Four Output Differential Buffer for PCI Express ICS9DB401C #### **Description** The 9DB401C is a DB400 Version 2.0 Yellow Cover part with PCI Express support. It can be used in PC or embedded systems to provide outputs that have low cycle-to-cycle jitter (50ps), low output-to-output skew (100ps), and are PCI Express gen 1 compliant. The 9DB401C supports a 1 to 4 output configuration, taking a spread or non spread differential HCSL input from a CK410(B) main clock such as 954101 and 932S401, or any other differential HCSL pair. 9DB401C can generate HCSL or LVDS outputs from 50 to 200MHz in PLL mode or 0 to 400Mhz in bypass mode. There are two de-jittering modes available selectable through the HIGH_BW# input pin, high bandwidth mode provides de-jittering for spread inputs and low bandwidth mode provides extra de-jittering for non-spread inputs. The SRC_STOP#, PD#, and OE real-time input pins provide completely programmable power management control. #### **Output Features** - 4 0.7V HCSL or LVDS differential output pairs - Supports zero delay buffer mode and fanout mode - Bandwidth programming available #### Features/Benefits - Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread - Supports undriven differential outputs in PD# and SRC_STOP# modes for power management. #### **Key Specifications** - Outputs cycle-cycle jitter: < 50ps - Outputs skew: < 50ps - Extended frequency range in bypass mode: Revision B: up to 333.33MHz Revision C: up to 400MHz - Real-time PLL lock detect output pin - 28-pin SSOP/TSSOP package - Available in RoHS compliant packaging ## **Funtional Block Diagram** Note: Polarities shown for OE_INV = 0. IDT™/ICS™ Four Output Differential Buffer for PCI Express ICS9DB401C **REV E 03/18/08** #### **Pin Configuration** #### 28-pin SSOP & TSSOP ## **Polarity Inversion Pin List Table** | | OE_INV | | | | | |------|-----------|----------|--|--|--| | Pins | 0 | 1 | | | | | 8 | OE_1 | OE1# | | | | | 15 | PD# | PD | | | | | 16 | DIF_STOP# | DIF_STOP | | | | | 21 | OE_6 | OE6# | | | | #### **Power Groups** | Pin N | lumber | Description | |-------------|--------|-------------------------------| | VDD | GND | Description | | 1 | 4 | SRC_IN/SRC_IN# | | 5,11,18, 24 | 4 | DIF(1,2,5,6) | | N/A | 27 | IREF | | 28 | 27 | Analog VDD & GND for PLL core | ## Pin Description for OE_INV = 0 | PIN# | PIN NAME | PIN TYPE | DESCRIPTION | |------|-------------|----------|--| | 1 | VDD | PWR | Power supply, nominal 3.3V | | 2 | SRC_IN | IN | 0.7 V Differential SRC TRUE input | | 3 | SRC_IN# | IN | 0.7 V Differential SRC COMPLEMENTARY input | | 4 | GND | PWR | Ground pin. | | 5 | VDD | PWR | Power supply, nominal 3.3V | | 6 | DIF_1 | OUT | 0.7V differential true clock output | | 7 | DIF_1# | OUT | 0.7V differential complement clock output | | 8 | OE_1 | IN | Active high input for enabling output 1. | | 0 | OE_1 | IIN | 0 = tri-state outputs, 1= enable outputs | | 9 | DIF_2 | OUT | 0.7V differential true clock output | | 10 | DIF_2# | OUT | 0.7V differential complement clock output | | 11 | VDD | PWR | Power supply, nominal 3.3V | | 12 | BYPASS#/PLL | IN | Input to select Bypass(fan-out) or PLL (ZDB) mode | | 12 | DTPASS#/PLL | IIN | 0 = Bypass mode, 1= PLL mode | | 13 | SCLK | IN | Clock