL**.D_DIS configures the detection of desaturation events. The value 1_B will disable both DESAT detectors and leave the DESAT pin in tristate. The status register bits FLTEVT.D1_EVT and FLTEVT.D2_EVT will no longer show any DESAT events regardless of the voltage level at the DESAT pin.

D1LVL	Address:	00C _H
DESAT disable and DESAT1 voltage threshold level	Reset Value:	$1F_{H}$

7	6	5	4	3	2	1	0
re	5	D_DIS			D1_V_LVL		
non	e	rw			rw		

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D_DIS	5	rw	DESAT disable
			1 _D Disabled, no DESAT reaction
			0 _D Enabled, normal DESAT behavior, default
			Reset: 0 _B
D1_V_LVL	4:0	rw	DESAT1 voltage threshold level
			31 _D 9.18 V
			30 _D 8.89 V
			steps of 0.28 V
			17 _D 5.27 V
			16 _D 4.99 V
			15 _D 4.79 V
			steps of 0.2 V
			1 _D 2.01 V
			0 _D 1.85 V
			Reset: 11111 _B

4.1.14 D1FILT: DESAT1 filter time and type

The register **D1LVL** allows the configuration of the following parameters:

DESAT1 filter time

The DESAT filter time is the time between passing the DESAT voltage threshold level and an acknowledgment of a DESAT event (internal signal). It is used to filter out spikes and noise which can lead to false triggering and inaccurate timing. The DESAT filter time together with the DESAT voltage threshold level and the DESAT filter type is used to set the sensitivity of the DESAT detection in the application.

With the 5 bit register value **D1FILT**.D1FILT_T the DESAT filter time is adjustable between 75 ns and 5975 ns.

DESAT1 filter counter type

The DESAT logic has two different digital filter types:

- up/down counter, if DESAT voltage is above DESAT voltage level counting is increased, below it will be decreased
- up/reset counter, if DESAT voltage is above DESAT voltage level counting is increased, below the counter will be cleared to zero

The filter can be used to adapt the gate driver IC to noisy environments. The filter counts the time, the DESAT level is above DESAT threshold level. If the threshold of DESAT filter time is reached a DESAT event is triggered.

The filter type is set by register bit **D1FILT**.D1FILT_C as:

- 1_B: up-down counter
- 0_B: up/reset counter

4 Register description

DESAT filter time and filter counter type

D1FILT DESAT1 filter t	ime and type					Address: Reset Value:	00D _H 08 _H
7	6	5	4	3	2	1	0
re	!S			D1FILT_T			D1FILT_C
noi	ne			rw			rw

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D1FILT_T	5:1	rw	DESAT1 filter time
			31 _D 5975 ns
			steps of 400 ns
			23 _D 2775 ns
			steps of 200 ns
			15 _D 1175 ns
			steps of 100 ns
			7 _D 375 ns
			steps of 50 ns
			1 _D 75 ns
			0 _D n.a.
			Reset: 00100 _B
D1FILT_C	0	rw	DESAT1 filter counter type
			1 _D Up-down
			0 _D Up-reset
			Reset: 0 _B

D2LVL: DESAT2 enable during TLTOff, influence on fault off, and 4.1.15 voltage threshold level

The register **D2LVL** allows the configuration of the following parameters:

DESAT2 during a two-level turn-off

Only DESAT2 monitoring can be activated during TLTOff. Triggering a DESAT2 event during TLTOff will not interrupt the two-level turn-off sequence.

4 Register description

The reduced gate voltage during TLTOff limits the maximum collector current and may increase the collectoremitter voltage (V_{CE}) at nominal IGBT currents and above. DESAT2 V_{CE} monitoring during TLTOff enables early overcurrent detection.

The bit to enable DESAT2 during TLTOff is located in register field **D2LVL**.D2_TLCFG

DESAT2 voltage threshold level

The gate driver IC supports an adjustable DESAT2 voltage threshold level separate from the DESAT1 voltage threshold level. The adjustment is used to adapt the gate driver IC to a variety of switches with different over current behavior, especially ohmic versus bipolar behavior.

With the register value **D2LVL**.D2_V_LVL a DESAT voltage threshold level can be selected out of 32 values between 1.85 V and 9.18 V.

DESAT2 fault off enable

DESAT2 action configuration is set in the action configuration register **D2LVL**.D2_ACFG. The bit distinguishes between monitoring only, or monitoring and starting fault turn off sequence.

The register bit *FLTEVT*.D2_EVT is always triggered on a DESAT2 event. The register bit **D2LVL**.D2_ACFG have the following actions assigned to it:

- 1_B: start a fault turn-off sequence and signaling via *FLT_N* to low a fault status event.
- 0_B: no autonomous turn-off and no signaling via *FLT_N*

D2LVL	Address:	00E _H
DESAT2 enable during TLTOff, influence on fault-off, and threshold level	Reset Value:	10 _H

7	6	5	4	3	2	1	0
res	D2_TLCFG	D2_ACFG			D2_V_LVL		
none	rw	rw			rw		

Field	Bits	Туре	Description			
res	7	none	Reset: 0 _B			
D2_TLCFG	6	DESAT2 action during a two level turn off				
			1 _D Enabled			
			0 _D Disabled			
			Reset: 0 _B			
D2_ACFG	5 rw DESAT2 fault off enable					
			1 _D Enabled, trigger fault off			
			0 _D Disabled, no fault off			
			Reset: 0 _B			
D2_V_LVL	4:0	rw	DESAT2 voltage threshold level			
			31 _D 9.18 V			
			30 _D 8.89 V			
			steps of 0.28 V			
			17 _D 5.27 V			
			16 _D 4.99 V			

(continued)

Field	Bits	Туре	Description
			15 _D 4.79 V
			steps of 0.2 V
			1 _D 2.01 V
			0 _D 1.85 V
			Reset: 10000 _B

4.1.16 D2FILT: DESAT2 filter time and type

The register D2FILT allows the configuration of the following parameters:

DESAT2 filter time

The DESAT filter time is the time between passing the DESAT voltage threshold level and an acknowledgment of a DESAT event (internal signal). It is used to filter out spikes and noise which can lead to false triggering and inaccurate timing. The DESAT filter time together with the DESAT voltage threshold level and the DESAT filter type is used to set the sensitivity of the DESAT detection in the application.

With the 5 bit register value **D2FILT**.D2FILT_T the DESAT filter time is adjustable between 75 ns and 5975 ns.

DESAT2 filter counter type

The DESAT2 logic has two different digital filter types and its configuration bit is located in register **D2FILT**.D2FILT_C:

- 1_B: up/down counter
 - if the DESAT voltage is above DESAT voltage level counting is increased, below it will be decreased
 - during a single PWM on duration multiple filtered threshold crossings can be detected and count as individual events for the **D2ECNT** event counter
- 0_B: up/reset counter
 - if DESAT voltage is above DESAT voltage level counting is increased, below the counter will be cleared to zero
 - during a single PWM on duration, only a single filtered threshold crossing can be detected and counts as event for the **D2ECNT** event counter

The filter can be used to adapt the gate driver IC to noisy environments. The filter counts the time, the DESAT level is above DESAT threshold level. If the threshold of DESAT filter time is reached an DESAT event is triggered.

