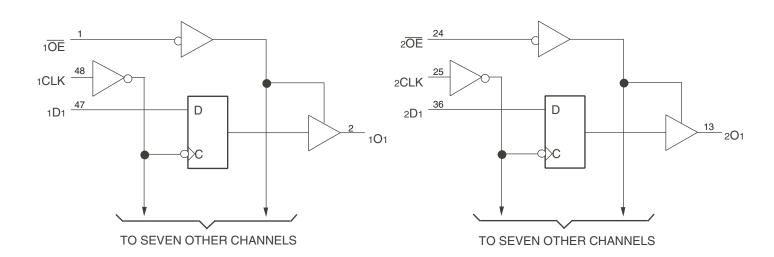


3.3V CMOS 16-BIT REGISTER (3-STATE)

IDT74FCT163374A/C

FFATURFS:


- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range, or Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 w typ. static)
- · Rail-to-rail output swing for increased noise margin
- Low Ground Bounce (0.3V typ.)
- Inputs (except I/O) can be driven by 3.3V or 5V components
- · Available in SSOP and TSSOP packages

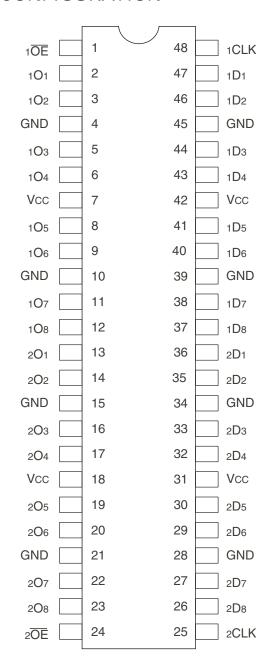
DESCRIPTION:

The FCT163374 16-bit edge-triggered D-type register is built using advanced dual metal CMOS technology. These high-speed, low-power registers are ideal for use as buffer registers for data synchronization and storage. The Output Enable ($x\overline{OE}$) and clock (xCLK) controls are organized to operate each device as two 8-bit registers or one 16-bit register with common clock. Flow-through organization of signal pins facilitates ease of layout. All inputs are designed with hysteresis for improved noise margin.

The inputs of FCT163374 can be driven from either 3.3V or 5V devices. This feature allows the use of these devices as translators in a mixed 3.3V/5V supply system.

FUNCTIONAL BLOCK DIAGRAM

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.


© 2019 Renesas Electronics Corporation

INDUSTRIAL TEMPERATURE RANGE

MAY 2018

DSC-2775/13

PIN CONFIGURATION

TOP VIEW

Package Type	Package Code	Order Code	
TSSOP	PAG48	PAG	
SSOP	PVG48	PVG	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	–0.5 to 7	V
VTERM ⁽⁴⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-60 to +60	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. Input terminals.
- 4. Outputs and I/O terminals.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	pF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
хDх	Data Inputs
xCLK	Clock Inputs
хОх	3-State Outputs
хŌĒ	3-State Output Enable Input (Active LOW)

FUNCTION TABLE(1)

		Outputs		
Function	хDх	xCLK	хŌЕ	хОх
Hi-Z	Х	L	Н	Z
	Χ	Н	Н	Z
Load Register	L	↑	L	L
	Н	1	L	Н
	L	1	Н	Z
	Н	1	Н	Z

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

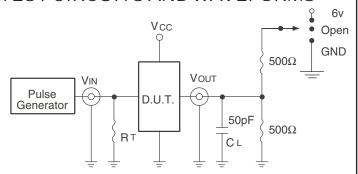
Industrial: TA = -40°C to +85°C, VCC = 2.7V to 3.6V

Symbol	Parameter	Test Condi	tions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
ViH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	_	5.5	V
	Input HIGH Level (I/O pins)			2	_	Vcc+0.5	
VIL	Input LOW Level (Input and I/O pins)	Guaranteed Logic LOW Level		-0.5	_	0.8	V
Іін	Input HIGH Current (Input pins)	Vcc = Max.	VI = 5.5V	_	_	±1	
	Input HIGH Current (I/O pins)		VI = VCC	_	_	±1	μΑ
lıL	Input LOW Current (Input pins)		VI = GND	_	_	±1	
	Input LOW Current (I/O pins)		VI = GND	_	_	±1	
Іоzн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μA
lozL	(3-State Output pins)		Vo = GND	<u> </u>	_	±1	
Vik	Clamp Diode Voltage	VCC = Min., IIN = -18mA		_	-0.7	-1.2	V
lодн	Output HIGH Current	VCC = 3.3V, VIN = VIH or VIL, VO = 1.5V ⁽³⁾		-36	-60	-110	mA
lodl	Output LOW Current	VCC = 3.3V, VIN = VIH or VIL, VO =	1.5V ⁽³⁾	50	90	200	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = -0.1mA	Vcc-0.2	_	_	
		VIN = VIH or VIL	Iон = -3mA	2.4	3	_	V
		VCC = 3V	Iон = -8mA	2.4(5)	3	_	
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min.	IoL = 0.1mA		_	0.2	
		VIN = VIH or VIL	IOL = 16mA	_	0.2	0.4	
			IOL = 24mA	_	0.3	0.55	V
		VCC = 3V	IoL = 24mA	_	0.3	0.5	
		VIN = VIH or VIL					
los	Short Circuit Current ⁽⁴⁾	Vcc = Max., Vo = GND ⁽³⁾		-60	-135	-240	mA
VH	Input Hysteresis	_		_	150	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = Max. Vin = GND or Vcc		_	0.1	10	μΑ

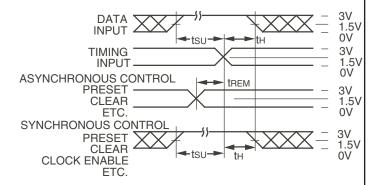
- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. Voh = Vcc-0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

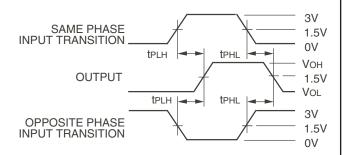
Symbol	Parameter	Test Conditions	S ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Unit
∆lcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = VCC - 0.6V^{(3)}$		_	2	30	μΑ
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open xOE = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	50	75	μΑ/ MHz
Ic	fcP = 10MHz 50% Duty Cycle xOE = GND fi = 5MHz One Bit Toggling	50% Duty Cycle	VIN = VCC VIN = GND	_	0.5	0.8	mA
		fi = 5MHz	VIN = VCC -0.6V VIN = GND		0.8		
			VIN = VCC VIN = GND	_	2.5	3.8 ⁽⁵⁾	
		$x\overline{OE} = \overline{GND}$ fi = 2.5MHz	VIN = VCC -0.6V VIN = GND	_	2.5	4 ⁽⁵⁾	


- 1. For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. Per TTL driven input; all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - IC = ICC + DICC DHNT + ICCD (fcpNcp/2 + fiNi)
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - Δlcc = Power Supply Current for a TTL High Input
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - NCP = Number of Clock Inputs at fCP
 - fi = Input Frequency
 - Ni = Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE(1)

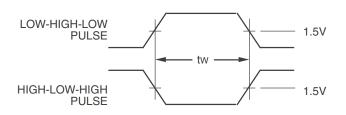

			FCT163374A		FCT163374C		
Symbol	Parameter	Condition ⁽²⁾	Min. ⁽³⁾	Max.	Min. ⁽³⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	2	6.5	2	5.2	ns
tPHL	xCLK to xOx	$RL = 500\Omega$					
tpzh	Output Enable Time]	1.5	6.5	1.5	5.5	ns
tpzl							
tphz	Output Disable Time]	1.5	5.5	1.5	5	ns
tplz							
tsu	Set-up Time HIGH or LOW, xDx to xCLK	1	2	_	2	_	ns
1H	Hold Time HIGH or LOW, xDx to xCLK	1	1.5	_	1.5	_	ns
tw	xCLK Pulse Width HIGH	1	5	_	5	_	ns
tsk(o)	Output Skew ⁽⁴⁾		_	0.5	_	0.5	ns

- 1. Propagation Delays and Enable/Disable times are with Vcc = 3.3V ±0.3V, Normal Range. For Vcc = 2.7V to 3.6V, Extended Range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
- 2. See test circuit and waveforms.
- 3. Minimum limits are guaranteed but not tested.
- 4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

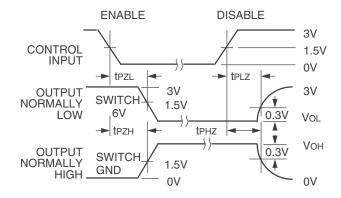

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

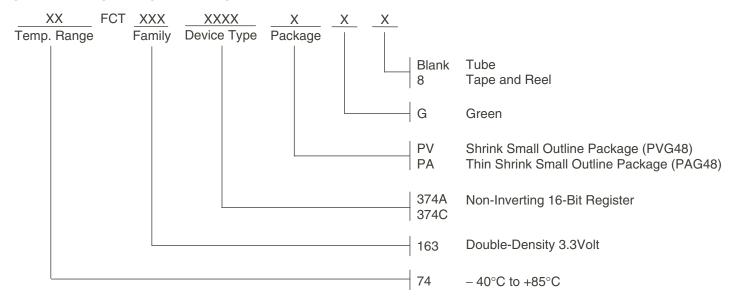

Propagation Delay

SWITCH POSITION


Test	Switch
Open Drain Disable Low Enable Low	6V
Disable High Enable High	GND
All Other Tests	Open

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZouT of the Pulse Generator.


Pulse Width

Enable and Disable Times

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 3. if Vcc is below 3V, input voltage swings should be adjusted not to exceed Vcc.

ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
Α	74FCT163374APAG	PAG48	TSSOP	I
	74FCT163374APAG8	PAG48	TSSOP	I
	74FCT163374APVG	PVG48	SSOP	Ι
	74FCT163374APVG8	PVG48	SSOP	I
С	74FCT163374CPAG	PAG48	TSSOP	I
	74FCT163374CPAG8	PAG48	TSSOP	I
	74FCT163374CPVG	PVG48	SSOP	Ī
	74FCT163374CPVG8	PVG48	SSOP	I

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/