pin of SMBus circuitry, 5V tolerant. | | 14 | SDATA | I/O | Data pin for SMBus circuitry, 5V tolerant. | | | | | Asynchronous active low input pin used to power down the device. | | 15 | PD# | IN | The internal clocks are disabled and the VCO and the crystal are | | | | | stopped. | | 16 | SRC_STOP# | IN | Active low input to stop SRC outputs. | | 17 | HIGH_BW# | IN | 3.3V input for selecting PLL Band Width | | 17 | nign_bvv# | IIN | 0 = High, 1= Low | | 18 | VDD | PWR | Power supply, nominal 3.3V | | 19 | DIF_5# | OUT | 0.7V differential complement clock output | | 20 | DIF_5 | OUT | 0.7V differential true clock output | | 21 | OE_6 | IN | Active high input for enabling output 6. | | | | IIN | 0 = tri-state outputs, 1= enable outputs | | 22 | DIF_6# | OUT | 0.7V differential complement clock output | | 23 | DIF_6 | OUT | 0.7V differential true clock output | | 24 | VDD | PWR | Power supply, nominal 3.3V | | 25 | OE_INV | IN | This latched input selects the polarity of the OE pins. | | 23 | OL_IIV | IIN | 0 = OE pins active high, 1 = OE pins active low (OE#) | | | | | This pin establishes the reference current for the differential current- | | 26 | IREF | OUT | mode output pairs. This pin requires a fixed precision resistor tied | | 20 | | 001 | to ground in order to establish the appropriate current. 475 ohms is | | | | | the standard value. | | 27 | GNDA | PWR | Ground pin for the PLL core. | | 28 | VDDA | PWR | 3.3V power for the PLL core. | ## Pin Description for OE_INV = 1 | PIN# | PIN NAME | PIN TYPE | DESCRIPTION | |------|-------------|----------|--| | 1 | VDD | PWR | Power supply, nominal 3.3V | | 2 | SRC_IN | IN | 0.7 V Differential SRC TRUE input | | 3 | SRC_IN# | IN | 0.7 V Differential SRC COMPLEMENTARY input | | 4 | GND | PWR | Ground pin. | | 5 | VDD | PWR | Power supply, nominal 3.3V | | 6 | DIF_1 | OUT | 0.7V differential true clock output | | 7 | DIF_1# | OUT | 0.7V differential complement clock output | | 0 | 051# | IN | Active low input for enabling DIF pair 1. | | 8 | OE1# | IIN | 1 = tri-state outputs, 0 = enable outputs | | 9 | DIF_2 | OUT | 0.7V differential true clock output | | 10 | DIF_2# | OUT | 0.7V differential complement clock output | | 11 | VDD | PWR | Power supply, nominal 3.3V | | 10 | DVDACC#/DLI | INI | Input to select Bypass(fan-out) or PLL (ZDB) mode | | 12 | BYPASS#/PLL | IN | 0 = Bypass mode, 1= PLL mode | | 13 | SCLK | IN | Clock pin of SMBus circuitry, 5V tolerant. | | 14 | SDATA | I/O | Data pin for SMBus circuitry, 5V tolerant. | | 15 | PD | IN | Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped. | | 16 | SRC_STOP | IN | Active high input to stop SRC outputs. | | 17 | HIGH_BW# | IN | 3.3V input for selecting PLL Band Width | | 17 | | | 0 = High, 1= Low | | 18 | VDD | PWR | Power supply, nominal 3.3V | | 19 | DIF_5# | OUT | 0.7V differential complement clock output | | 20 | DIF_5 | OUT | 0.7V differential true clock output | | 21 | OE6# | IN | Active low input for enabling DIF pair 6. | | | | | 1 = tri-state outputs, 0 = enable outputs | | 22 | DIF_6# | OUT | 0.7V differential complement clock output | | 23 | DIF_6 | OUT | 0.7V differential true clock output | | 24 | VDD | PWR | Power supply, nominal 3.3V | | 25 | OE_INV | IN | This latched input selects the polarity of the OE pins. | | | | | 0 = OE pins active high, 1 = OE pins active low (OE#) | | | | | This pin establishes the reference current for the differential | | 26 | IREF | OUT | current-mode output pairs. This pin requires a fixed precision | | - | | | resistor tied to ground in order to establish the appropriate | | | | | current. 