Figure 51

DESAT filter time and filter counter type

D2FILT

DESAT2 filter time and type

7	6	5	4	3	2	1	0
re	es		D2FILT_T				
no	one			rw			rw

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D2FILT_T	5:1	rw	DESAT2 filter time
			31 _D 5975 ns
			steps of 400 ns
			23 _D 2775 ns
			steps of 200 ns
			15 _D 1175 ns
			steps of 100 ns
			7 _D 375 ns
			steps of 50 ns
			1 _D 75 ns
			0 _D n.a.
			Reset: 11111 _B
D2FILT_C	0	rw	DESAT2 filter counter type
			1 _D Up-down
			0 _D Up-reset
			Reset: 1 _B

4.1.17 D2CNTLIM: DESAT2 event counter limit

While the register **D2ECNT** counts the DESAT2 events, the DESAT2 event counter limit in the register field **D2CNTLIM**.D2CNTLIM serves as comparator limit.

If the event counter of register **D2ECNT** reaches the compare limit, the register bit **FLTEVT**.D2_EVT is set to 1_B . Description of values for DESAT2 event counter limit:

- 00_H: deactivates DESAT2 function, register bit *FLTEVT*.D2_EVT stays at 0_B
- 01_H: a single DESAT2 comparator event leads to *FLTEVT*.D2_EVT = 1_B, similar as in DESAT1
- a value larger than $01_{\rm H}$ requires multiple DESAT2 comparator events for the register bit *FLTEVT*.D2_EVT to be set to $1_{\rm B}$

none

D2 comp. event		
D2CNTLIM		
D2ECNT.D2_CNT	┟┟──┧┟┦──╄╶┩┨	
FLTEVT.D2_EVT		
D2CNTDEC		
Number of PWM cycles		

Figure 52DESAT2 event counter limit and count down

Parameters of shown example: **D2CNTLIM** = 04_{H} , **D2CNTDEC** = 04_{H} ; The value of register **D2ECNT** will only internally reach the limit, but will reset immediately with the reporting of the bit **FLTEVT**.D2_EVT = 1_{B} .

D2CNTLIM Address: 010_H **Reset Value:** DESAT2 event counter limit to trigger FLTEVT.D2_EVT 01_H 6 5 2 0 7 4 3 1 **D2CNTLIM** res

rw

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D2CNTLIM	5:0	rw	Number of DESAT2 events to trigger <i>FLTEVT</i> .D2_EVT
			63 _D 63 events
			62 _D 62 events
			number of events
			1 _D 1 event
			0 _D Disabled, DESAT2 function disabled
			Reset: 000001 _B

4.1.18 D2CNTDEC: DESAT2 event count down

The DESAT2 long time filter, PWM *IN* counter decrement is a 8 bit counter in register field **D2CNTDEC**.D2CNTDEC. The register defines the number of PWM cycles at *IN* pin after the last DESAT2 event which are necessary to decrement DESAT2 event counter by one.

Counter settings for DESAT2 long time filter, *IN* counter:

- 00_H deactivates the decrement function
- 01_H decrements the DESAT2 event counter by one after every PWM *IN* cycle without a registered DESAT2 comparator event.
- n_H decrements the DESAT2 event counter by one after every n-th PWM *IN* cycle without any registered DESAT2 comparator events.

_PWM[
D2 comp. event	<u> </u>
D2CNTLIM	
D2ECNT.D2_CNT	
FLTEVT.D2_EVT	
D2CNTDEC	
Number of PWM cycles	

Figure 53 DESAT2 event counter limit and count down

Parameters of shown example: **D2CNTLIM** = 04_{H} , **D2CNTDEC** = 04_{H} ; The value of register **D2ECNT** will only internally reach the limit, but will reset immediately with the reporting of the bit **FLTEVT**.D2_EVT = 1_{B} .

D2CNTDEC						Address:	011 _H
DESAT2 event count down						Reset Value:	00 _H
7	6	5	4	3	2	,	0
D2CNTDEC							

rw

Field	Bits	Туре	Description
D2CNTDEC	7:0	rw	Number of PWM <i>IN</i> cycles without any registered DESAT2 comparator events required to decrease the DESAT2 event counter by one
			>0 _D number of PWM <i>IN</i> cycles
			0 _D No count down or reset by PWM
			Reset: 00 _H

4.1.19 DLEBT: DESAT leading edge blanking time

The DESAT leading edge blanking time is the time between turn-on of the ON pin and activation of the DESAT function.

Until the end of leading edge blanking the gate driver IC clamps *DESAT* to *GND2* pin. The DESAT comparator ignores voltage levels above DESAT voltage threshold. Set the time to a value after the V_{CE} voltage falls below the DESAT threshold level. DESAT1 and DESAT2 share the same DESAT leading edge blanking time.

With the 6 bit register value **DLEBT**.D_LEB_T the DESAT leading edge blanking time $t_{\text{DESATleb},x}$ is adjustable between 100 ns and 3300 ns.

Figure 54

DESAT leading edge blanking time

DLEBT DESAT leading edge blanking time						Address: Reset Value:	012 _H 05 _H
7	6	5	4	3	2	1	0
re	es	D_LEB_T					
no	ne			r	w		

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D_LEB_T	5:0	rw	DESAT leading edge blanking time for DESAT1 and DESAT2
			63 _D 3300
			62 _D 3250
			Steps of 50 ns
			1 _D 200
			0 _D 100
			Reset: 000101 _B

4.1.20 F2ODLY: Delay from fault event to gate driver off

In some topologies the fault turn-off needs to be delayed for individual switch positions. The fault turn-off delay time $t_{FAULTOFFn}$ is adjustable in the register **F2ODLY**.F2O_DLY between 0 µs and 7.763 µs.

F2ODLY					Address:	ss: 013 _H	
Delay from fault event to gate driver off						Reset Value:	00 _H
7	6	5	4	3	2	1	0

-	÷	•	-	-	_	-
res				F2O_DLY		
none				rw		

Field	Bits	Туре	Description
res	7:5	none	Reset: 000 _B
F2O_DLY	4:0	rw	FAULT EVENT to Gate driver off added delay
			31 _D 7.763 μs
			30 _D 7.513 μs
			0.25 μs step size
			1 _D 0.263 μs
			0 _D 0 μs
			Reset: 00000 _B

4.1.21 DTECOR: DESAT temperature compensation

The 1ED38x0 family offers a gate driver temperature dependent DESAT threshold voltage level adjustment. It is used to compensate the temperature behavior of the DESAT diode and/or the IGBT saturation voltage to enhance the DESAT accuracy.

The DESAT temperature compensation can be used as well for lowering DESAT thresholds under high temperature conditions. The temperature compensation is applied to DESAT1 and DESAT2 with the same compensation parameter.

The internal gate driver junction temperature is used to calculate an offset voltage to the DESAT voltage $V_{\text{DESAT,n}}$. This calculated DESAT voltage V_{DESAT_comp} is applied to the DESAT comparator. The step size between two compensated threshold voltage levels is 40 mV.

 $V_{\text{DESAT_comp}} = V_{\text{DESAT,n}} + \text{VT}_{\text{DESAT,n}} \cdot (T_J - T_{\text{DESAT,n}} - 25 \text{ °C})$

The DESAT temperature compensation is adjustable in the register **DTECOR** and allows the configuration of the following parameters:

DESAT temperature compensation coefficient, VT_{DESAT,n}

With the 4 bit register value **DTECOR**.DTE_COEF the DESAT temperature compensation coefficient is adjustable between -40.3 mV/°C and 32.8 mV/°C.

DESAT temperature offset, T_{DESAT,n}

With the 4 bit register value **DTECOR**.DTE_OS the DESAT temperature offset is adjustable between -48°C and 40°C.

The maximum DESAT threshold voltage level is 10.33 V, higher compensated voltages are limited to 10.33 V. The minimum DESAT threshold voltage level is 1.85 V, lower compensated voltages are limited to 1.85 V.

The decimal value for **DTECOR**.DTE_COEF and **DTECOR**.DTE_OS follow a two's complement coding for positive and negative 4 bit numbers.

Figure 55 DESAT temperature compensation with gain and offset

DTECOR DESAT temper	rature comper	nsation			Address: Reset Value:	014 _H 00 _H	
7	6	5	4	3	2	1	0
	DTE_	COEF			DTE	_OS	

rw

rw

Field	Bits	Туре	Description
DTE_COEF	7:4	rw	Gain factor corresponding value (scaled value)
			-8 _D (8 _H) -40.3 mV/°C
			-7 _D (9 _H) -32.8 mV/°C
			-6 _D (A _H) -25.2 mV/°C

(continued)

Field	Bits	Туре	Description
			-5 _D (B _H) -17.7 mV/°C
			-4 _D (C _H) -12.6 mV/°C
			-3 _D (D _H) -7.6 mV/°C
			-2 _D (E _H) -5.0 mV/°C
			-1 _D (F _H) -2.5 mV/°C
			0 _D (0 _H) 0 mV/°C
			1 _D (1 _H) 2.5 mV/°C
			2 _D (2 _H) 5.0 mV/°C
			3 _D (3 _H) 7.6 mV/°C
			4 _D (4 _H) 12.6 mV/°C
			5 _D (5 _H) 17.7 mV/°C
			6 _D (6 _H) 25.2 mV/°C
			7 _D (7 _H) 32.8 mV/°C
			Reset: 0000 _B
DTE_OS	3:0	rw	Temperature offset
			-8 _D (8 _H) -48°C
			-7 _D (9 _H) -42°C
			-6 _D (A _H) -36°C
			Steps of 6°C
			-1 _D (F _H) -6°C
			0 _D (0 _H) 0°C
			1 _D (1 _H) 6°C
			Steps of 6°C
			5 _D (5 _H) 30°C
			6 _D (6 _H) 36°C
			7 _D (7 _H) 40°C
			Reset: 0000 _B

4.1.22 DRVFOFF: Type of fault switch-off

The gate driver IC supports the following fault turn-off sequences:

- hard switch-off
- two-level turn-off
- soft turn-off

The gate driver fault turn-off behavior can be configured in register **DRVFOFF**.DRV_FOFF.

DRVFOFF	Address:	015 _H
Type of fault switch-off	Reset Value:	00 _H

7	6	5	4	3	2	1	0
		re	S			DRV_I	FOFF
		non	le			rw	V

Field	Bits	Туре	Description
res	7:2	none	Reset: 000000 _B
DRV_FOFF	1:0	rw	Type of fault switch-off
			3 _D reserved
			2 _D TLTOff
			1 _D Hard switch-off
			0 _D Soft-off
			Reset: 00 _B

4.1.23 DRVCFG: Type of normal switch-off and TLTOff gate charge range

The register **DRVCFG** allows the configuration of the following parameters:

Two-level turn-off gate charge range

The gate charge range register field influences the TLTOff voltage level and ramp-speed control loop. Selecting an appropriate range for the connected power switch results in accurate levels and ramps. The two-level turn-off gate charge range can be configured in register **DRVCFG**.TLTO_GCH.

Type of normal switch-off

The gate driver IC supports the following turn-off sequences during normal switching operation:

- hard switching turn-off
- two-level turn-off

The gate driver normal turn-off behavior can be configured in register **DRVCFG**.STD_OFF.

DRVCFG	Address:	016 _H
Type of normal switch-off and TLTOff gate charge range	Reset Value:	00 _H

7	6	5	4	3	2	1	0
	res		TLTO_GCH		res		STD_OFF
	none		r	w	nc	ne	rw

Field	Bits	Туре	Description
res	7:5	none	Reset: 000 _B
TLTO_GCH	4:3	rw	Two-level turn-off gate charge range
			3_D low load, gate charge equivalent below 1 nF
			2 _D medium to high load, gate charge equivalent between 10 nF and 47 nF
			1 _D low to medium load, gate charge equivalent between 1 nF and 10 nF

(continued)

Field	Bits	Туре	Description
			0 _D high load, gate charge equivalent above 47 nF
			Reset: 00 _B
res	2:1	none	Reset: 00 _B
STD_OFF	0	rw	Type of normal switch-off
			1 _D TLTOff
			0 _D Hard switch-off
			Reset: 0 _B

4.1.24 TLTOC1: TLTOff level and ramp A

The two-level turn-off function can be adjusted with four parameters in the registers **TLTOC1** and **TLTOC2**. The register **TLTOC1** allows the configuration of the following parameters:

TLTOff plateau voltage (V_{TLTOFF})

The two-level turn-off plateau voltage is a 5 bit value and can be adjusted within the register **TLTOC1**.TLTO_V in 32 steps between 4.25 V and 12.0 V.

TLTOff voltage ramp slope A (RA_{TLTOFF})

The ramp slope for the voltage ramp between fully turn-on voltage (closed to *VCC2*) and two-level turn-off plateau voltage is a 2 bit value and can be adjusted within the register **TLTOC1**.TLTO_RA in four steps between 7.5 V/ μ s and 60 V/ μ s.

TLTOC1			Address:	017 _H			
TLTOff level and ramp A						Reset Value:	4E _H
7	6	5	4	3	2	1	0
res	TLTO_V					TLTO_	RA
none			rw			rw	

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
TLTO_V	6:2	rw	Intermediate level
			31 _D 12.0 V
			30 _D 11.75 V
			Steps of 0.25 V
			19 _D 9.0 V (default)
			Steps of 0.25 V
			1 _D 4.5 V
			0 _D 4.25 V
			Reset: 10011 _B
TLTO_RA	1:0	rw	Ramp A dV/dt from on level to intermediate level

(continued)

Field	Bits	Туре	Description
			3 _D 60 V/μs
			2 _D 30 V/μs
			1 _D 15 V/μs
			0 _D 7.5 V/μs
			Reset: 10 _B

TLTOC2: TLTOff duration and ramp B 4.1.25

The two-level turn-off function can be adjusted with four parameters in the registers **TLTOC1** and **TLTOC2**. The register **TLTOC2** allows the configuration of the following parameters:

TLTOff voltage ramp slope B (RB_{TLTOFF})

The ramp slope for the voltage ramp between two-level turn-off plateau voltage and fully turn off voltage (closed to VEE2) is a 3 bit value and can be adjusted within the register **TLTOC2**.TLTO_RB in four steps between 7.5 V/ μ s and 60 V/ μ s, and hard switch-off.

The decimal value for TLTO_RB follows a two's complement coding for positive and negative 3 bit numbers.

TLTOff ramp A and plateau time (t_{TLTOFF})

The two-level turn-off time is a 5 bit value and can be adjusted within the register **TLTOC2**.TLTO_T in 32 steps between 0 μ s and 7.75 μ s. If TLTOff plateau time is set to 0 μ s only voltage ramp B will be active.

TLTOC2 TLTOff duration	on and ramp B					Address: Reset Value:	018 _H 48 _H	
7	6	5	4	3	2	1	0	
	TLTO_RB		TLTO_T					
	rw							

Field	Bits	Туре	Description
TLTO_RB	7:5	rw	Ramp B dV/dt from intermediate level to off level
			3 _D (011 _B) res
			2 _D (010 _B) res
			1 _D (001 _B) res
			0 _D (000 _B) max dV/dt, hard switch- off
			-1 _D (111 _B) 60 V/μs
			-2 _D (110 _B) 30 V/μs
			-3 _D (101 _B) 15 V/μs
			-4 _D (100 _B) 7.5 V/μs
			Reset: 010 _B
TLTO_T	4:0	rw	Counter with 250 ns granularity
			31 _D 7.75 μs

(continued)

Field	Bits	Туре	Description
			30 _D 7.50 μs
			Steps of 250 ns
			1 _D 0.25 μs
			0 _D 0μs
			Reset: 01000 _B

4.1.26 CSSOFCFG: Soft turn-off current

The soft turn-off is implemented as a current source with a 4 bit value in the register **CSSOFCFG** and can be adjusted relative to the nominal current between 0.7% and 11.7%.

CSSOFCFG

Soft-off current

Address: 019_H Reset Value: 09_H

7	6	5	4	3	2	1	0
	re	S		CSSOFF_I			
	noi	าย			r	w	

Field	Bits	Туре	Description	
res	7:4	none	Reset: 0000 _B	
CSSOFF_I	3:0	rw	Soft-off current relative to I _{OFF,min}	
			15 _D 11.7%	
			steps of 0.74%	
			9 _D 7.3%	
			steps of 0.74%	
			0 _D 0.7%	
			Reset: 1001 _B	

4.1.27 CLCFG: *CLAMP* and pin monitoring filter time and type, *CLAMP* output types and disable

The register **CLCFG** allows the configuration of the following parameters:

Filter time for CLAMP and pin status monitoring

The filter for *CLAMP* and pin status monitoring is filtering out short detection pulses from the pin voltage level monitoring circuit before activating the individual pin status flag. This affects the time to the activation of the *CLAMP* pin after the *ON* pin voltage has dropped below the *VEE2* + 2 V threshold. The filter time together with the filter type are controlling the sensitivity of the pin status detection in an application. So in case a pin status flag is linked to a dedicated output, individual reaction times apply for the output pin to change state.

E.g. The short pulse behavior of TLTOff expects the voltage at the *OFF* pin to rise above the TLTOff plateau voltage to transition from hard switch-off to the TLTOff ramp/plateau switch-off sequence. If the switch-off command arrives earlier than the configured filter time, the output still uses the hard switch-off even though the voltage at the *OFF* pin was already above the TLTOff plateau voltage.

The 3 bit parameter of the filter time for *CLAMP* and pin status monitoring is located in the register **CLCFG**.CLFILT_T and is adjustable between 105 ns and 370 ns.

Filter type for pin status monitoring

The filter logic supports two different digital filter types for the pin voltages at the ON and OFF pin. The filter can be used to adapt the gate driver IC to noisy environment.

- up/down counter, depending on pin level the filter timer is increased or decreased
- up/reset counter, depending on the pin level the filter timer is increased, or will be cleared to zero

The bit of the filter type is located in register **CLCFG**.CLFILT_C, a 1_B configures an up-down counter, 0_B configures an up/reset counter.

This does not apply to the *CLAMP* threshold monitoring where the filter always behaves like an up/down counter.

CLAMP output types

The output stage offers two different settings:

- direct gate clamping with an open drain output for medium clamping current
- pre-driver output, to clamp IGBT gate with external transistor for high clamping current

The *CLAMP* output can be configured in clamp configuration register **CLCFG**.CL_TYPE.

CLAMP disable

The register parameter **CLCFG**.CL_DIS enables and disables the *CLAMP* function. Use this bit to disable the *CLAMP* function if the ADC function at this pin (*ADCCFG*.VEXT_EN) is in use.

CLCFG	Address:	$01A_{H}$
CLAMP and pin monitoring filter time and type, CLAMP	Reset Value:	20 _H
output types and disable		

7	6	5	4	3	2	1	0
re	s		CLFILT_T		CLFILT_C	CL_TYPE	CL_DIS
nor	ie		rw		rw	rw	rw

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
CLFILT_T	5:3	rw	Filter time for CLAMP and pin status monitoring
			7 _D 370 ns
			steps of 40 to 50 ns
			4 _D 235 ns
			steps of 40 to 50 ns
			1 _D 105 ns
			0 _D reserved
			Reset: 100 _B
CLFILT_C	2	rw	Filter counter type
			1 _D Up-down
			0 _D Up-reset

(continued)

Field	Bits	Туре	Description
			Reset: 0 _B
CL_TYPE	1	rw	CLAMP output type
			1 _D Pre driver output for external CLAMP transistor
			0 _D Open drain for direct gate connection
			Reset: 0 _B
CL_DIS	0	rw	CLAMP function
			1 _D Disable
			0 _D Enable
			Reset: 0 _B

4.1.28 SOTOUT: Switch-off timeout time and fault signaling

The register **SOTOUT** allows the configuration of the following parameters:

Switch-off timeout time

The switch-off timeout is tailored to the different turn-off scenarios. The total switch-off timeout varies for soft-off, TLTOff and hard switch-off.

- Soft-off: After an soft-off offset time of typical 2.4 µs the adjustable switch-off timeout time is applied
- TLTOff: After the adjustable two-level turn-off time the adjustable switch-off timeout time is applied
- Hard switch-off: Only the adjustable switch-off timeout time is applied

The switch-off timeout time is a 3 bit value located in the register **SOTOUT**.SOTOUT_T and is adjustable between 0.2 μ s and 3.2 μ s.

Switch-off timeout fault trigger

The switch-off timeout always sets the register bit *FLTEVT*.SOTO_EVT to 1_B on timeout detection. The switch-off timeout fault trigger bit configures whether a switch-off timeout event also triggers a fault event. The fault trigger bit is located in register **SOTOUT_F**.

- **SOTOUT**.SOTOUT_F = 0_B no fault event
- **SOTOUT**.SOTOUT_F = 1_B fault event trigger on timeout detection

SOTOUT	Address:	01B _H
Switch-off timeout time and fault signaling	Reset Value:	0C _H

7	6	5	4	3	2	1	0
	re	S			SOTOUT_T		SOTOUT_F
none					rw		rw

Field	Bits	Туре	Description
res	7:4	none	Reset: 0000 _B
SOTOUT_T	3:1	rw	Switch-off timeout time until forced switch-off
			7 _D 3200 ns
			6 _D 2400 ns

(continued)

Field	Bits	Туре	Description
			5 _D 1600 ns
			4 _D 1200 ns
			3 _D 800 ns
			2 _D 600 ns
			1 _D 400 ns
			0 _D 200 ns
			Reset: 110 _B
SOTOUT_F	0	rw	Switch-off timeout fault trigger, <i>FLTEVT</i> .SOTO_EVT is always set on time out detection
			1 _D Enable
			0 _D Disable
			Reset: 0 _B

4.1.29 CFGOK: Register configuration lock

The **CFGOK** register is used to indicate to the gate driver logic that the user parameter configuration is finished and the parameters are set. After receiving the **CFGOK** flag the gate driver IC starts the further proceeding: self test, transfer of parameters to the output side, signaling ready.

CFGOK	Address:	01C _H					
Register confi	Reset Value:	00 _H					
7	6	5	4	3	2	1	0
			res				USER_OK
			none				rw

Field	Bits	Туре	Description
res	7:1	none	Reset: 0000000 _B
USER_OK	0	rw	Register configuration complete and locked indicator
			1 _D Configured, write protection on configuration registers
			0 _D Not configured,write enable on configuration registers
			Reset: 0 _B

4.1.30 CLEARREG: Clear event counter registers for DESAT2, *VCC1* UVLO, *VCC2* UVLO, event flags, and soft-reset

The clear event counter register **CLEARREG** is used for clearing of the following counters and registers:

- .D2E_CL: DESAT2 event counter
- .UV2F_CL: counter of VCC2 supply voltage spike detection
- .UV1F_CL: counter of VCC1 supply voltage spike detection
- .EVTSI_CL: sticky bit register
- .SOFT_RST: all configuration registers

The register bits return to 0_B without user interaction, after the linked task has been completed.

CLEARREG

CLEARREG	Address:	$01D_{H}$
Clear event counter registers for DESAT2, <i>VCC1</i> UVLO, <i>VCC2</i> UVLO, event flags, and soft-reset	Reset Value:	00 _H

7	6	5	4	3	2	1	0
	res		D2E_CL	UV2F_CL	UV1F_CL	EVTSI_CL	SOFT_RST
	none		none	none	none	none	none

Bits	Туре	Description
7:5	none	Reset: 000 _B
4	none	DESAT2 event counter: D2ECNT
		1 _D Clear
		0 _D No change
		Reset: 0 _B
3	none	UVLO2 event counter: UV2FCNT
		1 _D Clear
		0 _D No change
		Reset: 0 _B
2	none	UVLO1 event counter: UV1FCNT
		1 _D Clear
		0 _D No change
		Reset: 0 _B
1	none	Sticky event flags: EVTSTICK, SECUVEVT
		1 _D Clear
		0 _D No change
		Reset: 0 _B
0	none	Soft reset: all configuration registers return to their reset values
		1 _D Initiate
		0 No change
		Reset: 0 _B
	Bits 7:5 4 3 2 1 0	BitsType7:5none4none3none3none2none1none0none

4.2 Status registers

4.2.1 Sticky bits

Gate driver events set sticky bits to 1_B . The bit state indicates the event described for the individual bit has occurred at least once. Clearing sticky bit registers returns their value to 0_B .

The bits defined in the registers **EVTSTICK** and **SECUVEVT** are sticky.

Clearing sticky bit registers

- Clearing all sticky bit registers at once
 - **1.** Enter parameter configuration state
 - 2. Write 1_B to register bit *CLEARREG*.EVTSI_CL
 - **3.** Return to normal operation state
 - All registers with sticky bits are set to $0_{\rm H}$
 - Clearing by reading sticky bit registers
 - **1.** Start reading registers from a single gate driver IC
 - 2. Reading a sticky bit register will return its current state
 - 3. The sticky bit register then returns to the value 0_H

Note: A consecutive read of all registers will therefore clear all sticky bit registers as well.

4.2.2 RDYSTAT: Status of input side, output side, and gate driver IC

The register **RDYSTAT** has three bits to indicate the gate driver ready status:

- .CHIP_RDY: gate driver IC ready
- .PRI_RDY: input side ready
- .SEC_RDY: output side ready

RDYSTAT	Address:	026 _H
Status of input side, output side, and gate driver IC	Reset Value:	00 _H

7	6	5	4	3	2	1	0
		res			SEC_RDY	PRI_RDY	CHIP_RDY
		none			r	r	r

Field	Bits	Туре	Description
res	7:3	none	Reset: 00000 _B
SEC_RDY	2	r	Output side status
			1 _D Ready, Feedback from output side received
			0 _D Not ready, Start up pending
			Reset: 0 _B
PRI_RDY	1	r	Input side status
			1 _D Ready
			0 _D Not ready
			Reset: 0 _B
CHIP_RDY	0	r	Gate driver IC status

(continued)

Field	Bits	Туре	Description	
			1 _D Ready	
			0 _D Not ready	
			Reset: 0 _B	

4.2.3 SECUVEVT: Output side UVLO events causing a not ready state (sticky bits)

The register **SECUVEVT** stores status results for hardware and measurement based monitoring functions.

Monitoring VCC2

The gate driver IC is equipped with the following VCC2 UVLO functions and related status bits:

- Normal VCC2 supply UVLO event SECUVEVT.UV_VCC2
 It uses the filtered VCC2 supply voltage, comparable to state-of-the-art UVLO circuits. The status of this bit influences the RDYC output.
- VCC2 supply soft UVLO event SECUVEVT.UVSVCC2
 It uses the measured VCC2 supply voltage from the ADC. Therefore it is strongly filtered. The function can be configured to tailor the UVLO to the application and adapt to different driving set up.

Monitoring VEE2

The gate driver IC is equipped with the following *VEE2* UVLO functions and related status bits:

- Normal VEE2 supply UVLO event SECUVEVT.UV_VEE2
 It uses the filtered VEE2 supply voltage, comparable to state of the art UVLO circuits. Depending on the configuration the status can influence the RDYC output.
- VEE2 supply soft UVLO event SECUVEVT.UVSVEE2
 It uses the measured and strongly filtered VEE2 supply voltage from the ADC. The function can be configured to tailor the UVLO to different negative supply voltage levels.

Internal monitoring

The gate driver IC is monitoring the status of the internal power supplies. The status is indicated in register **SECUVEVT**.INT_PWR.

SECUVEVT

Output side UVLO events causing a not ready state	Reset Value:	00 _H
(sticky bits)		

7	6	5	4	3	2	1	0
res	INT_PWR	UVSVEE2	UVSVCC2	res	UV_VEE2	UV_VCC2	res
none	r	r	r	r	r	r	r

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
INT_PWR	6	r	Internal power supply
			1 _D Level below threshold detected

028

Address:

(continued)

Field	Bits	Туре	Description
			0 _D Supply okay
			Reset: 0 _B
UVSVEE2	5	r	VEE2 soft UVLO state
			1 _D Level above <i>UVSVEE2C</i> register value detected
			0 _D Supply okay or <i>VEE2</i> soft UVLO disabled <i>UVSVEE2C</i> .UVSVEE2E
			Reset: 0 _B
UVSVCC2	4	r	VCC2 soft UVLO state
			1 _D Level below UVSVCC2C register value detected
			0 _D Supply okay or <i>VCC2</i> soft UVLO disabled <i>UVSVCC2C</i> .UVSVCC2E
			Reset: 0 _B
res	3	r	Reset: 0 _B
UV_VEE2	2	r	VEE2 UVLO state
			1 _D Level above <i>UVTLVL</i> .UVVEE2TL threshold detected
			0 _D Supply okay or <i>VEE2</i> UVLO disabled <i>UVTLVL</i> .UVVEE2TL
			Reset: 0 _B
UV_VCC2	1	r	VCC2 UVLO switch based threshold state
			1 _D Level below UVTLVL.UVVCC2TL configured switch threshold detected
			0 _D Supply okay
			Reset: 0 _B
res	0	r	Reset: 0 _B

4.2.4 GFLTEVT: Indicator of active fault handling

The register **GFLTEVT** indicates an active fault source or a pending fault-off event at the output side. The output side fault-off pending state always has priority over the input side state. The output side status can hide the actual input side status due to fast fault-off handling of a current output on-state. This can result in a 03_H value even though *FLT_N* is still low.

GFLTEVT	Address:	029 _H
Indicator of active fault handling	Reset Value:	03 _H

7	6	5	4	3	2	1	0
		res	5			SEC_FLTN	PRI_FLTN
		non	e			r	r

Field	Bits	Туре	Description
res	7:2	none	Reset: 000000 _B
SEC_FLTN	1	r	Output side

(continued)

Field	Bits	Туре	Description
			1 _D No fault source active, no fault-off pending
			0 _D Fault handing active
			Reset: 1 _B
PRI_FLTN	0	r	Input side
			1 _D No fault
			0 _D <i>FLT_N</i> low without an earlier output side fault handling
			Reset: 1 _B

4.2.5 FLTEVT: Fault status and events of input side and output side

Fault events flagged in the **FLTEVT** register are typically signaled at *FLT_N* pin by switching the pin voltage level to *GND1*. The gate driver IC offers configurable and non-configurable fault events.

Fixed, non-configurable fault event

• Over temperature protection (Status register **FLTEVT**.OTP_EVT)

Configurable fault events

- Desaturation detection of IGBT, DESAT event (Status register FLTEVT .D1_EVT, FLTEVT.D2_EVT), configurable within register *D1LVL*.D_DIS, the value 1_B will disable both DESAT detectors
- Desaturation detection of IGBT, DESAT2 event (Status register FLTEVT .D2_EVT), configurable within register D2LVL.D2_ACFG
- Over-temperature warning (Status register FLTEVT.OTW_EVT), configurable within register OTWCFG.OTW_ACFG
- Switch-off timeout event (Status register FLTEVT.SOTO_EVT) is monitoring the ON pin voltage during switch-off, configurable within register SOTOUT_SOTOUT_F, threshold fixed at V_{ON} = VEE2+2 V
- Fault triggered by comparison to external voltage measurement at the *CLAMP* pin (Status register **FLTEVT**.VEXTFLT), configurable within register **ADCCFG**.VEXTL_EN

Over-temperature protection

The gate driver IC is equipped with an over-temperature shut-down protection. If the junction temperature is rising above 160°C the gate driver IC is initiating a fault-off sequence and the over-temperature fault event bit **FLTEVT**.OTP_EVT is set.

Over-temperature warning overview

In contrast to the non-adjustable gate driver over-temperature protection, the adjustable over-temperature warning level is used to signal an application specific non proper operation condition, which may influence life time.

The measured temperature is compared to the over-temperature warning level **OTWCFG**.OTW_LVL. If temperature has reached the threshold, the gate driver IC reacts according to over-temperature warning action configuration **OTWCFG**.OTW_ACFG with a fault turn-off sequence or only signaling the event in **FLTEVT**.OTW_EVT.

Switch-off timeout event bit

The switch-off timeout event bit **FLTEVT**.SOTO_EVT shows the timeout status:

- 0_B: no timeout event occurred
- 1_B: timeout event triggered

Related reference: Switch-off timeout until forced switch-off

Desaturation detection

Enabled DESAT events always set the linked register bit in the register **FLTEVT**:

- .D1_EVT reports a DESAT1 event. It also starts a fault turn-off sequence and signals the fault status via FLT_N • to low
- .D2_EVT reports a DESAT2 event. Futher actions depend on the configuration in register D2LVL.D2_ACFG

Turn-off monitoring

The gate driver monitors the gate voltage and sets the register bit *FLTEVT*.VOUT_ST to 1_B as long as the voltage at the ON pin is above VEE2 + 2 V.

CITEV/T

FLTEVT	Address:	02A _H
Fault status and events of input side and output side	Reset Value:	00 _H

7	6	5	4	3	2	1	0
res	VEXTFLT	VOUT_ST	SOTO_EVT	OTW_EVT	OTP_EVT	D2_EVT	D1_EVT
none	r	r	r	r	r	r	r

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
VEXTFLT	6	r	State of external voltage at <i>CLAMP</i> pin (ADC)
			1 _D Limit triggered
			0 _D Okay
			Reset: 0 _B
VOUT_ST	5	r	State of output shut-down
			1 _D Pending
			0 _D Done
			Reset: 0 _B
SOTO_EVT	4	r	State of switch-off timeout (switch-off monitoring)
			1 _D Timeout occurred
			0 _D Okay
			Reset: 0 _B
OTW_EVT	3	r	State of over temperature
			1 _D Warning event
			0 _D Okay
			Reset: 0 _B
OTP_EVT	2	r	State of hardware over temperature
			1 _D Fault event
			0 _D Okay
			Reset: 0 _B
D2_EVT	1	r	Indicator of DESAT2
			<pre>1_D Event limit triggered (D2CNTLIM > 0 and D2ECNT = D2CNTLIM)</pre>

(continued)

Field	Bits	Туре	Description
			0 _D Events below limit (D2CNTLIM = 0 or D2ECNT < D2CNTLIM)
			Reset: 0 _B
D1_EVT	0	r	Indicator of DESAT1
			1 _D Event triggered
			0 _D No event
			Reset: 0 _B

4.2.6 PINSTAT: Status of pins

The gate driver IC monitors the status of the following pins and signals in the register **PINSTAT**:

- .TLTO_LVL: a level compare of the OFF pin voltage and the configured TLTOC1.TLTO_V TLTOff plateau voltage
- .OFF_PIN: a level compare of the OFF pin voltage and the VCC2 2 V reference voltage
- .ON_PIN: a level compare of the ON pin voltage and the VEE2 + 2 V reference voltage
- .PWM_IN: a logic level evaluation of the *IN* pin
- .RDYC: a logic level evaluation of the *RDYC* pin
- .FLT_N: a logic level evaluation of the *FLT_N* pin

r

This information can be used for redundancy and signal integrity tests, e.g. applying a signal to *IN* and reading it back via serial bus register.

The monitoring function of the output pins *ON/OFF* is active during their inactive state of gate driving. The gate driver voltage monitoring provides the actual gate driver voltage compare state at the time of reading. The gate driver voltage used for comparison is filtered using the filter time for clamp and pin status monitoring configured in register *CLCFG*.

ro	c	FIT N	BDAC	DWM IN		OFF DIN	
7	6	5	4	3	2	1	0
Status of pins						Reset Value:	24 _H
PINSTAT						Address:	02B _H

r

r

r

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
FLT_N	5	r	State of <i>FLT_N</i> pin
			1 _D high
			0 _D low
			Reset: 1 _B
RDYC	4	r	State of <i>RDYC</i> pin
			1 _D high
			0 _D low
			Reset: 0 _B
PWM_IN	3	r	State of PWM <i>IN</i> pin

none

r

(continued)

Field	Bits	Туре	Description
			1 _D high
			0 _D low
			Reset: 0 _B
ON_PIN	2	r	State of ON pin
			1 _D Below VEE2 + 2 V
			0 _D Above <i>VEE2</i> + 2 V or output on
			Reset: 1 _B
OFF_PIN	1	r	State of <i>OFF</i> pin
			1 _D Above VCC2 - 2 V
			0 _D Below <i>VCC2</i> - 2 V or output off
			Reset: 0 _B
TLTO_LVL	0	r	OFF in comparison to the TLTOff level
			1 _D Above TLTOff level
			0 _D Below TLTOff level
			Reset: 0 _B

4.2.7 COMERRST: Status of input to output communication

The register **COMERRST** indicates the status of the internal signal transmission.

COMERRST			Address:	02C _H			
Status of input to output communication						Reset Value:	00 _H
7	6	5	4	3	2	1	0

-	-	-	-	-	_	-	-
	res		PCT_COM	CRC_SEC	CRC_PRI	CRC_COM	DCT_COM
	none		r	r	r	r	r

Field	Bits	Туре	Description
res	7:5	none	Reset: 000 _B
PCT_COM	4	r	State of PWM communication
			1 _D Error
			0 _D Okay,
			Reset: 0 _B
CRC_SEC	3	r	Internal CRC check of output side
			1 _D Error
			0 _D Okay
			Reset: 0 _B
CRC_PRI	2	r	Internal CRC check of input side
			1 _D Error
			0 _D Okay

(continued)

Field	Bits	Туре	Description
			Reset: 0 _B
CRC_COM	1	r	CRC check of input and output registers
			1 _D Error
			0 _D Okay
			Reset: 0 _B
DCT_COM	0	r	State of data communication
			1 _D Error
			0 _D Okay
			Reset: 0 _B

4.2.8 CHIPSTAT: Logic status of gate driver

CHIPSTAT			Address:	02D _H			
Logic status o	f gate driver IC	•				Reset Value:	00 _H
7	6	5	4	3	2	1	0
res			CONFIG	res		ACTIVE	
none			r		none	r	

Field	Bits	Туре	Description
res	7:4	none	Reset: 0000 _B
CONFIG	3	r	Input side gate driver registers configured
			1 _D Yes
			0 _D No
			Reset: 0 _B
res	2:1	none	Reset: 00 _B
ACTIVE	0	r	Gate driver is in normal operation state (active)
			1 _D Yes
			0 _D No
			Reset: 0 _B

4.2.9 EVTSTICK: Event indicator (sticky bits)

The bits defined in the register **EVTSTICK** signal the event state for:

• PWM communication ignored

Bit is set if the output side is currently handling a fault or not ready event while the input side is trying to send a PWM update signal. It highlights, that the output side intentionally ignores any incoming PWM signal until the fault or not ready event reaction is completed.

CRC error detected

Bit is set if a parameter mismatch between input and output side is detected. Re-configure all configuration registers to ensure consistent operation.

EiceDRIVER[™] 1ED38x0Mc12M Enhanced Reference manual

02F...

Address[.]

4 Register description

- Data communication error Bit is set if the communication between input and output side was interrupted by a higher priority data transmission.
- Gate driver restore Bit is set if the gate driver IC performed a restoration of configuration registers from input to output side.
- Gate driver recovery Bit is set if the gate driver IC performed a recovery of configuration registers from output to input side.
- Low level of *RDYC* Bit is set if the gate driver IC detected a low level of the *RDYC* pin.
- Low level of *FLT_N*

Bit is set if the gate dirver IC detected a low level of the *FLT_N* pin.

Gate driver events set sticky bits to 1_D.

EVTSTICK

		*==⊓
Event indicator (sticky bits)	Reset Value:	00 _H

7	6	5	4	3	2	1	0
res	SPCTCOM	SCRCANY	SDCTCOM	SRESTORE	SRECOVER	SNRDY	SFAULT
none	r	r	r	r	r	r	r

Field	Bits	Туре	Description
res	7	none	Reset: 0 _B
SPCTCOM	6	r	PWM communication ignored
			1 _D Yes
			0 _D No
			Reset: 0 _B
SCRCANY	5	r	CRC error detected
			1 _D Yes
			0 _D No
			Reset: 0 _B
SDCTCOM	4	r	Data communication error detected
			1 _D Yes
			0 _D No
			Reset: 0 _B
SRESTORE	3	r	Gate driver performed a restore
			1 _D Yes
			0 _D No
			Reset: 0 _B
SRECOVER	2	r	Gate driver performed a recover
			1 _D Yes
			0 _D No
			Reset: 0 _B

(continued)

Field	Bits	Туре	Description
SNRDY	1	r	Low level of RDYC detected
			1 _D Yes
			0 _D No
			Reset: 0 _B
SFAULT	0	r	Low level of FLT_N detected
			1 _D Yes
			0 _D No
			Reset: 0 _B

4.2.10 UV1FCNT: Counter of unfiltered *VCC1* UVLO events

The *VCC1* UVLO event counter is a 8 bit counter without overflow. The counter stops counting at FF_H. The number of counted events is stored in the register **UV1FCNT**.UV1F_CNT. The counter is summing up the unfiltered *VCC1* UVLO events. The counter value is an indicator for the *VCC1* power supply stability. The register can be cleared using the register bit *CLEARREG*.UV1F_CL. The status does not influence the *RDYC* output.

Counter of unfiltered VCC1 UVLO events Pased Value:									
	00 _H								
<u>7 6 5 4 3 2 1 0</u>									
UV1F_CNT									

r

Field	Bits	Туре	Description
UV1F_CNT	7:0	r	Counter of unfiltered VCC1 UVLO events
			Reset: 00 _H

4.2.11 UV2FCNT: Counter of unfiltered VCC2 UVLO events

The VCC2 UVLO event counter is a 8 bit counter without overflow. The counter stops counting at FF_H. The number of counted events is stored in the register **UV2FCNT**.UV2F_CNT. The counter is summing up the unfiltered VCC2 UVLO events. The counter value is an indicator for the VCC2 power supply stability. The register can be cleared using the register bit **CLEARREG**.UV2F_CL. The status does not influence the *RDYC* output.

UV2FCNT			Address:	030 _H			
Counter of ur	filtered VCC2 U	JVLO events				Reset Value:	00 _H
7	6	5	4	3	2	1	0
			UV2F	_CNT			

Field	Bits	Туре	Description
UV2F_CNT	7:0	r	Counter of unfiltered VCC2 UVLO events
			Reset: 00 _H

4.2.12 D2ECNT: Counter of DESAT2 events

The DESAT2 event counter is a 6 bit counter without overflow. The counter stops counting at 3F_H. The number of counted events is stored in the register field **D2ECNT**.D2_CNT. The counter is summing up the DESAT2 events after DESAT2 filter time.

The DESAT2 event counter can be cleared using the register bit **CLEARREG**.D2E_CL.

D2ECNT		Address:	031 _H				
Counter of DE	SAT2 events					Reset Value:	00 _H
7	6	5	4	3	2	1	0
re	es	D2_CNT					
no	ne				r		

Field	Bits	Туре	Description
res	7:6	none	Reset: 00 _B
D2_CNT	5:0	r	Counter of DESAT2 events
			Reset: 000000 _B

4.2.13 ADCMVDIF: Filtered ADC calculation result of VCC2 to GND2

The positive supply voltage VCC2 against GND2 is continuously calculated from the measurement results of VCC2 to VEE2 and GND2 to VEE2, if the internal voltage measurements are enabled in register bit ADCCFG.VINT_EN. The calculated voltage is stored as an unsigned 8 bit value in the register ADCMVDIF.VCC2GND2 with a maximum range of FF_H = 38.67 V and a resolution of 151.5 mV.

ADCMVDIF			Address:	032 _H			
Filtered ADC calculation result of VCC2-GND2						Reset Value:	00 _H
7	6	5	4	3	2	1	0

VCC2GND2
r

FieldBitsTypeDescriptionVCC2GND27:0rFiltered ADC calculation result of VCC2-GND2
255_D 38.67 V
254_D 38.52 V
253_D 38.37 V
... Steps of 151.5 mV

Field	Bits	Туре	Description
			2 _D 0.30 V
			1 _D 0.15 V
			0 _D 0 V
			Reset: 00 _H

4.2.14 ADCMGND2: Filtered ADC result of *GND2* to *VEE2*

The negative supply voltage *GND2* against *VEE2* is continuously measured if the internal voltage measurements are enabled in register bit *ADCCFG*.VINT_EN.

The measured voltage is stored as an unsigned 8 bit value in the register **ADCMGND2**.GND2VEE2 with a maximum range of $FF_H = 38.67$ V and a resolution of 151.5 mV.

ADCMGND2			Address:	033 _H			
Filtered ADC re	esult of GND2-	Reset Value:	00 _H				
7	6	5	4	3	2	1	0
GND2VEE2							

r

Field	Bits	Туре	Description
GND2VEE2	7:0	r	Filtered ADC result of GND2-VEE2
			255 _D 38.67 V
			254 _D 38.52 V
			253 _D 38.37 V
			Steps of 151.5 mV
			2 _D 0.30 V
			1 _D 0.15 V
			0 _D 0 V
			Reset: 00 _H

4.2.15 ADCMVCC2: Filtered ADC result of VCC2 to VEE2

The positive supply voltage VCC2 is continuously measured against VEE2 if the internal voltage measurements are enabled in register bit **ADCCFG**.VINT_EN.

The measured voltage is stored as an unsigned 8 bit value in the register **ADCMVCC2**.VCC2VEE2 with a maximum range of FF_H = 38.67 V and a resolution of 151.5 mV.

ADCMVCC2		Address:	034 _H				
Filtered ADC r	esult of VCC2-N	Reset Value:	00 _H				
7	6	5	4	3	2	1	0
			VCC2	VEE2			

r

Field	Bits	Туре	Description	
VCC2VEE2	7:0	r	Filtered ADC result of VCC2-VEE2	
			255 _D 38.67 V	
			254 _D 38.52 V	
			253 _D 38.37 V	
			Steps of 151.5 mV	
			2 _D 0.30 V	
			1 _D 0.15 V	
			0 _D 0 V	
			Reset: 00 _H	

4.2.16 ADCMTEMP: Filtered ADC result of gate driver temperature

The junction temperature Tj is continuously measured at the secondary side of the gate driver IC. The measured temperature is stored as an unsigned 8 bit value in the register **ADCMTEMP**.TJ_OUT with a resolution of 3.21°C and the following reference points:

- 84_H = 150°C
- 49_H = -40°C

ADCMTEMP						Address:	035 _H
Filtered ADC r	esult of gate d	river temperat	ture			Reset Value:	00 _H
7	6	5	4	3	2	1	0
			TJ_(DUT			

r		

Field	Bits	Туре	Description
TJ_OUT	7:0	r	Filtered ADC result of gate driver temperature
			132 _D 150°C
			131 _D 147°C
			Steps of 3.21°C
			85 _D 0°C
			Steps of 3.21°C
			74 _D -37°C
			73 _D -40°C
			Reset: 00 _H

4.2.17 ADCMVEXT: Filtered ADC result of *CLAMP* to *VEE2*

The positive external voltage at *CLAMP* pin is continuously measured against *VEE2* if external sensor voltage measurement is enabled in register bit *ADCCFG*.VEXT_EN. Disable the Miller clamp function to prevent impact on measurement (*CLCFG*.CL_DIS = 1_B)

EiceDRIVER[™] 1ED38x0Mc12M Enhanced Reference manual

4 Register description

The measured voltage is stored as an unsigned 8 bit value in the register **ADCMVEXT**.VEXTVEE2 with a maximum range of $FF_H = 2.86$ V and a resolution of 11.2 mV. Voltages above maximum range will lead to a result value of FF_H but will not harm the ADC.

Figure 56 Application example with NTC measurement

This function is used for indirect temperature measurement of an external NTC voltage typically located in the power module. The external NTC operates as a voltage divider between *GND2* (or *VCC2*) and *VEE2* using an additional resistor.

Figure 57 Application example with external voltage measurement

This function is used for voltage measurement of an external supply voltage. The external voltage is connected via a voltage divider referenced to *VEE2*. A voltage referenced to *GND2* needs to be calculated by the reading microcontroller using the value in register *ADCMGND2*.GND2VEE2.

ADCMVEXT			Address:	036 _H			
Filtered ADC result of CLAMP-VEE2						Reset Value:	00 _H
7	6	5	4	3	2	1	0
				-			-

VEXTVEE2

Field	Bits	Туре	Description
VEXTVEE2	XTVEE2 7:0 r	Filtered ADC result of CLAMP-VEE2	
			255 _D 2.86 V
			254 _D 2.85 V
			253 _D 2.84 V
			Steps of 11.2 mV

Field	Bits	Туре	Description
			2 _D 0.03 V
			1 _D 0.01 V
			0 _D 0 V
			Reset: 00 _H

EiceDRIVER[™] 1ED38x0Mc12M Enhanced Reference manual

5 Application notes

5 Application notes

5.1 Reference layout for thermal data

Figure 58Reference layout for thermal data (Two layer PCB; copper thickness 35 μm; left: top
layer; right: bottom layer)

The PCB layout represents the reference layout used for the thermal characterization. Pins 1 and 8 (*GND1*) and pins 9 and 16 (*VEE2*) require ground plane connections for achieving maximum power dissipation. The 1ED38x0Mc12M family (X3 Digital) is conceived to dissipate most of the heat generated through these pins.

5.2 Printed circuit board guidelines

Following factors should be taken into account for an optimum PCB layout.

- Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
- The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and reduce parasitic coupling.
- In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible.

Revision history

Revision history	
Reference	Description
v2.1	 Product links and certification information update Feature description improvements
v2.0	Editorial changes
v1.0	Editorial changes to all descriptions and parameter updates
v0.6	First revision of target reference manual

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-02-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-yov1584083321530

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.