HIGH-SPEED 3.3V 16K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM ## IDT70V9369L ### Features: - True Dual-Ported memory cells which allow simultaneous access of the same memory location - High-speed clock to data access - Commercial: 6/7.5/9/12ns (max.) - Industrial: 7.5ns (max.) - Low-power operation - IDT70V9369L Active: 500mW (typ.) Standby: 1.5mW (typ.) - Flow-Through or Pipelined output mode on either port via the FT/PIPE pins - Counter enable and reset features - Dual chip enables allow for depth expansion without additional logic - Full synchronous operation on both ports - 4ns setup to clock and 0ns hold on all control, data, and address inputs - Data input, address, and control registers - Fast 6.5ns clock to data out in the Pipelined output mode - Self-timed write allows fast cycle time - 12ns cycle time, 83MHz operation in Pipelined output mode - Separate upper-byte and lower-byte controls for multiplexed bus and bus matching compatibility - LVTTL- compatible, single 3.3V (±0.3V) power supply - Industrial temperature range (-40°C to +85°C) is available for selected speeds - Available in a 100-pin Thin Quad Flatpack (TQFP) - Green parts available, see ordering information ## Functional Block Diagram **JULY 2010** ### Description: The IDT70V9369 is a high-speed 16K x 18 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V9369 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by $\overline{\text{CE}}_0$ and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 500mW of power. ## Pin Configuration^(1,2,3) - 1. All VDD pins must be connected to power supply. - 2. All Vss pins must be connected to ground. - 3. Package body is approximately 14mm x 14mm x 1.4mm. - 4. This package code is used to reference the package diagram. - 5. This text does not indicate orientation of the actual part-marking. ### Pin Names | Left Port | Right Port | Names | |----------------|------------------|----------------------------------| | CEOL, CE1L | CEOR, CE1R | Chip Enables ⁽²⁾ | | R/WL | R/WR | Read/Write Enable | | ŌĒL | OE R | Output Enable | | A0L - A13L | A0R - A13R | Address | | I/O0L - I/O17L | I/O0R - I/O17R | Data Input/Output | | CLKL | CLKR | Clock | | <u>UB</u> ∟ | UB R | Upper Byte Select ⁽¹⁾ | | <u>LB</u> L | LB R | Lower Byte Select ⁽¹⁾ | | ADSL | ADS R | Address Strobe Enable | | CNTENL | <u>CNTEN</u> R | Counter Enable | | CNTRSTL | <u>CNTRST</u> R | Counter Reset | | FT/PIPEL | FT/PIPER | Flow-Through / Pipeline | | V | DD | Power (3.3V) | | V | SS | Ground (0V) | 5648 tbl 01 - LB and UB are single buffered regardless of state of FT/PIPE. CEo and CE1 are single buffered when FT/PIPE = VIL, CEo and CE1 are double buffered when FT/PIPE = VIH, i.e., the signals take two cycles to deselect. Truth Table I—Read/Write and Enable Control^(1,2,3) | ŌĒ | CLK | <u>CE</u> ₀ | CE1 | ŪB | ĪΒ | R/W | Upper Byte
I/O ₉₋₁₇ ⁽⁴⁾ | Lower Byte
I/O ₀₋₈ ⁽⁵⁾ | MODE | |----|------------|-------------|-----|----|----|-----|--|---|--------------------------| | Х | \uparrow | Н | Χ | Х | Χ | Χ | High-Z | High-Z | Deselected-Power Down | | Х | 1 | Χ | L | Χ | Χ | Χ | High-Z | High-Z | Deselected-Power Down | | Х | 1 | L | Н | Н | Н | Х | High-Z | High-Z | Both Bytes Deselected | | Х | 1 | L | Н | L | Н | L | DATAIN | High-Z | Write to Upper Byte Only | | Х | 1 | L | Н | Н | L | L | High-Z | DATAIN | Write to Lower Byte Only | | Х | 1 | L | Н | L | L | L | DATAIN | DATAIN | Write to Both Bytes | | L | \uparrow | L | Н | L | Н | Н | DATAout | High-Z | Read Upper Byte Only | | L | \uparrow | L | Н | Н | L | Н | High-Z | DATAout | Read Lower Byte Only | | L | \uparrow | L | Н | L | L | Н | DATAout | DATAout | Read Both Bytes | | Н | Χ | L | Н | L | L | Χ | High-Z | High-Z | Outputs Disabled | 5648 tbl 02 - 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X. - 3. $\overline{\text{OE}}$ is an asynchronous input signal. ## Truth Table II—Address Counter Control (1,2,6) | Address | Previous
Internal
Address | Internal
Address
Used | CLK ⁽⁶⁾ | ĀDS | CNTEN | CNTRST | I/O ⁽³⁾ | MODE | |---------|---------------------------------|-----------------------------|--------------------|------------------|------------------|------------------|--------------------|---| | An | Х | An | ↑ | L ⁽⁴⁾ | Χ | Н | Dvo (n) | External Address Used | | Х | An | An + 1 | 1 | Н | L ⁽⁵⁾ | Н | Dvo(n+1) | Counter Enabled—Internal Address generation | | Х | An + 1 | An + 1 | 1 | Н | Н | Н | Dvo(n+1) | External Address Blocked—Counter disabled (An + 1 reused) | | Х | Х | A 0 | 1 | Χ | Х | L ⁽⁴⁾ | Dvo(0) | Counter Reset to Address 0 | #### NOTES: 5648 tbl 03 - 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. \overline{CE}_0 , \overline{LB} , \overline{UB} , and \overline{OE} = VIL; CE1 and R/ \overline{W} = VIH. - 3. Outputs configured in Flow-Through Output mode; if outputs are in Pipelined mode the data out will be delayed by one cycle. - 4. ADS and CNTRST are independent of all other signals including CEo, CE1, UB and LB. - 5. The address counter advances if $\overline{\text{CNTEN}} = \text{ViL}$ on the rising edge of CLK, regardless of all other signals including $\overline{\text{CE}}_0$, CE₁, $\overline{\text{UB}}$ and $\overline{\text{LB}}$. - 6. While an external address is being loaded ($\overline{ADS} = VIL$), $R\overline{W} = VIH$ is recommended to ensure data is not written arbitrarily. ## Recommended Operating Temperature and Supply Voltage⁽¹⁾ | Grade | Ambient
Temperature ⁽¹⁾ | GND | V _{DD} | |------------|---------------------------------------|-----|--------------------| | Commercial | 0°C to +70°C | 0V | 3.3V <u>+</u> 0.3V | | Industrial | -40°C to +85°C | 0V | 3.3V <u>+</u> 0.3V | #### NOTES: 5648 tbl 04 1. This is the parameter Ta. This is the "instant on" case temperature. ## Recommended DC Operating Conditions | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|--------------------|---------------------|------|--------------------------------------|------| | VDD | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | Vss | Ground | 0 | 0 | 0 | V | | Vн | Input High Voltage | 2.0V | _ | V _{DD} +0.3V ⁽²⁾ | V | | VIL | Input Low Voltage | -0.3 ⁽¹⁾ | | 0.8 | ٧ | 5648 tbl 05 ### NOTES: - 1. VIL > -1.5V for pulse width less than 10 ns. - 2. VTERM must not exceed V_{DD} +0.3V. # Absolute Maximum Ratings⁽¹⁾ | Symbol | Rating | Commercial
& Industrial | Unit | |----------------------|--|----------------------------|------| | VTERM ⁽²⁾ | Terminal Voltage
with Respect to
GND | -0.5 to +4.6 | V | | TBIAS ⁽³⁾ | Temperature
Under Bias | -55 to +125 | °C | | Tstg | Storage
Temperature | -65 to +150 | °C | | NuT | Junction Temperature | +150 | ۰C | | ЮИТ | DC Output Current | 50 | mA | ### NOTES: - 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. VTERM must not exceed VDD +0.3V. - 3. Ambient Temperature Under DC Bias. No AC Conditions. Chip deselect. # Capacitance⁽¹⁾ $(TA = +25^{\circ}C, f = 1.0MHz)$ | Symbol | Parameter | Conditions | Max. | Unit | |---------------------|--------------------|------------|------|------| | CIN | Input Capacitance | VIN = 0V | 9 | pF | | Соит ⁽²⁾ | Output Capacitance | Vout = 0V | 10 | pF | ### NOTES: 5648 tbl 07 - 1. These parameters are determined by device characterization, but are not production tested. - 2. Cout also references CI/O. # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V) | | | | | 70V9369L | | | |--------|--------------------------------------|--|------|----------|------|--| | Symbol | Parameter | Test Conditions | Min. | Max. | Unit | | | LI | Input Leakage Current ⁽¹⁾ | $V_{DD} = 3.6V$, $V_{IN} = 0V$ to V_{DD} | _ | 5 | μA | | | luo | Output Leakage Current | $\overline{\text{CE}}\text{O} = \text{ViH or CE1} = \text{ViL, Vout} = \text{OV to VdD}$ | _ | 5 | μA | | | Vol | Output Low Voltage | IoL = +4mA | _ | 0.4 | V | | | Voh | Output High Voltage | IOH = -4mA | 2.4 | _ | V | | NOTE: 5648 tbl 08 1. At $V_{DD} \leq 2.0V$ input leakages are undefined. # DC Electrical Characteristics Over the Operating Temperature Supply Voltage Range⁽³⁾ (VDD = 3.3V ± 0.3V) | • | | | | | 70V9 | 369L6
I Only | Co | 369L7
m'l
Ind | | 369L9
I Only | | 69L12
Only | | |--------|--|--|--------|---|---------------------|-----------------|---------------------|---------------------|---------------------|-----------------|---------------------|---------------|------| | Symbol | Parameter | Test Condition | Versio | n | Typ. ⁽⁴⁾ | Max. | Unit | | loo | Dynamic Operating | CEL and CER= VIL, | COM'L | L | 220 | 350 | 200 | 290 | 180 | 225 | 150 | 205 | mA | | | Current (Both
Ports Active) | Outputs Disabled,
$f = fMAX^{(1)}$ | IND | L | _ | _ | 200 | 335 | _ | _ | _ | _ | | | ISB1 | Standby Current
(Both Ports - TTL | $\overline{\text{CE}}\text{L} = \overline{\text{CE}}\text{R} = \text{ViH}$ | COM'L | L | 70 | 130 | 65 | 100 | 50 | 65 | 40 | 50 | mA | | | Level Inputs) | $f = fMAX^{(1)}$ | IND | L | _ | _ | 65 | 115 | _ | _ | _ | _ | | | ISB2 | Standby
Current (One | \overline{CE} "A" = VIL and \overline{CE} "B" = VIH ⁽⁵⁾ | COM'L | L | 150 | 250 | 140 | 210 | 110 | 150 | 100 | 140 | mA | | | Port - TTL
Level Inputs) | Active Port Outputs Disabled, f=fMAX ⁽¹⁾ | IND | L | | | 140 | 240 | | 1 | - | ı | | | ISB3 | Full Standby
Current (Both | Both Ports $\overline{CE}L$ and $\overline{CE}R \ge VDD - 0.2V$, | COM'L | L | 0.4 | 5 | 0.4 | 5 | 0.4 | 5 | 0.4 | 5 | mA | | | Ports - CMOS
Level Inputs) | $VIN \ge VDD - 0.2V$,
$VIN \ge VDD - 0.2V$ or
$VIN \le 0.2V$, $f = 0^{(2)}$ | IND | L | ı | | 0.4 | 15 | 1 | ı | ı | I | | | ISB4 | Full Standby | <u>CE</u> "A" ≤ 0.2V and | COM'L | L | 140 | 240 | 130 | 200 | 100 | 140 | 90 | 130 | mA | | | Current (One
Port - CMOS
Level Inputs) | $\begin{array}{l} \overline{\text{CE}}\text{"B"} \stackrel{>}{\sim} V\text{DD} - 0.2V^{(5)} \\ \text{VIN} \stackrel{>}{>} V\text{DD} - 0.2V \text{ or} \\ \text{VIN} \stackrel{<}{\leq} 0.2V, \text{ Active Port,} \\ \text{Outputs Disabled, } f = f\text{MAX}^{(1)} \end{array}$ | IND | L | _ | _ | 130 | 230 | _ | _ | | _ | | ### 5648 tbl 09 - 1. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V. - 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. - 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". - 4. VDD = 3.3V, $TA = 25^{\circ}C$ for Typ, and are not production tested. IDD DC(f=0) = 90mA (Typ). - 5. $\overline{CE}x = VIL \text{ means } \overline{CE}ox = VIL \text{ and } CE1x = VIH$ - $\overline{CE}x = VIH \text{ means } \overline{CE}_0x = VIH \text{ or } CE_1x = VIL$ - $\overline{CE}x \leq 0.2V$ means $\overline{CE}_0x \leq 0.2V$ and CE1x $\geq V_{\text{DD}}$ 0.2V - $\overline{\text{CE}}$ x \geq V_{DD} 0.2V means $\overline{\text{CE}}$ 0x \geq V_{DD} 0.2V or CE1x \leq 0.2V - "X" represents "L" for left port or "R" for right port. ## **AC Test Conditions** | Input Pulse Levels | GND to 3.0V | |-------------------------------|---------------------| | Input Rise/Fall Times | 3ns Max. | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | Figures 1, 2, and 3 | 5648 tbl 10 Figure 1. AC Output Test load. Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz). *Including scope and jig. Figure 3. Typical Output Derating (Lumped Capacitive Load). # AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3)}$ (VDD = 3.3V ± 0.3V) | (| rand write Cycle Timing). | 70V9 | 369L6
I Only | | 369L7
I Only
Ind | | 70V9369L9
Com'l Only | | 369L12
I Only | | |----------------|---|------|-----------------|------|------------------------|------|-------------------------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | tcyc1 | Clock Cycle Time (Flow-Through) ⁽²⁾ | 19 | _ | 22 | _ | 25 | _ | 30 | _ | ns | | tcyc2 | Clock Cycle Time (Pipelined) ⁽²⁾ | 10 | _ | 12 | _ | 15 | _ | 20 | _ | ns | | tch1 | Clock High Time (Flow-Through) ⁽²⁾ | 6.5 | | 7.5 | _ | 12 | _ | 12 | | ns | | tcl1 | Clock Low Time (Flow-Through) ⁽²⁾ | 6.5 | _ | 7.5 | _ | 12 | _ | 12 | _ | ns | | tch2 | Clock High Time (Pipelined) ⁽²⁾ | 4 | _ | 5 | _ | 6 | _ | 8 | _ | ns | | tCL2 | Clock Low Time (Pipelined) ⁽²⁾ | 4 | _ | 5 | _ | 6 | _ | 8 | _ | ns | | tr | Clock Rise Time | _ | 3 | | 3 | | 3 | _ | 3 | ns | | tr | Clock Fall Time | _ | 3 | _ | 3 | | 3 | _ | 3 | ns | | tsa | Address Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | _ | ns | | tha | Address Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | _ | ns | | tsc | Chip Enable Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | _ | ns | | thc | Chip Enable Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | _ | ns | | tsw | R/W Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | | ns | | thw | R/W Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | _ | ns | | tsd | Input Data Setup Time | 3.5 | | 4 | _ | 4 | _ | 4 | | ns | | thd | Input Data Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | _ | ns | | tsad | ADS Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | _ | ns | | thad | ADS Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | | ns | | tscn | CNTEN Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | | ns | | then | CNTEN Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | | ns | | tsrst | CNTRST Setup Time | 3.5 | _ | 4 | _ | 4 | _ | 4 | _ | ns | | thrst | CNTRST Hold Time | 0 | _ | 0 | _ | 1 | _ | 1 | _ | ns | | toe | Output Enable to Data Valid | | 6.5 | _ | 7.5 | | 9 | _ | 12 | ns | | tolz | Output Enable to Output Low-Z ⁽¹⁾ | 2 | _ | 2 | _ | 2 | _ | 2 | _ | ns | | tонz | Output Enable to Output High-Z ⁽¹⁾ | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | ns | | tcd1 | Clock to Data Valid (Flow-Through) ⁽²⁾ | _ | 15 | | 18 | | 20 | _ | 25 | ns | | tCD2 | Clock to Data Valid (Pipelined) ⁽²⁾ | | 6.5 | | 7.5 | | 9 | | 12 | ns | | toc | Data Output Hold After Clock High | 2 | _ | 2 | _ | 2 | _ | 2 | | ns | | tckhz | Clock High to Output High-Z ⁽¹⁾ | | 9 | 2 | 9 | 2 | 9 | 2 | 9 | ns | | tcklz | Clock High to Output Low-Z ⁽¹⁾ | 2 | _ | 2 | _ | 2 | _ | 2 | _ | ns | | Port-to-Port [| Delay | • | | | | | | | | | | tcwdd | Write Port Clock High to Read Data Delay | | 24 | | 28 | | 35 | _ | 40 | ns | | tccs | Clock-to-Clock Setup Time | | 9 | | 10 | | 15 | | 15 | ns | 5648 tbl 11 ^{1.} Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested. ^{2.} The Pipelined output parameters (tcyc2, tcb2) apply to either or both the Left and Right ports when FT/PIPE = VIH. Flow-through parameters (tcyc1, tcb1) apply when $\overline{FT}/PIPE = V_{IL}$ for that port. ^{3.} All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPER, and FT/PIPEL. # Timing Waveform of Read Cycle for Flow-Through Output $(\mathbf{FT}/PIPE"x" = VIL)^{(3,7)}$ # Timing Waveform of Read Cycle for Pipelined Operation $(\overline{FT}/PIPE"x" = VIH)^{(3,7)}$ - NOTES: - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge. - 3. $\overline{ADS} = VIL \text{ and } \overline{CNTRST} = VIH.$ - 4. The output is disabled (High-Impedance state) by $\overline{\text{CE}}_0 = \text{V}_{\text{IH}}$, $\text{CE}_1 = \text{V}_{\text{IL}}$, $\overline{\text{UB}} = \text{V}_{\text{IH}}$, or $\overline{\text{LB}} = \text{V}_{\text{IH}}$ following the next rising edge of the clock. Refer to Notes under Pin Names Table. - 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 6. If UB or LB was HIGH, then the Upper Byte and/or Lower Byte of DATAouT for Qn + 2 would be disabled (High-Impedance state). - 7. "X' here denotes Left or Right port. The diagram is with respect to that port. # Timing Waveform of a Bank Select Pipelined Read (1,2) ### NOTES: - 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V9369 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. - 2. \overline{UB} , \overline{LB} , \overline{OE} , and \overline{ADS} = VIL; CE1(B1), CE1(B2), R/ \overline{W} and \overline{CNTRST} = VIH. - 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 4. \overline{CE}_0 , \overline{UB} , \overline{LB} , and $\overline{ADS} = VIL$; CE1 and $\overline{CNTRST} = VIH$. - 5. \overline{OE} = VIL for the Right Port, which is being read from. \overline{OE} = VIH for the Left Port, which is being written to. - 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpb. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1, tcwpb does not apply in this case. - 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A". # Timing Waveform of Left Port Write to Pipelined Right Port Read (1,2,4) - 1. \overline{CE}_0 , \overline{BE}_n , and $\overline{ADS} = VIL$; CE_1 and $\overline{REPEAT} = VIH$. - 2. \overline{OE} = VIL for Port "B", which is being read from. \overline{OE} = VIH for Port "A", which is being written to. - 3. If tco ≤ minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be tco + 2 tcyc2 + tcp2). If tco > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port will be tco + tcyc2 + tcp2). - 4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A" # Timing Waveform with Port-to-Port Flow-Through Read^(4,5,7) - 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V9369 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. - 2. \overline{UB} , \overline{LB} , \overline{OE} , and \overline{ADS} = VIL; CE1(B1), CE1(B2), R/ \overline{W} and \overline{CNTRST} = VIH. - 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). 4. CEo, UB, LB, and ADS = VIL; CE1 and CNTRST = VIH. - 5. $\overline{OE} = VIL$ for the Right Port, which is being read from. $\overline{OE} = VIH$ for the Left Port, which is being written to. - 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpp. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb1. tcwbb does not apply in this case. - 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A". # Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** = VIL)⁽³⁾ # Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** Controlled)⁽³⁾ - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 3. CEo, UB, LB, and ADS = VIL; CE1 and CNTRST = VIH. "NOP" is "No Operation". 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. # Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** = VIL)⁽³⁾ # Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** Controlled)⁽³⁾ - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 3. \overline{CE}_0 , \overline{UB} , \overline{LB} , and $\overline{ADS} = VIL$; \overline{CE}_1 and $\overline{CNTRST} = VIH$. "NOP" is "No Operation". - 4. Addresses do not have to be accessed sequentially since \overline{ADS} = Vil constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. # Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾ # Timing Waveform of Flow-Through Read with Address Counter Advance⁽¹⁾ - 1. $\overline{CE_0}$, \overline{OE} , \overline{UB} , and \overline{LB} = V_{IL}; CE₁, R/ \overline{W} , and \overline{CNTRST} = V_{IH}. - 2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks. # Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾ # Timing Waveform of Counter Reset (Pipelined Outputs)(2) - 1. \overline{CE}_0 , \overline{UB} , \overline{LB} , and R/\overline{W} = V_{IL}; CE₁ and \overline{CNTRST} = V_{IH}. - 2. \overline{CE}_0 , \overline{UB} , \overline{LB} = VIL; CE1 = VIH. - 3. The "Internal Address" is equal to the "External Address" when $\overline{ADS} = VIL$ and equals the counter output when $\overline{ADS} = VIH$. - 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle. ADDRo will be accessed. Extra cycles are shown here simply for clarification. - 7. CNTEN = V_{IL} advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1' Address is written to during this cycle. ## **Functional Description** The IDT70V9369 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to staff the operation of the address counters for fast interleaved memory applications. $\overline{\text{CE}}_0 = \text{VIL}$ and $\text{CE}_1 = \text{VIH}$ for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V9369's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}_0 = \text{VIL}$ and $\text{CE}_1 = \text{VIH}$ to re-activate the outputs. ## Depth and Width Expansion The IDT70V9369 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The IDT70V9369 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 36-bit or wider applications. ### Ordering Information #### NOTE: - 1. Contact your local sales office for industrial temp range for other speeds, packages and powers. - 2. Green parts available. For specific speeds, packages and powers contact your sales office. ## Datasheet Document History | 01/08/02: | | Initial Public Release | |-----------|-------------|---| | 10/11/04: | | Removed "Preliminary" status | | | Page 4 | Updated Truth Table II | | | | Updated Absolute Maximum Ratings | | | | Updated Capacitance table | | | Page 5 | Added 6ns speed grade and 7ns I-temp, removed 9ns I-temp and updated DC power numbers in the DC Electrical Characteristics Table | | | Page 7 | Added 6ns speed grade and 7ns I-temp and removed 9ns I-temp AC timing numbers | | | | from the AC Electrical Characteristics Table | | | | Updated to E for 7ns and 9ns speed grades | | | Page 9 | Added Timing Waveform of Left Port Write to Pipelined Right Port Read | | | Page 16 | Added 6ns speed grade and 7ns I-temp and removed 9ns I-temp to ordering information | | | Page 1 & 16 | Replaced old тм logo with new тм logo | | 10/23/08: | Page 16 | Removed "IDT" from orderable part number | | 07/26/10: | Page 1 | Added green parts availability to features | | | Page 16 | Added green indicator to ordering information | | | Page 7 | In order to correct the header notes of the AC Elect Chars Table and align them with the Industrial temprange values located in the table, the commercial Ta header note has been removed | | | Pages 8-12 | In order to correct the footnotes of timing diagrams, $\overline{\text{CNTEN}}$ has been removed to reconcile the footnotes with the $\overline{\text{CNTEN}}$ logic definition found in Truth Table II - Address Counter Control | ### **CORPORATE HEADQUARTERS** 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: 408-284-2794 DualPortHelp@idt.com The IDT logo is a registered trademark of Integrated Device Technology, Inc.