475 ohms is the standard value. | | 27 | GNDA | PWR | Ground pin for the PLL core. | | 28 | VDDA | PWR | 3.3V power for the PLL core. | #### **Absolute Max** | Symbol | Parameter | Min | Max | Units | |-----------------|---------------------------|---------|-----------------------|-------| | VDD_A | 3.3V Core Supply Voltage | | 4.6 | V | | VDD_In | 3.3V Logic Supply Voltage | | 4.6 | ٧ | | V_{IL} | Input Low Voltage | GND-0.5 | | V | | V _{IH} | Input High Voltage | | V _{DD} +0.5V | V | | Ts | Storage Temperature | -65 | 150 | °C | | Tambient | Ambient Operating Temp | 0 | 70 | ů | | Tcase | Case Temperature | | 115 | ů | | | Input ESD protection | | | | | ESD prot | human body model | 2000 | | V | ## Electrical Characteristics - Input/Supply/Common Output Parameters $T_A = 0$ - 70°C; Supply Voltage $V_{DD} = 3.3 \text{ V } + /-5\%$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | NOTES | |----------------------------------|---|--|-----------|-----|----------------|-------|-------| | Input High Voltage | V _{IH} | 3.3 V +/-5% | 2 | | $V_{DD} + 0.3$ | ٧ | | | Input Low Voltage | V_{IL} | 3.3 V +/-5% | GND - 0.3 | | 0.8 | V | | | Input High Current | I _{IH} | $V_{IN} = V_{DD}$ | -5 | | 5 | uA | | | land Law Company | I _{IL1} | $V_{IN} = 0 \text{ V}$; Inputs with no pull-
up resistors | -5 | | | uA | | | Input Low Current | I _{IL2} | V _{IN} = 0 V; Inputs with pull-up resistors | -200 | | | uA | | | Operating Cumply Current | I _{DD3.3PLL} | Full Active C Full leads | | 175 | 200 | mA | | | Operating Supply Current | I _{DD3.3ByPass} | Full Active, $C_L = Full load;$ | | 160 | 175 | mA | | | Powerdown Current | I _{DD3.3PD} | all diff pairs driven | | | 40 | mA | | | 1 OWEIGOWII CUITEIIL | 1DD3.3PD | all differential pairs tri-stated | | | 4 | mA | | | Input Frequency | F _{iPLL} | PLL Mode | 50 | | 200 | MHz | | | Input Frequency | F _{iBypass} | Bypass Mode (Revision
B/REV ID = 1H) | 0 | | 333.33 | MHz | | | Input Frequency | nput Frequency F _{iBypass} Byp | | 0 | | 400 | MHz | | | Pin Inductance ¹ | L _{pin} | , | | | 7 | nΗ | 1 | | 1 | C _{IN} | Logic Inputs | 1.5 | | 4 | pF | 1 | | Input Capacitance ¹ | C _{OUT} | Output pin capacitance | | | 4 | pF | 1 | | DIL D. I . W | | PLL Bandwidth when PLL_BW=0 | 2.4 | 3 | 3.4 | MHz | 1 | | PLL Bandwidth | BW | PLL Bandwidth when PLL_BW=1 | 0.7 | 1 | 1.4 | MHz | 1 | | Clk Stabilization ^{1,2} | T _{STAB} | From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock | | 0.5 | 1 | ms | 1,2 | | Modulation Frequency | fMOD | Triangular Modulation | 30 | | 33 | kHz | 1 | | Tdrive_SRC_STOP# | DIF output enable after | | | 10 | 15 | ns | 1,3 | | Tdrive_PD# | | DIF output enable after PD# de-assertion | | | 300 | us | 1,3 | | Tfall | | Fall time of PD# and
