BAT15-04R

Reverse series silicon RF Schottky diode pair

These Infineon RF Schottky diodes are silicon low barrier N-type devices with an integrated guard ring on-chip for over-voltage protection. Their low barrier height, low forward voltage and low junction capacitance make BAT15-04R a suitable choice for mixer and detector functions in applications which frequencies are as high as 12 GHz.

Feature list

- Low inductance $L_S = 1.5 \text{ nH (typical)}$
- Low capacitance $C = 0.27 \text{ pF (typical) at 1 MHz}$
- Industry standard SOT23-3 package (2.9 mm x 2.4 mm x 1 mm)
- Pb-free, RoHS compliant and halogen-free

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

For mixers and detectors in:

- Satellite systems
- Low noise blocks for Ku bands
- Security systems

Device information

<table>
<thead>
<tr>
<th>Table 1 Part information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product name / Ordering code</td>
</tr>
<tr>
<td>BAT15-04R / BAT1504RE6152HTSA1</td>
</tr>
</tbody>
</table>

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions!
Table of contents

Product description .. 1
Feature list .. 1
Product validation ... 1
Potential applications ... 1
Device information ... 1
Table of contents ... 2
1 Absolute maximum ratings ... 2
2 Electrical performance in test fixture 3
 2.1 Electrical characteristics .. 3
 2.2 Characteristic curves ... 4
3 Thermal characteristics ... 6
4 Package information SOT23-3 ... 8
Revision history .. 9
Disclaimer ... 10

1 Absolute maximum ratings

Table 2 Absolute maximum ratings at $T_A = 25 \degree C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode reverse voltage</td>
<td>V_R</td>
<td>–</td>
<td>4 V</td>
<td></td>
</tr>
<tr>
<td>Forward current</td>
<td>I_F</td>
<td>–</td>
<td>110 mA</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{TOT}</td>
<td>–</td>
<td>100 mW</td>
<td>$T_S \leq 77 \degree C , ^1$</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>–</td>
<td>150 °C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{OP}</td>
<td>-55</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>-55</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the component.

^1 T_S is the soldering point temperature.
2 Electrical performance in test fixture

2.1 Electrical characteristics

Table 3 Electrical characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown voltage</td>
<td>V_{BR}</td>
<td>4 – –</td>
<td>V</td>
<td>$I_R = 10 , \mu\text{A}$</td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>0.2 0.25 0.3</td>
<td>V</td>
<td>$I_F = 1 , \text{mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 0.35 0.41</td>
<td></td>
<td>$I_F = 10 , \text{mA}$</td>
</tr>
<tr>
<td>Forward voltage matching</td>
<td>ΔV_F</td>
<td>– – 10</td>
<td>mV</td>
<td>$I_F = 1 , \text{mA}$ 1)</td>
</tr>
<tr>
<td>Differential forward resistance</td>
<td>R_F</td>
<td>– 8 –</td>
<td>Ω</td>
<td>$I_F = 10 , \text{mA} / 50 , \text{mA}$ 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 12 18</td>
<td>Ω</td>
<td>$I_F = 5 , \text{mA}$</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>– 0.26 0.3</td>
<td>pF</td>
<td>$V_R = 0 , \text{V}, f = 1 , \text{MHz}$</td>
</tr>
<tr>
<td>Inductance</td>
<td>L_S</td>
<td>– 1.5 –</td>
<td>nH</td>
<td></td>
</tr>
</tbody>
</table>

1) ΔV_F is the difference between lowest and highest V_F in a multiple diode component.

2) $R_F = \frac{V_F(50 \, \text{mA}) - V_F(10 \, \text{mA})}{50 \, \text{mA} - 10 \, \text{mA}}$
2.2 Characteristic curves

At $T_A = 25^\circ C$, unless otherwise specified

![Diode capacitance C vs. reverse voltage V_R at frequency $f = 1 MHz$](image1)

Figure 1 Diode capacitance C vs. reverse voltage V_R at frequency $f = 1 MHz$

![Forward current I_F vs. forward voltage V_F](image2)

Figure 2 Forward current I_F vs. forward voltage V_F
Figure 3 Reverse current I_R vs. reverse voltage V_R

Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves.
3 Thermal characteristics

Table 4 Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance (junction - soldering point)</td>
<td>R_{thJS}</td>
<td>Min. -</td>
<td>725 K/W</td>
<td>$T_S = 77 , ^\circ\text{C}$ 1)</td>
</tr>
</tbody>
</table>

Figure 4 Permissible forward current I_F in DC operation

1 For R_{thJS} in other conditions refer to the curves in this chapter.
BAT15-04R
Reverse series silicon RF Schottky diode pair

Thermal characteristics

Figure 5 Thermal resistance R_{thJS} in pulse operation

Figure 6 Permissible forward current ratio I_{Fmax}/I_{DC} in pulse operation
BAT15-04R
Reverse series silicon RF Schottky diode pair

Package information SOT23-3

4 Package information SOT23-3

Figure 7 Package outline

Figure 8 Foot print

Figure 9 Marking layout example

Figure 10 Tape dimensions
Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
</table>
| 2.0 | 2018-09-28 | • New layout of datasheet
• Typical values and curves updated to the values of the production (No product or process change behind)
• Maximum/typical values added |