

Description

The 9FGV1001 is a member of IDT's PhiClock™ programmable clock generator family. The 9FGV1001 provides four non-spread spectrum copies of a single output frequency and two copies of the crystal reference input. Two select pins allow for hardware selection of the desired configuration, or two I^2C bits allow easy software selection of the desired configuration. The user may configure any one of the four OTP configurations as the default when operating in I^2C mode. Four unique I^2C addresses are available, allowing easy I^2C access to multiple components.

Typical Applications

- HPC
- Storage
- 10G/25G Ethernet
- Fiber Optic Modules
- SSDs

Output Features

- 4 programmable output pairs plus 2 LVCMOS REF outputs
- 1 integer output frequency per configuration
- 10MHz–325MHz output frequency (LVDS or LP-HCSL output configuration)
- 10MHz–200MHz output frequency (LVCMOS output configuration)

Features

- 1.8V–3.3V core V_{DD} and V_{DDREF}
- Individual 1.8V–3.3V V_{DDO} for each programmable output pair
- Supports HCSL, LVDS and LVCMOS I/O standards
- Supports LVPECL and CML logic with easy AC coupling see application note <u>AN-891</u> for alternate terminations
- HCSL utilizes IDT's LP-HCSL technology for improved performance, lower power and higher integration:
 - Programmable output impedance of 85 or 100Ω
- On-board OTP supports up to 4 complete configurations
- Configuration selected via strapping pins or I²C
- < 125mW at 1.8V, < 230mW at 3.3V with outputs running at 100MHz
- 4 programmable I²C addresses: D0/D1, D2/D3, D4/D5, D6/D7 read/write
- Supported by IDT <u>Timing Commander</u>™ software
- 4 × 4 mm 24-VFQFPN; minimal board space

Key Specifications

- 259fs rms typical phase jitter outputs at 156.25MHz (12kHz– 20MHz)
- PCle Gen1–4 compliant

PCIe Clocking Architectures Supported

- Common Clocked (CC)
- Independent Reference without spread spectrum (SRnS)

Block Diagram

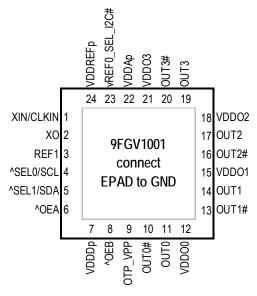


Table 1. OE Mapping

OE[B:A]	OUT0	OUT1	OUT2	OUT3	REF0	REF1
00	Running	Stopped	Stopped	Stopped	Running	Running
01	Running	Running	Stopped	Stopped	Running	Running
10	Running	Running	Running	Stopped	Running	Running
11	Running	Running	Running	Running	Running	Running

Pin Assignments

Figure 1. Pin Assignments for 4 x 4 mm 24-VFQFPN Package - Top View

4 × 4 mm 24-VFQFPN, 0.5mm pitch

^ prefix indicates internal pull-up resistor v prefix indicates internal pull-down resistor Note: The order of OUT3 is reversed from OUT[0:2]

Pin Descriptions

Table 2. Pin Descriptions

Number	Name	Туре	Description
1	XIN/CLKIN	Input	Crystal input or reference clock input.
2	XO	Output	Crystal output.
3	REF1	Output	LVCMOS reference output.
4	^SEL0/SCL	Input	Select pin for internal frequency configurations/I ² C clock pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-up.
5	^SEL1/SDA	I/O	Select pin for internal frequency configurations/I ² C data pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-up.
6	^OEA	Input	Active high input for enabling outputs. This pin has an internal pull-up resistor. 0 = disable outputs, 1 = enable outputs.

Table 2. Pin Descriptions (Cont.)

Number	Name	Туре	Description
7	V_{DDDp}	Power	Digital power. 1.8V to 3.3V. V_{DDAp} and V_{DDDp} should be connected to the same power supply.
8	^OEB	Input	Active high input for enabling outputs. This pin has an internal pull-up resistor. 0 = disable outputs, 1 = enable outputs.
9	OTP_VPP	Power	Voltage for programming OTP. During normal operation, this pin should be connected to the same power rail as $V_{\rm DDD}$.
10	OUT0#	Output	Complementary output clock 0.
11	OUT0	Output	Output clock 0.
12	V _{DDO0}	Power	Power supply for output 0.
13	OUT1#	Output	Complementary output clock 1.
14	OUT1	Output	Output clock 1.
15	V _{DDO1}	Power	Power supply for output 1.
16	OUT2#	Output	Complementary output clock 2.
17	OUT2	Output	Output clock 2.
18	V _{DDO2}	Power	Power supply for output 2.
19	OUT3	Output	Output clock 3.
20	OUT3#	Output	Complementary output clock 3.
21	V _{DDO3}	Power	Power supply for output 3.
22	V_{DDAp}	Power	Power supply for analog circuits. V_{DDAp} and V_{DDDp} should be connected to the same power supply. Programmable for nominal voltages of 1.8V, 2.5V or 3.3V.
23	vREF0_SEL_I2C#	Latched I/O	Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the state of the I ² C pins. After power-up, the pin acts as an LVCMOS reference output. This pin has an internal pull-down. 1 = SEL0/SEL1. 0 = SCL/SDA.
24	V_{DDREFp}	Power	Power supply for REF0 and REF1 and the internal XO. Programmable to 1.8V, 2.5V or 3.3V.
25	EPAD	GND	Connect to ground.

Note: Unused outputs can be programmed off and left floating. V_{DDREF} and V_{DD00} have to be connected.

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9FGV1001 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 3. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage, V_{DDA} , V_{DDD} , V_{DDO}	3.465V
Storage Temperature, T _{STG}	-65°C to 150°C
ESD Human Body Model	2000V
Junction Temperature	125°C
Inputs	
XIN/CLKIN	0V to 1.2V voltage swing
Other Inputs	-0.5V to V _{DDD}
Outputs	
Outputs, V _{DDO} (LVCMOS)	-0.5V to V _{DDO} + 0.5V
Outputs, IO (SDA)	10mA

Thermal Characteristics

Table 4. Thermal Characteristics

Parameter	Symbol	Conditions	Package	Typical Values	Units	Notes
	θ_{JC}	Junction to case.		52	°C/W	1
	θ_{Jb}	Junction to base.		2.3	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to air, still air.	NBG24	44	°C/W	1
(devices with external crystal)	θ_{JA1}	Junction to air, 1 m/s air flow.	NDG24	37	°C/W	1
	θ_{JA3}	Junction to air, 3 m/s air flow.		33	°C/W	1
	θ_{JA5}	Junction to air, 5 m/s air flow.		32	°C/W	1

¹ EPAD soldered to board.

Recommended Operating Conditions

Table 5. Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Units
	Power supply voltage for supporting 1.8V outputs.	1.71	1.8	1.89	V
$V_{DDO}x$	Power supply voltage for supporting 2.5V outputs.	2.375	2.5	2.625	V
	Power supply voltage for supporting 3.3V outputs.	3.135	3.3	3.465	V
V_{DDD}	Power supply voltage for core logic functions.	1.71		3.465	V
V _{DDA}	Analog power supply voltage. Use filtered analog power supply if available.	1.71		3.465	V
T _A	Operating temperature, ambient.	-40		85	°C
C_L	Maximum load capacitance (3.3V LVCMOS only).			15	pF
t _{PU}	Power up time for all V_{DD} s to reach minimum specified voltage (power ramps must be monotonic).	0.05		5	ms

Electrical Characteristics

 V_{DDx} = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, T_A = -40°C to +85°C unless stated otherwise.

Table 6. Common Electrical Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Innut Fraguency	f	Crystal input frequency.	8		50	MHz	1
Input Frequency	f _{IN}	CLKIN input frequency.	1		240	MHz	5
Output Frequency	f _{OUT}	Differential clock output (LVDS/LP-HCSL).	10		325	MHz	
		Single-ended clock output (LVCMOS).	10		200	MHz	
VCO Frequency	f _{VCO}	VCO operating frequency range.	2400	2500	2600	MHz	
Loop Bandwidth	f _{BW}	Input frequency = 25MHz.	0.06		0.9	MHz	
Input High Voltage	V _{IH}	SEL[1:0].	0.7 x V _{DDD}		V _{DDD} + 0.3	V	
Input Low Voltage	V _{IL}	SEL[1:0].	GND - 0.3		0.8	V	
Input High Voltage	V _{IH}	REF/SEL_I2C#.	0.65 x V _{DDREF}		V _{DDREF} + 0.3	V	
Input Low Voltage	V _{IL}	REF/SEL_I2C#.	-0.3		0.4	V	
Input High Voltage	V _{IH}	XIN/CLKIN.	0.8		1.2	V	
Input Low Voltage	V _{IL}	XIN/CLKIN.	-0.3		0.4	V	
Input Rise/Fall Time	T _R /T _F	SEL1/SDA, SEL0/SCL.			300	ns	
Input Capacitance	C _{IN}	SEL[1:0].		3	7	pF	
Internal Pull-up Resistor	R _{UP}	SEL[1:0] at 25°C.	200	237	300	kΩ	
Internal Pull-down Resistor	R _{DOWN}	REF/SEL_I2C#.	200	237	300	kΩ	

Table 6. Common Electrical Characteristics (Cont.)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Programmable Capacitance at XIN and XO (XIN in parallel with XO)	C _L	XIN/CLKIN, XO.	0		8	pF	
Input Duty Cycle	t2	CLKIN, measured at V _{DDREF} /2.	40	50	60	%	
		LVCMOS, f _{OUT} > 156.25MHz.	40	50	60	%	
Output Duty Cycle	t3	LVCMOS, f _{OUT} ≤ 156.25MHz.	45	50	55	%	
		LVDS, LP-HCSL outputs.	45	50.3	55	%	
		Cycle-to-cycle jitter (peak-to-peak). See "Test Frequencies for Jitter Measurements in Common Electrical Characteristics" for configurations.		28		ps	4
Clock Jitter	t6	Reference clock RMS phase jitter (12kHz to 5MHz integration range). See "Test Frequencies for Jitter Measurements in Common Electrical Characteristics" for configurations.		338		fs rms	4
		OUTx RMS phase jitter (12kHz to 20MHz integration range) differential output. See "Test Frequencies for Jitter Measurements in Common Electrical Characteristics" for configurations.		259		fs rms	4
Output Skew	t7	Skew between the same frequencies, with outputs using the same driver format.		105		ps	
Lock Time	t8	PLL lock time from power-up.		5	10	ms	2,3

¹ Practical lower frequency is determined by loop filter settings.

Table 7. Test Frequencies for Jitter Measurements in Common Electrical Characteristics Table

Device	XIN/CLKIN	OUT0	OUT1	OUT2	OUT3	Unit	Notes
9FGV1001	50		156	5.25		MHZ	1,3
91 GV 1001	50		10	00		IVII IZ	2,3

¹ This configuration used for 12kHz–20MHz phase jitter measurement.

 $^{^{2}}$ Includes loading the configuration bits from OTP to registers.

³ Actual PLL lock time depends on the loop configuration.

⁴ Actual jitter is configuration dependent. These values are representative of what the device can achieve.

⁵ Input doubler off. Maximum input frequency with input doubler on is 160MHz.

² This configuration used for PCle filtered phase jitter measurements.

³ Outputs configured as LP-HCSL or LVDS with REF output off unless noted.

Table 8. LVCMOS Output Electrical Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
		$3.3V \pm 5\%$, 20% to 80% of V_{DDO} (output load = 4.7pF).	2.5	3.7	4.6		
Slew Rate	S _R	$2.5V \pm 5\%$, 20% to 80% of V_{DDO} (output load = 4.7pF).	1.5	2.4	4.6	V/ns	
		1.8V \pm 5%, 20% to 80% of V _{DDO} (output load = 4.7pF).	0.8	1.7	3.5		
		I _{OH} = -15mA at 3.3V.					
Output High Voltage	V _{OH}	I _{OH} = -12mA at 2.5V.	0.8 x V _{DDO}		V_{DDO}	V	
		I _{OH} = -8mA at 1.8V.				O v	
		I _{OL} = 15mA at 3.3V.					
Output Low Voltage	V_{OL}	I _{OL} = 12mA at 2.5V.		0.22	0.4	V	
		I _{OL} = 8mA at 1.8V.					
Output Leakage Current (OUT[0:1])	I _{OZDD}	Programmable outputs, tri-state, V _{DDO} = 3.465V.		0	5	μA	
Output Leakage Current (REF)	I _{OZDD}	REF outputs, tri-state, V _{DDO} = 3.465V.		0	5	μA	
CMOS Output Driver Impedance	R _{OUT}	T _A = 25°C.		17		Ω	

Table 9. LVDS Output Electrical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Differential Output Voltage for the TRUE Binary State	V _{OT} (+)	247	328	454	mV	
Differential Output Voltage for the FALSE Binary State	V _{OT} (-)	-454	-332	-247	mV	
Change in V _{OT} between Complementary Output States	ΔV _{OT}			50	mV	
Output Common Mode Voltage (Offset Voltage) at 3.3V +5% & 2.5V +5%	V _{OS}	1.125	1.19	1.55	V	
Output Common Mode Voltage (Offset Voltage) at 1.8V +5%	V _{OS}	0.8	0.86	0.95	V	
Change in V _{OS} between Complementary Output States	ΔV _{OS}		0	50	mV	
Outputs Short Circuit Current, V _{OUT} + or V _{OUT} - = 0V or V _{DD}	I _{OS}		6	12	mA	
Differential Outputs Short Circuit Current, V _{OUT} + = V _{OUT} -	I _{OSD}		3	12	mA	
Rise Times Tested at 20% – 80%	T _R		257	400	ps	
Fall Times Tested at 80% – 20%	T _F		287	400	ps	

Table 10. Low-Power (LP) Push-Pull HCSL Differential Outputs

 V_{DDO} = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, T_A = -40°C to +85°C unless stated otherwise.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
Slew Rate	T _{R/F}	Scope averaging on.	1	2.5	4	V/ns	2,3,16
Slew Rate Matching	$\Delta T_{R/F}$			9	20	%	1,14,16
Crossing Voltage (abs)	V _{CROSS}	Scope averaging off.	250	424	550	mV	1,4,5,16
Crossing Voltage (var)	ΔV_{CROSS}	Scope averaging off.		16	140	mV	1,4,9,16
Voltage High	V _{HIGH}		660	785	850	mV	1
Voltage Low	V_{LOW}		-150	13	150	mV	1
Absolute Maximum Voltage	V_{MAX}			808	1150	mV	1,7,15
Absolute Minimum Voltage	V _{MIN}		-300	-54		mV	1,8,15

¹ Measured from single-ended waveform.

² Measured from differential waveform.

³ Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

⁴ Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

⁵ Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.

⁶ Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum modulation.

⁷ Defined as the maximum instantaneous voltage including overshoot.

⁸ Defined as the minimum instantaneous voltage including undershoot.

⁹ Defined as the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.

¹⁰ Refer to section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding ppm considerations.

¹¹ System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load C₁ = 2pF.

¹² T_{STABLE} is the time the differential clock must maintain a minimum ±150mV differential voltage after rising/falling edges before it is allowed to droop back into the VRB ±100mV differential range.

ppm refers to parts per million and is a DC absolute period accuracy specification. 1 ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz. For 300ppm, then we have an error budget of 100Hz/ppm × 300 ppm = 30kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ±300 ppm applies to systems that do not employ spread spectrum clocking, or that use common clock source. For systems employing spread spectrum clocking, there is an additional 2,500 ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,800 ppm.

¹⁴ Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of REFCLK+ should be compared to the fall edge rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

¹⁵ At default amplitude settings.

¹⁶ Guaranteed by design and characterization.

Table 11. Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Industry Limits	Units	Notes
	t _{jphPCleG1-CC}	PCle Gen1.		11	18	86	ps (p-p)	1,2,3
	•	PCIe Gen2 Low Band 10kHz < f < 1.5MHz (PLL BW of 5–16MHz, 8–16MHz, CDR = 5MHz).		0.1	0.14	3	ps (rms)	1,2
PCIe Phase Jitter	^t jphPCleG2-CC	PCIe Gen2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5–16MHz, 8–16MHz, CDR = 5MHz).		1.1	1.5	3.1	ps (rms)	1,2
	CDR = 10MHz). PCle Gen4	(PLL BW of 2-4MHz, 2-5MHz,		0.27	0.37	1	ps (rms)	1,2
		(PLL BW of 2-4MHz, 2-5MHz,		0.27	0.37	0.5	ps (rms)	1,2

Table 12. Filtered Phase Jitter Parameters - PCIe Independent Reference (IR) Architectures

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions; see Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Industry Limits	Units	Notes
PCle	t _{jphPCleG2-SRIS}	PCIe Gen2 (PLL BW of 16MHz, CDR = 5MHz).		1.1	1.34	2	ps (rms)	1,4,5
Phase Jitter	t _{jphPCleG3-SRIS}	PCIe Gen3 (PLL BW of 2–4MHz, CDR = 10MHz).		0.28	0.39	0.7	ps (rms)	1,4,5

Notes for PCIe Filtered Phase Jitter Parameters tables:

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Based on PCle Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.

³ Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1⁻¹².

⁴ IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock architectures.

⁵ According to the PCIe Base Specification Rev4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are not defined for the IR clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this table. There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates.

Table 13. Current Consumption

 V_{DDO} = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, T_A = -40°C to +85°C unless stated otherwise.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	Notes
V _{DDREF} Supply Current	I _{DDREF}	25MHz REFCLK.		4	7	mA	
Core Supply Current	I _{DDCORE}	2500MHz VCO, 25MHz REFCLK.		23	31	mA	3
		LVDS, 325MHz.		20	26	mA	2
Output Buffer Supply Current	ı	LP-HCSL, 100MHz.		18	24	mA	2
(V _{DDO2})	I _{DDOx}	LVCMOS, 50MHz.		15	20	mA	1,2
		LVCMOS, 200MHz.		24	39	mA	1,2
	I _{DDOx}	LVDS, 325MHz.		7	11	mA	2
Output Buffer Supply Current		LP-HCSL, 100MHz.		6	10	mA	2
(V _{DDO0,} V _{DDO1,} V _{DDO3} -per output)		LVCMOS, 50MHz.		4	7	mA	1,2
. ,		LVCMOS, 200MHz.		13	25	mA	1,2
		Programmable outputs in HCSL mode, B37[6,0] = 0.		9	13	mA	2
Total Power Down Current	I _{DDPD}	Programmable outputs in LVDS mode, B37[6,0] = 0.		24	31	mA	2
		Programmable outputs in LVCMOS1 mode, B37[6,0] = 0.		4	7	mA	2

¹ Single CMOS driver active for each output pair.

² See Test Loads for details.

 $^{^{3}}$ $I_{DDCORE} = I_{DDA} + I_{DDDIG}$.

I²C Bus Characteristics

Table 14. I²C Bus DC Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Input High Level	V _{IH}	_	0.7 x V _{DDD}			V
Input Low Level	V _{IL}	_			0.3 x V _{DDD}	V
Hysteresis of Inputs	V _{HYS}	_	0.05 x V _{DDD}			V
Input Leakage Current	I _{IN}	_	-1		30	μA
Output Low Voltage	V _{OL}	I _{OL} = 3mA.			0.4	V

Table 15. I²C Bus AC Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Serial Clock Frequency (SCL)	F _{SCLK}	_	10		400	kHz
Bus free time between STOP and START	t _{BUF}	_	1.3			μs
Setup Time, START	t _{SU:START}	_	0.6			μs
Hold Time, START	t _{HD:START}	_	0.6			μs
Setup Time, Data Input (SDA)	t _{SU:DATA}	_	0.1			μs
Hold Time, Data Input (SDA)	t _{HD:DATA}	_	0			μs
Output Data Valid from Clock	t _{OVD}	_			0.9	μs
Capacitive Load for Each Bus Line	C _B	_			400	pF
Rise Time, Data and Clock (SDA, SCL)	t _R	_	20 + 0.1 x C _B		300	ns
Fall Time, Data and Clock (SDA, SCL)	t _F	_	20 + 0.1 x C _B		300	ns
High Time, Clock (SCL)	t _{HIGH}	_	0.6			μs
Low Time, Clock (SCL)	t _{LOW}	_	1.3			μs
Setup Time, STOP	t _{SU:STOP}	_	0.6			μs

Note: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IH(MIN)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Crystal Characteristics

Table 16. Recommended Crystal Characteristics

Parameter	Value	Units
Frequency	8–50	MHz
Resonance Mode	Fundamental	_
Frequency Tolerance at 25°C	±20	ppm maximum
Frequency Stability, REF at 25°C Over Operating Temperature Range	±20	ppm maximum
Temperature Range (commercial)	0–70	°C
Temperature Range (industrial)	-40–85	°C
Equivalent Series Resistance (ESR)	50	Ω maximum
Shunt Capacitance (C _O)	7	pF maximum
Load Capacitance (C _L)	8	pF maximum
Drive Level	0.1	mW maximum
Aging per year	±5	ppm maximum

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-075-mm-body-05mm-pitch-epad-26-x-26-mm-nbnbg24p2

Marking Diagram

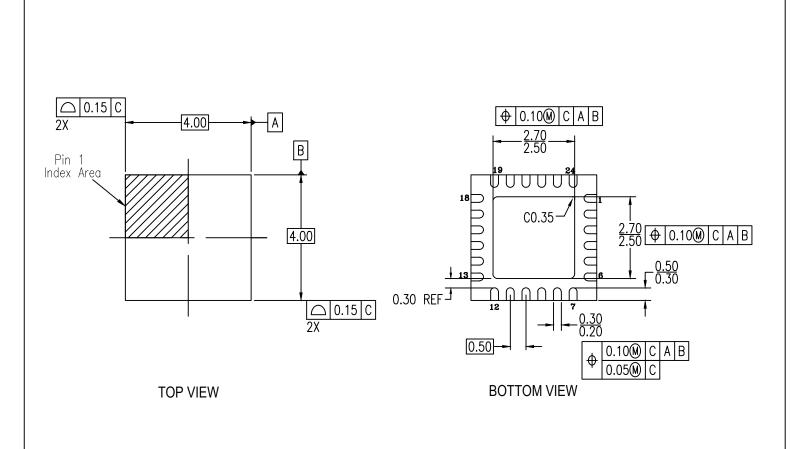
- 1. Line 1 and 2: truncated part number
- 2. "#" denotes stepping number.
- 3. "YWW" denotes the last digits of the year and week the part was assembled.
- 4. "**" denotes lot number.
- 5. "\$" denotes mark code.

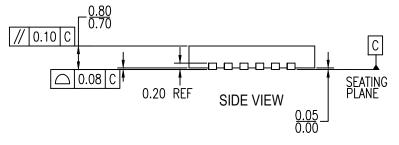
Ordering Information

Orderable Part Number	Orderable Part Number Package		Temperature
9FGV1001BnnnNBGI	4 × 4 mm, 0.5mm pitch 24-VFQFPN	Tray	-40 to +85°C
9FGV1001BnnnNBGI8	4 × 4 mm, 0.5mm pitch 24-VFQFPN	Reel	-40 to +85°C

[&]quot;G" indicates RoHS 6.6 compliance.

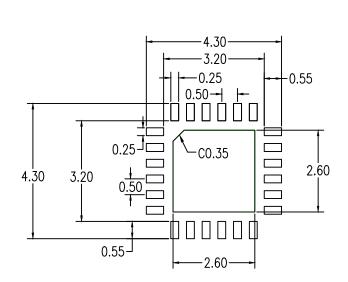
Revision History


Revision Date	Description of Change		
July 5, 2018	Removed "120kOhm" text from pin assignment notes.		
March 28, 2018	Updated pin 23 descriptions and Output Features on front page.		
February 6, 2018	Updated pin 23 descriptions.		
January 31, 2018	 Updated drive level parameter in <i>Crystal Characteristics</i> table. Updated <i>Package Outline Drawings</i> text and added hyperlink to document. 		
October 5, 2017	Initial release.		


[&]quot;nnn" are decimal digits indicating a specific configuration.

24-VFQFPN, Package Outline Drawing

4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm NB/NBG24P2, PSC-4313-02, Rev 01, Page 1


NOTES:

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994
- 2. ALL DIMENSONS ARE IN MILLIMETERS
- 3. INDEX AREA PIN 1 IDENTIFIER

24-VFQFPN, Package Outline Drawing

4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm NB/NBG24P2, PSC-4313-02, Rev 01, Page 2

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994
- 2. ALL DIMENSONS ARE IN MILLIMETERS
- 3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN

Package Revision History						
Date Created Rev No. Description						
Jan 24, 2018	Rev 01	Change QFN to VFQFPN and New Format				
May 11, 2016	Rev 00	Initial Release				

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
 and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
 product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
 these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support