SRC_STOP# | | | 5 | ns | 1 | | Trise | | Rise time of PD# and SRC_STOP# | | | 5 | ns | 2 | ¹Guaranteed by design and characterization, not 100% tested in production. ²See timing diagrams for timing requirements. ³Time from deassertion until outputs are >200 mV #### **Electrical Characteristics - Clock Input Parameters** $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$ | PARAMETER | SYMBOL CONDITIONS | | MIN | MAX | UNITS | NOTES | |-----------------------------------|-----------------------|--|-----------------------|------|-------|-------| | Differential Input High Voltage | V _{IHDIF} | Differential inputs (single-ended measurement) | 600 | 1150 | mV | 1 | | Differential Input Low Voltage | V _{ILDIF} | Differential inputs (single-ended measurement) | V _{SS} - 300 | 300 | mV | 1 | | Input Slew Rate - DIF_IN | dv/dt | Measured differentially | 0.4 | 8 | V/ns | 2 | | Input Leakage Current | I _{IN} | $V_{IN} = V_{DD}, V_{IN} = GND$ | -5 | 5 | uA | 1 | | Input Duty Cycle | d _{tin} | Measurement from differential wavefrom | I 45 | | % | 1 | | Input SRC Jitter - Cycle to Cycle | SRCJ _{C2CIn} | Differential Measurement | | 125 | ps | 1 | ¹ Guaranteed by design and characterization, not 100% tested in production. #### **Electrical Characteristics - DIF 0.7V Current Mode Differential Pair** $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-}5\%$; $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | NOTES | |------------------------------------|-----------------------|---|------|-----|------|-------|-------| | Current Source Output
Impedance | Zo ¹ | $V_O = V_x$ | 3000 | | | Ω | 1 | | Voltage High | VHigh | Statistical measurement on single ended signal using oscilloscope | 660 | | 850 | mV | 1,3 | | Voltage Low | VLow | math function. | -150 | | 150 | IIIV | 1,3 | | Max Voltage | Vovs | Measurement on single ended | | | 1150 | mV | 1 | | Min Voltage | Vuds | signal using absolute value. | -300 | | | IIIV | 1 | | Crossing Voltage (abs) | Vcross(abs) | | 250 | | 550 | mV | 1 | | Crossing Voltage (var) | d-Vcross | Variation of crossing over all edges | | | 140 | mV | 1 | | Long Accuracy | ppm | see Tperiod min-max values | | | 0 | ppm | 1,2 | | Rise Time | t _r | $V_{OL} = 0.175V, V_{OH} = 0.525V$ | 175 | | 700 | ps | 1 | | Fall Time | t _f | $V_{OH} = 0.525V V_{OL} = 0.175V$ | 175 | | 700 | ps | 1 | | Rise Time Variation | d-t _r | | | | 125 | ps | 1 | | Fall Time Variation | d-t _f | | | | 125 | ps | 1 | | Duty Cycle | d _{t3} | Measurement from differential wavefrom | 45 | | 55 | % | 1 | | Skew | t _{sk3} | V _T = 50% | | | 50 | ps | 1 | | Jitter, Cycle to cycle | t _{jcyc-cyc} | PLL mode,
Measurement from differential
wavefrom | | | 50 | ps | 1 | | | | BYPASS mode as additive jitter | | | 50 | ps | 1 | ¹Guaranteed by design and characterization, not 100% tested in production. ²Slew rate measured through Vswing centered around differential zero ² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements $^{^{3}}I_{REF} = V_{DD}/(3xR_{B})$. For $R_{B} = 475\Omega$ (1%), $I_{REF} = 2.32$ mA. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7$ V @ $Z_{O} = 50\Omega$. | SRC Reference Clock | | | | | | |---|--------------------|------|--------|--|--| | Common Recommendations for Differential Routing | Dimension or Value | Unit | Figure | | | | L1 length, Route as non-coupled 50 ohm trace. | 0.5 max | inch | 1 | | | | L2 length, Route as non-coupled 50 ohm trace. | 0.2 max | inch | 1 | | | | L3 length, Route as non-coupled 50 ohm trace. | 0.2 max | inch | 1 | | | | Rs | 33 | ohm | 1 | | | | Rt | 49.9 | ohm | 1 | | | | Down Device Differential Routing | Dimension or Value | Unit | Figure | |---|---------------------|------|--------| | L4 length, Route as coupled microstrip 100 ohm differential trace. | 2 min to 16 max | inch | 1 | | L4 length, Route as coupled stripline 100 ohm differential trace. | 1.8 min to 14.4 max | inch | 1 | | Differential Routing to PCI Express Connector | Dimension or Value | Unit | Figure | |---|-----------------------|------|--------| | L4 length, Route as coupled microstrip 100 ohm differential trace. | 0.25 to 14 max | inch | 2 | | L4 length, Route as coupled stripline 100 ohm differential trace. | 0.225 min to 12.6 max | inch | 2 | ## Alternative termination for LVDS and other common differential signals. Figure 3. | Vdiff | Vp-p | Vcm | R1 | R2 | R3 | R4 | Note | |--------|-------|------|----|------|------|-----|--------------------------------| | 0.45 v | 0.22v | 1.08 | 33 | 150 | 100 | 100 | | | 0.58 | 0.28 | 0.6 | 33 | 78.7 | 137 | 100 | | | 0.80 | 0.40 | 0.6 | 33 | 78.7 | none | 100 | ICS874003i-02 input compatible | | 0.60 | 0.3 | 1.2 | 33 | 174 | 140 | 100 | Standard LVDS | R1a = R1b = R1 R2a = R2b = R2 ## Cable connected AC coupled application, figure 4 | Component | Value | Note | |-----------|-------------|------| | R5a,R5b | 8.2K 5% | | | R6a,R6b | 1K 5% | | | Сс | 0.1 uF | | | Vcm | 0.350 volts | | #### General SMBus serial interface information for the ICS9DB401C #### **How to Write:** - · Controller (host) sends a start bit. - Controller (host) sends the write address DC_(b) - ICS clock will acknowledge - Controller (host) sends the begining byte location = N - ICS clock will acknowledge - Controller (host) sends the data byte count = X - ICS clock will acknowledge - Controller (host) starts sending Byte N through Byte N + X -1 - ICS clock will acknowledge each byte one at a time - Controller (host) sends a Stop bit #### How to Read: - · Controller (host) will send start bit. - Controller (host) sends the write address DC (h) - ICS clock will acknowledge - Controller (host) sends the begining byte location = N - ICS clock will acknowledge - Controller (host) will send a separate start bit. - Controller (host) sends the read address DD (n) - ICS clock will acknowledge - ICS clock will send the data byte count = X - ICS clock sends Byte N + X -1 - ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8). - Controller (host) will need to acknowledge each byte - Controllor (host) will send a not acknowledge bit - Controller (host) will send a stop bit | Ind | Index Block Write Operation | | | | | | | | |-------|-----------------------------|--------|----------------------|--|--|--|--|--| | Cor | ntroller (Host) | | ICS (Slave/Receiver) | | | | | | | T | starT bit | | | | | | | | | Slav | e Address DC _(h) | | | | | | | | | WR | WRite | | | | | | | | | | | ACK | | | | | | | | Begi | nning Byte = N | | | | | | | | | | | ACK | | | | | | | | Data | Byte Count = X | | | | | | | | | | | | ACK | | | | | | | Begir | ning Byte N | | | | | | | | | | | | ACK | | | | | | | | \Diamond | ţ | | | | | | | | | \Diamond | X Byte | \Diamond | | | | | | | | \Q | × | \Q | | | | | | | | | | \diamond | | | | | | | Byte | e N + X - 1 | | | | | | | | | | | | ACK | | | | | | | Р | stoP bit | | | | | | | | | Ind | Index Block Read Operation | | | | | | | |-------|-----------------------------|--------|--------------------|--|--|--|--| | Con | troller (Host) | ICS | S (Slave/Receiver) | | | | | | Т | starT bit | | | | | | | | Slave | Address DC _(h) | | | | | | | | WR | WRite | | | | | | | | | | | ACK | | | | | | Begir | nning Byte = N | | | | | | | | | | | ACK | | | | | | RT | Repeat starT | | | | | | | | Slave | e Address DD _(h) | | | | | | | | RD | ReaD | | | | | | | | | | | ACK | | | | | | | | | | | | | | | | | Di | ata Byte Count = X | | | | | | | ACK | | | | | | | | | | [| Beginning Byte N | | | | | | | ACK | | | | | | | | | | /te | O | | | | | | | \Q | X Byte | \Diamond | | | | | | | \Q | ×[| \Q | | | | | | | \Q | [| | | | | | | | | | Byte N + X - 1 | | | | | | N | Not acknowledge | | | | | | | | Р | stoP bit | | | | | | | SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD) | Byt | e 0 | Pin # | Name | Control Function | Type | 0 | 1 | PWD | |-------|-----|-------|------------|------------------------------|------|---------|--------|-----| | Bit 7 | | - | PD_Mode | PD# drive mode | RW | driven | Hi-Z | 0 | | Bit 6 | | - | STOP_Mode | SRC_Stop# drive mode | RW | driven | Hi-Z | 0 | | Bit 5 | | - | PD_SRC_INV | Power Down
and SRC Invert | RW | Normal | Invert | 0 | | Bit 4 | | | Reserved | Reserved | RW | Res | erved | Χ | | Bit 3 | | - | Reserved | Reserved | RW | Res | erved | Χ | | Bit 2 | | - | PLL_BW# | Select PLL BW | RW | High BW | Low BW | 1 | | Bit 1 | | - | BYPASS# | BYPASS#/PLL | RW | fan-out | ZDB | 1 | | Bit 0 | | - | SRC_DIV# | SRC Divide by 2 Select | RW | x/2 | 1x | 1 | **SMBus Table: Output Control Register** | Byt | e 1 | Pin # | Name | Control Function | Type | 0 | 1 | PWD | |-------|-----|-------|----------|------------------|------|---------|--------|-----| | Bit 7 | | - | Reserved | Reserved | RW | Res | erved | Χ | | Bit 6 | 22 | ,23 | DIF_6 | Output Control | RW | Disable | Enable | 1 | | Bit 5 | 19 | ,20 | DIF_5 | Output Control | RW | Disable | Enable | 1 | | Bit 4 | | - | Reserved | Reserved | RW | Res | erved | Χ | | Bit 3 | | - | Reserved | Reserved | RW | Res | erved | Χ | | Bit 2 | 9, | 10 | DIF_2 | Output Control | RW | Disable | Enable | 1 | | Bit 1 | 6 | ,7 | DIF_1 | Output Control | RW | Disable | Enable | 1 | | Bit 0 | | - | Reserved | Reserved | RW | Res | erved | X | **SMBus Table: Output Control Register** | Byt | te 2 | Pin # | Name | Control Function | Type | 0 | 1 | PWD | |-------|------|-------|----------|------------------|------|----------|-----------|-----| | Bit 7 | | - | Reserved | Reserved | RW | Reserved | | Χ | | Bit 6 | 22 | 2,23 | DIF_6 | Output Control | RW | Free-run | Stoppable | 0 | | Bit 5 | 19 | ,20 | DIF_5 | Output Control | RW | Free-run | Stoppable | 0 | | Bit 4 | | - | Reserved | Reserved | RW | Reserved | | Χ | | Bit 3 | | - | Reserved | Reserved | RW | Res | erved | Χ | | Bit 2 | 9, | 10 | DIF_2 | Output Control | RW | Free-run | Stoppable | 0 | | Bit 1 | 6 | 6,7 | DIF_1 | Output Control | RW | Free-run | Stoppable | 0 | | Bit 0 | | - | Reserved | Reserved | RW | Res | erved | Χ | **SMBus Table: Output Control Register** | Byt | Byte 3 Pin # | | Name | Control Function | Туре | 0 | 1 | PWD | |-------|--------------|----------------------|----------|------------------|-------------|----------|-------|-----| | Bit 7 | Bit 7 | | Reserved | RW | RW Reserved | | Χ | | | Bit 6 | | | | Reserved | RW | Res | erved | Χ | | Bit 5 | | Reserved RW Reserved | | erved | Х | | | | | Bit 4 | it 4 | | | Reserved | RW | Res | erved | Х | | Bit 3 | | | | Reserved | RW | Res | erved | Х | | Bit 2 | | | | Reserved | RW | Reserved | | Х | | Bit 1 | Bit 1 | | Reserved | RW | Res | erved | Χ | | | Bit 0 | Reserved | | Reserved | RW | Res | erved | Х | | SMBus Table: Vendor & Revision ID Register | | Singue Table. Vender a nevicion in neglecol | | | | | | | | | |-------|---|------|------------------|------|---|---|-----|--|--| | Byt | e 4 Pin# | Name | Control Function | Type | 0 | 1 | PWD | | | | Bit 7 | - | RID3 | REVISION ID | R | - | - | Χ | | | | Bit 6 | - | RID2 | | R | - | - | Χ | | | | Bit 5 | - | RID1 | | R | - | - | Χ | | | | Bit 4 | - | RID0 | | R | - | - | Х | | | | Bit 3 | - | VID3 | | R | - | - | 0 | | | | Bit 2 | - | VID2 | VENDOR ID | R | - | - | 0 | | | | Bit 1 | - | VID1 | VENDOR ID | R | - | - | 0 | | | | Bit 0 | - | VID0 | | R | - | - | 1 | | | **SMBus Table: DEVICE ID** | Byte 5 | Pin # | Name | Control Function | Type | 0 | 1 | PWD | |--------|--------------------------|---------------------------|------------------|----------|----------|--------|-----| | Bit 7 | it 7 - Device ID 7 (MSB) | | ice ID 7 (MSB) | RW | Reserved | | 0 | | Bit 6 | Device ID 6 RW Re | | Res | served | 1 | | | | Bit 5 | - | - Device ID 5 RW Reserved | | 0 | | | | | Bit 4 | - Devi | | Device ID 4 | RW | Res | served | 0 | | Bit 3 | - | [| Device ID 3 | RW | Reserved | | 0 | | Bit 2 | - | [| Device ID 2 | RW | Res | served | 0 | | Bit 1 | - Device ID 1 RW | | Reserved | | 0 | | | | Bit 0 | Device ID 0 | | RW | Reserved | | 1 | | **SMBus Table: Byte Count Register** | Byt | te 6 | Pin # | Name | Control
Function | Туре | 0 | 1 | PWD | |-------|------|-------|------|--|------|---|---|-----| | Bit 7 | | - | BC7 | | RW | - | - | 0 | | Bit 6 | | - | BC6 | | RW | - | - | 0 | | Bit 5 | | - | BC5 | Muiting to this we winted | RW | - | - | 0 | | Bit 4 | | - | BC4 | Writing to this register configures how many bytes | RW | - | - | 0 | | Bit 3 | | - | BC3 | will be read back. | RW | - | - | 0 | | Bit 2 | | - | BC2 | will be read back. | RW | - | - | 1 | | Bit 1 | | - | BC1 | | RW | - | - | 1 | | Bit 0 | | - | BC0 | | RW | - | - | 1 | #### PD# The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down. #### **PD# Assertion** When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated. #### PD# De-assertion Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion. Note: Polarities in timing diagrams are shown OE INV = 0. They are similar to OE INV = 1. #### SRC STOP# The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion. #### SRC_STOP# - Assertion (transition from '1' to '0') Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven. All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion. #### SRC_STOP_1 (SRC_Stop = Driven, PD = Driven) #### SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven) ## **SRC_STOP_3** (**SRC_Stop** = **Driven**, **PD** = **Tristate**) ## **SRC_STOP_4** (**SRC_Stop = Tristate**, **PD = Tristate**) | | 209 mil SSOP | | | | | | | | | |--------|--------------|------------|----------------|------------|--|--|--|--|--| | | In Mill | limeters | In Inches | | | | | | | | SYMBOL | COMMON I | DIMENSIONS | COMMON | DIMENSIONS | | | | | | | | MIN | MAX | MIN | MAX | | | | | | | Α | | 2.00 | | .079 | | | | | | | A1 | 0.05 | | .002 | | | | | | | | A2 | 1.65 | 1.85 | .065 | .073 | | | | | | | b | 0.22 | 0.38 | .009 | .015 | | | | | | | С | 0.09 | 0.25 | .0035 | .010 | | | | | | | D | SEE VA | RIATIONS | SEE VA | RIATIONS | | | | | | | E | 7.40 | 8.20 | .291 | .323 | | | | | | | E1 | 5.00 | 5.60 | .197 | .220 | | | | | | | е | 0.65 | BASIC | 0.0256 | BASIC | | | | | | | L | 0.55 | 0.95 | .022 | .037 | | | | | | | N | SEE VA | RIATIONS | SEE VARIATIONS | | | | | | | | | ٥° | 00 | ٥° | 00 | | | | | | # VARIATIONS N D mm. D (inch) MIN MAX MIN MAX 28 9.90 10.50 .390 .413 Reference Doc.: JEDEC Publication 95, MO-150 10-0033 ## **Ordering Information** #### ICS9DB401CFLFT Example: 4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil) | | In Milli | meters | In In | ches | | |--------|----------------|-----------|-------------------|----------|--| | SYMBOL | COMMON D | IMENSIONS | COMMON DIMENSIONS | | | | | MIN | MAX | MIN | MAX | | | Α | | 1.20 | - | .047 | | | A1 | 0.05 | 0.15 | .002 | .006 | | | A2 | 0.80 | 1.05 | .032 | .041 | | | b | 0.19 | 0.30 | .007 | .012 | | | С | 0.09 | 0.20 | .0035 | .008 | | | D | SEE VAF | RIATIONS | SEE VAF | RIATIONS | | | E | 6.40 BASIC | | 0.252 | BASIC | | | E1 | 4.30 | 4.50 | .169 | .177 | | | е | 0.65 E | BASIC | 0.0256 | BASIC | | | L | 0.45 | 0.75 | .018 | .030 | | | N | SEE VARIATIONS | | SEE VARIATIONS | | | | а | 0° | 8° | 0° | 8° | | | aaa | | 0.10 | | .004 | | #### **VARIATIONS** | N | D mm. | | D (inch) | | |----|-------|------|----------|------| | | MIN | MAX | MIN | MAX | | 28 | 9.60 | 9.80 | .378 | .386 | Reference Doc.: JEDEC Publication 95, MO-153 10-0035 ## **Ordering Information** #### ICS9DB401CGLFT Example: #### **Revision History** | Rev. | Issue Date | Description | | |------|------------|--|-------| | 0.1 | 4/21/2005 | Changed Ordering Information from "LN" to "LF". | | | | | Updated LF Ordering Information to RoHS Compliant. | | | Α | 8/15/2005 | 2. Release to web. | 14-15 | | В | 9/7/2006 | Updated Electrical Characteristics. | | | С | 5/22/2007 | Updated Polarity Inversion Table. | | | D | 2/28/2008 | Added Input Clock Specs | | | E | 3/18/2008 | Fixed typo in clock Input Parameters | 6 | ## Innovate with IDT and accelerate your future networks. Contact: www.IDT.com #### For Sales 800-345-7015 408-284-8200 Fax: 408-284-2775 #### For Tech Support 408-284-6578 pcclockhelp@idt.com #### **Corporate Headquarters** Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.) #### Asia Pacific and Japan Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505 #### Europe IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339 © 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA