

F2915 Datasheet

50 MHz to 8000 MHz

High Reliability SP5T RF Switch

GENERAL DESCRIPTION

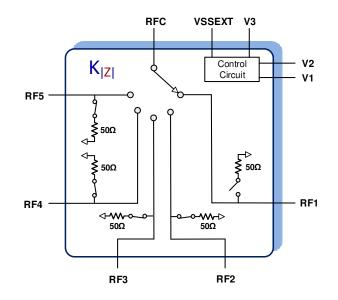
The F2915 is a high reliability, low insertion loss, 50 Ω SP5T absorptive RF switch designed for a multitude of RF applications including wireless communications. This device covers a broad frequency range from 50 MHz to 8000 MHz. In addition to providing low insertion loss, the F2915 also delivers excellent linearity and isolation performance while providing a 50 Ω termination to the unused RF input ports. The F2915 also includes a patent pending constant impedance (K_7) feature. K_7 improves system hot switching ruggedness, minimizes LO pulling in VCOs, and reduces phase and amplitude variations in distribution networks. It is also ideal for dynamic switching/selection between two or more amplifiers while avoiding damage to upstream /downstream sensitive devices such as PAs and ADCs.

The F2915 uses a single positive supply voltage supporting three logic control pins using either 3.3 V or 1.8 V control logic. Connecting a negative voltage to pin 20 disables the internal negative voltage generator and becomes the negative supply.

COMPETITIVE ADVANTAGE

The F2915 provides constant impedance in all RF ports during transitions improving a system's hot-switching ruggedness. The device also supports high power handling, and high isolation; particularly important for DPD receiver use.

- \checkmark Constant impedance $K_{|\mathsf{Z}|}$ during switching transition
- ✓ RFX to RFC Isolation = 50 dB*
- ✓ Insertion Loss = 1.1 dB^*
- ✓ IIP3: +60.5 dBm*
- ✓ Extended temperature: -40 °C to +105 °C
 * 4 GHz


APPLICATIONS

- Base Station 2G, 3G, 4G
- Portable Wireless
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- Military Systems, JTRS radios
- Cable Infrastructure
- Test / ATE Equipment

FEATURES

- Five symmetric, absorptive RF ports
- High Isolation: 50 dB @ 4000 MHz
- Low Insertion Loss: 1.1 dB @ 4000 MHz
- High Linearity:
 - IIP2 of 114 dBm @ 2000 MHz
 - IIP3 of 60.5 dBm @ 4000 MHz
 - High Operating Power Handling:
 - \circ $\,$ 33 dBm CW on selected RF port $\,$
 - 27 dBm on terminated ports
- Single 2.7 V to 5.5 V supply voltage
- External Negative Supply Option
- 3.3 V and 1.8 V compatible control logic
- Operating Temperature -40 °C to +105 °C
- 4 mm x 4 mm 24 pin QFN package
- Pin compatible with competitors

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
V _{DD} to GND	V _{DD}	-0.3	+6.0	V
V1, V2, V3 to GND	V _{CNTL}	-0.3	Lower of (3.6, V _{DD} + 0.3)	V
RF1, RF2, RF3, RF4, RF5, RFC to GND	V _{RF}	-0.3	+0.3	V
VSS _{EXT} to GND	V _{EXT}	-4.0	+0.3	V
Input Power for any one selected RF through port. (V_{DD} applied @ 2 GHz and $T_{C} = +85$ °C)	P _{MAXTHRU}		37	dBm
Input Power for any one selected RF terminated port $(V_{DD} \text{ applied } @ 2 \text{ GHz and } T_C = +85 ^{\circ}C)$	P _{MAXTERM}		30	dBm
Input Power for RFC when in the all off state. (V_{DD} applied @ 2 GHz and $T_{C} = +85$ °C)	P _{MAXCOM}		33	dBm
Continuous Power Dissipation ($T_c = 95$ °C Max)			3	W
Maximum Junction Temperature	T _{Jmax}		+140	°C
Storage Temperature Range	T _{ST}	-65	+150	°C
Lead Temperature (soldering, 10s)	T _{LEAD}		+260	°C
ESD Voltage– HBM (Per JESD22-A114)	V _{ESDHBM}		Class 1C (1500V)	
ESD Voltage – CDM (Per JESD22-C101)	V _{ESDCDM}		Class C3 (1000V)	

 T_C = Temperature of the exposed paddle

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL AND MOISTURE CHARACTERISTICS

θ_{JA} (Junction – Ambient)	41 °C/W
θ_{JC} (Junction – Case) [The Case is defined as the exposed paddle]	6.4 °C/W
Moisture Sensitivity Rating (Per J-STD-020)	MSL1

Parameter	Symbol	Conditions		Min	Тур	Max	Units
	N N	Pin 20 grou	Pin 20 grounded			5.5	
Supply Voltage (s)	V _{DD}	Pin 20 Drive	en with VSS _{EXT}	2.7		5.5	V
	VSS _{EXT}	Negative Su	upply ¹	-3.6	-3.4	-3.2	
Operating Temp Range	T _{CASE}	Exposed Pa	ddle Temperature	-40		+105	°C
RF Frequency Range	F _{RF}			50		8000	MHz
RF Continuous	P _{RF}	Selected Pc	ort			33	dBm
Input CW Power ²	' KF	Terminated	Ports ³			27	dDin
	RF	RFC as	Switch to RF1 thru RF5.			27	
RF Continuous	D	the input	Switched into or out of all off state.			24	dBm
Input CW Power for Hot RF Switching ²	P _{RFSW}	RF1 thru	Switched to RFC or into Term ³ .			27	UDIII
		RF5 as the inputs	Switch into or out of all off condition.			27	
RF1 - 5 Port Impedance	Z _{RFx}				50		
RFC Port Impedance	Z _{RFC}				50		

F2915 RECOMMENDED OPERATING CONDITIONS

Note 1: For normal operation, connect $VSS_{EXT} = 0 V$ (pin 20) to GND to enable the internal negative voltage generator. By applying VSS_{EXT} to pin 20, the negative voltage generator is disabled completely eliminating any generator spurious responses.

Note 2: Levels based on $T_C \le 85C$. See Figure 1 power de-rating curve for higher case temperatures.

Note 3: In any of the insertion loss modes or switching into any insertion loss mode, any 3 of the 4 remaining terminated port paths may be each exposed to the maximum stated power level during continuous or hot switching operation.

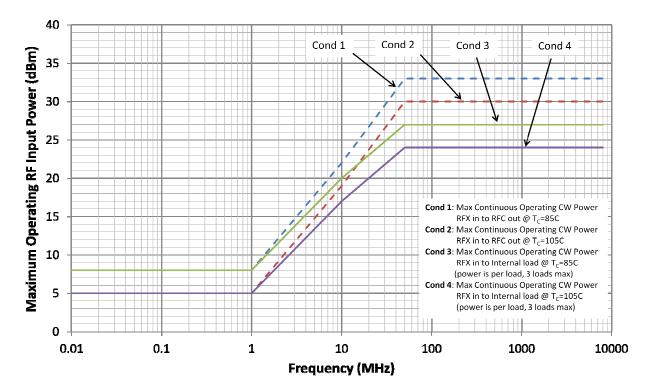


Figure 1 - MAXIMUM RF OPERATING INPUT POWER vs. RF FREQUENCY

F2915 SPECIFICATION

Typical Application Circuit, Normal mode (V_{DD} = 3.3 V, VSS_{EXT}= 0 V) or Bypass mode (V_{DD} = 3.3 V, VSS_{EXT}= -3.3 V), T_C = +25 °C, F_{RF} = 2000 MHz, Input power = 0 dBm, Z_S = Z_L = 50 Ω , RFX = one of the five input ports, PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condit	ions	Min	Тур	Max	Units	
Logic Input High Threshold	V_{IH}			1.1		Lower of (3.6, V _{DD})	V	
Logic Input Low Threshold	V _{IL}			-0.3		0.6	V	
Logic Current	$\mathrm{I_{IH,}}~\mathrm{I_{IL}}$	For each control pin		-2		+2	μA	
DC Current (V _{DD})	т	Normal Mode 3.3	V or 1.8V Logic		290	360		
	\mathbf{I}_{DD}	Bypass Mode 3.3	V or 1.8V Logic		270	340	μA	
DC Current (VSS _{EXT})	I _{VSS}	$VSS_{EXT} = -3.3 V$			-46	-60	μA	
		900 MHz			0.93	1.4 ¹		
Insertion Loss		2100 MHz			1.1	1.5		
RFX to RFC	IL	2700 MHz			1.2	1.6	dB	
N X to N C		2700 MHz – 4000 MH			1.1	1.65 ²		
		4000 MHz – 8000 MH	lz		2.3			
		400 MHz – 900 MHz		57.5	62			
Minimum Isolation		900 MHz – 2100 MHz		51	56			
RFX to RFC	ISOC	2100 MHz – 2700 MHz		49.5	54		dB	
		2700 MHz – 4000 MH	45	50				
		4000 MHz – 8000 MH	lz	31	36.5			
	ISOX	400 MHz – 900 MHz		56.5	61.5		dB	
Minimum Isolation		900 MHz – 2100 MHz		50	55			
RFX to RFX		2100 MHz – 2700 MHz		48	53			
		2700 MHz – 4000 MHz		44.5	49.5			
		4000 MHz – 8000 MH		30.5	36.5			
Insertion Loss Flatness	IL _{FLAT}	400 MHz – 3800 MHz	2		0.1	0.4	dB	
VSWR RFC		Any 400 MHz range	atad		1.25:1	1.78:1		
VSWR RFX (On Ports)		RF1 through RF5 sele RF1 through RF5 sele			1.33:1	1.78:1	-	
VSWR RFX (Term Ports)	VSWR _{ON} VSWR _{TERM}	RF1 through RF5 uns			1.15:1	1.58:1	-	
Maximum RFX Port VSWR	VSVVKTERM	From RFX Active to F			1.15:1	1.50.1	-	
During Switching	$VSWR_T$	From RFX Term to R			2:1		-	
Minimum Return Loss	RFC _{RL}	RF1 through RF5 sele	ected	10	16		dB	
(RFC Port)		400 MHz - 4000 MH						
Minimum Return Loss	RFX _{RL}	400 MHz –	Active	9	13		dB	
(RFX Port)		4000 MHz	Terminated	11	15			
Input 1dB Compression ³	ICP _{1dB}	ļ ļ		34	36.5		dBm	
Input 0.1dB Compression ³	ICP _{0.1dB}	E 2000 Million	2010	28	35		dBm	
Input IP2	IIP2	$\label{eq:result} \begin{array}{l} F_{RF1} = 2000 \; MHz, \; F_{RF2} = 2010 \; MHz \\ RF \; Input = \; RFX, \; P_{IN} = +20 \; dBm \; / \; tone \\ F_{RF1} + \; F_{RF2} \; Term \end{array}$			114		dBm	
		$\Delta F = 1 \text{ MHz}$	$F_{RF} = 400 \text{ MHz}$	45	60.5			
Input IP3		RF Input = RFX	$F_{RF} = 2000 \text{ MHz}$	56	60		dBm	
	IIP3	$P_{IN} = +20$	$F_{RF} = 4000 \text{ MHz}$					
		dBm/tone			60.5			

Note 1 – Items in min/max columns in *bold italics* are Guaranteed by Test.

Note 2 – Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.

- Note 3 The input 0.1dB and 1dB compression points are linearity figures of merit. Refer to Absolute Maximum
 - Ratings section for the maximum RF input power and Figure 1 for maximum operating RF input power.

F2915 SPECIFICATION (CONT.)

Typical Application Circuit, Normal mode (V_{DD} = 3.3 V, VSS_{EXT}= 0 V) or Bypass mode (V_{DD} = 3.3 V, VSS_{EXT}= -3.3 V), T_C = +25 °C, F_{RF} = 2000 MHz, Input power = 0 dBm, Z_S = Z_L = 50 Ω , RFX = one of the five input ports, PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol		Conditions		Тур	Max	Units
Group Delay	GD				0.43	1	ns
			50% CTRL to 90% RF		256	345	
_		Bypass	50% CTRL to 10% RF		256	345	
Switching Time ⁴		Mode	50% CTRL to RF settled within +/- 0.1 dB of I.L. value.		285		ns
Maximum Curitoping Data	CW/	Pin 20 =	GND		25		LL I=
Maximum Switching Rate ⁵ SW _{RATE}		Pin 20 = VSS _{EXT} applied			290		kHz
Maximum spurious level on any RF port ⁶	Spur _{MAX}		terminated into 50Ω nected to RFC		-120		dBm

Note 1 – Items in min/max columns in *bold italics* are Guaranteed by Test.

Note 2 – Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.

Note 3 – The input 0.1dB and 1dB compression points are linearity figures of merit. Refer to Absolute Maximum Ratings section for the maximum RF input power and Figure 1 for maximum operating RF input power.

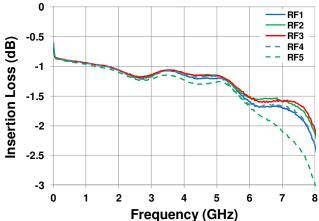
Note $4 - F_{RF} = 1$ GHz.

Note 5 – Minimum time required between switching of states =1/ (Maximum Switching Rate).

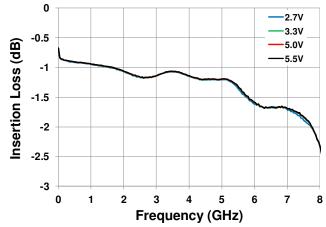
Note 6 – Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2 MHz.

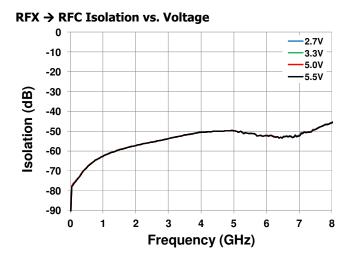
TABLE 1: SWITCH CONTROL TRUTH TABLE

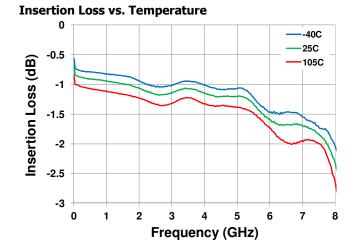
Mode	V3	V2	V1
All off	0	0	0
RF1 on	0	0	1
RF2 on	0	1	0
RF3 on	0	1	1
RF4 on	1	0	0
RF5 on	1	0	1
All off	1	1	0
All off	1	1	1

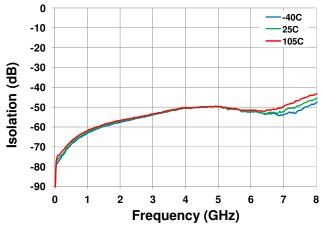

TYPICAL OPERATING CONDITIONS (TOC)

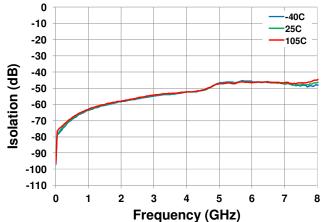
Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.

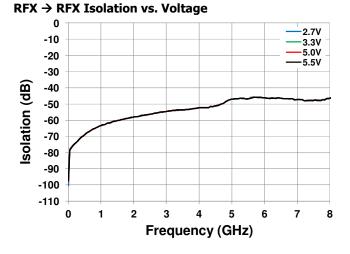

- V_{DD} = 3.3 V.
- T_{CASE} = +25 °C (T_{CASE} = Temperature of exposed paddle).
- F_{RF} = 2000 MHz.
- RFX is the driven RF port and RFC is the output port.
- Pin = 10 dBm for all small signal tests.
- Pin = +15 dBm/tone applied to selected RFX port for two tone linearity tests.
- Two tone frequency spacing = 5 MHz.
- $Z_s = Z_L = 50$ ohms.
- All unused RF ports terminated into 50 ohms.
- For Insertion Loss and Isolation plots, RF trace and connector losses are de-embedded (see EVKIT Board and Connector loss plot).
- Plots for Isolation and Insertion Loss over temperature and voltage are for a typical path. For performance of a specific path, refer to the online S-Parameter file.

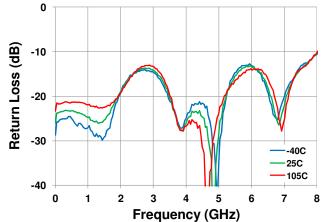

TYPICAL OPERATING CONDITIONS (-1-)

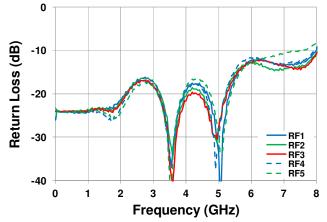


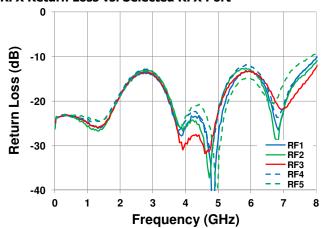

Insertion Loss vs. Voltage

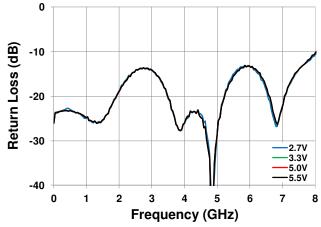


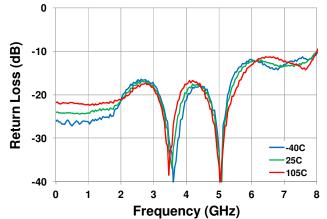




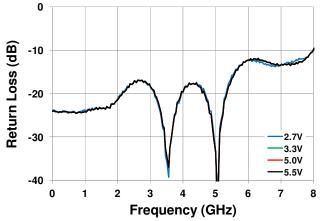

TYPICAL OPERATING CONDITIONS (-2-)

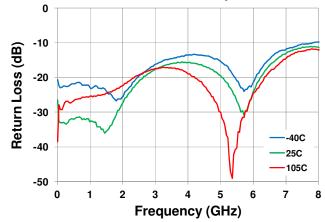



RFC Return Loss vs. Selected RFX Port

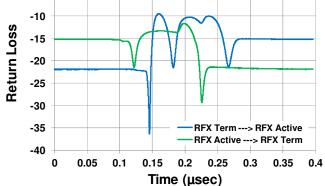


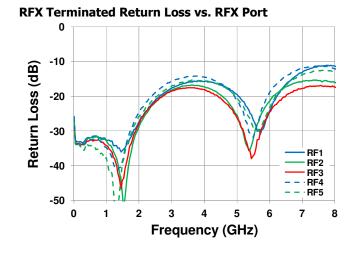
RFX Selected Return Loss vs. Voltage

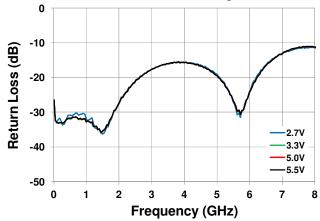




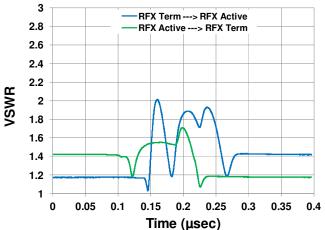
TYPICAL OPERATING CONDITIONS (-3-)



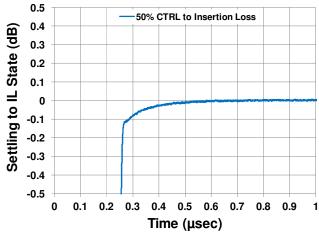

RFX Terminated Return Loss vs. Temperature

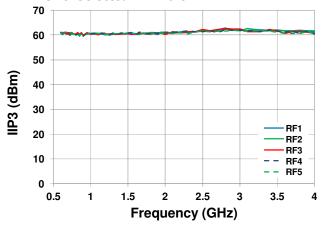


Return Loss (During Switching) vs. Time

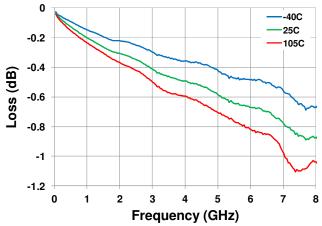


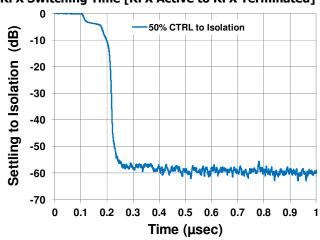
RFX Terminated Return Loss vs. Voltage

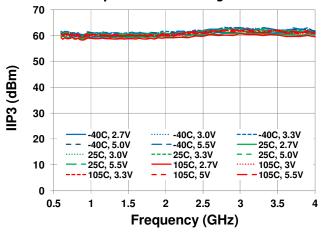




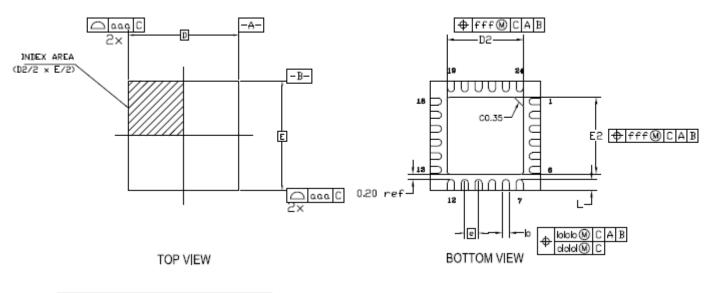
TYPICAL OPERATING CONDITIONS (-4-)


RFX Switching Time [RFX Terminated to RFX Active]


RFX IIP3 vs. Selected RFX Port



RFX Switching Time [RFX Active to RFX Terminated]



PACKAGE DRAWING

(4mm x 4mm 24-pin QFN), NBG24

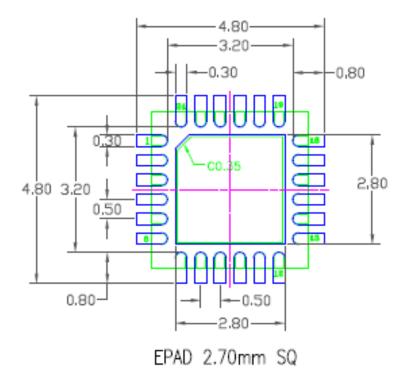
SYMBOL	DIMENSION			
۴	MIN	NOM	MAX	
D2	SEE	EPAD OP	ΠON	
E2	SEE	EPAD OP	TION	
L	0.30	0.40	0.50	
D	4.00 BSC			
E	4.00 BSC			
е	0.50 BSC			
А	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
Ь	.20	.25	.30	
aaa		0.15		
bbb	0.10			
CCC	0.10			
ddd	0.05			
eee		0.08		
fff		0.10		

- A		_
		A1 SEATONG -C-
		PLANE
	0.20 REF SIDE VIEW	·

EPAD OPTIONS:

SYMBOL		P3	
P	MIN	NOM	MAX
D2	2.60	2.70	2.80
E2	2.60	2.70	2.80

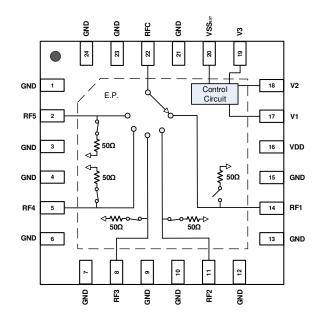
NOTES:


1.

ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982

2. ALL DIMENSIONS ARE IN MILLIMETERS.

LAND PATTERN DIMENSION


Land Pattern to Support 2.7 mm x 2.7 mm Exposed Paddle Version (See Version P3 of Package Drawing)

NOTES:

- 1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
- 2. TOP DOWN VIEW. AS VIEWED ON PCB.
- 3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN.
- 4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
- LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

PIN DIAGRAM

PIN DESCRIPTION

Pin	Name	Function
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 21, 23, 24	GND	Ground these pins as close to the device as possible.
2	RF5	RF5 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
5	RF4	RF4 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
8	RF3	RF3 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
11	RF2	RF2 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
14	RF1	RF1 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
16	VDD	Power Supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.
17	V1	Control pin to set switch state. See Table 1.
18	V2	Control pin to set switch state. See Table 1.
19	V3	Control pin to set switch state. See Table 1.
20	VSS _{EXT}	External VSS negative voltage control. Connect to ground to enable on chip negative voltage generator. To bypass and disable on chip generator connect this pin to an external VSS.
22	RFC	RF Common Port. Matched to 50 ohms when one of the 5 RF ports is selected. If this pin is not 0V DC, then an external coupling capacitor must be used.
25	— EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

APPLICATIONS INFORMATION

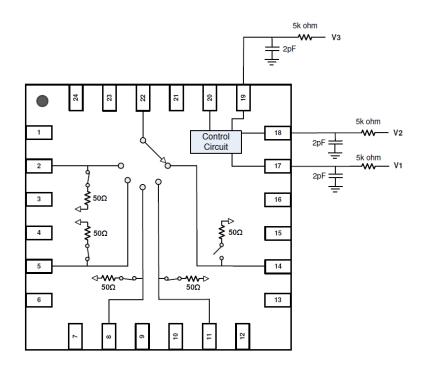
Default Start-up

There are no internal pull-up or pull-down resistors on the Control pins.

Logic Control

Control pins V1, V2, and V3 are used to set the state of the SP5T switch (see Table 1).

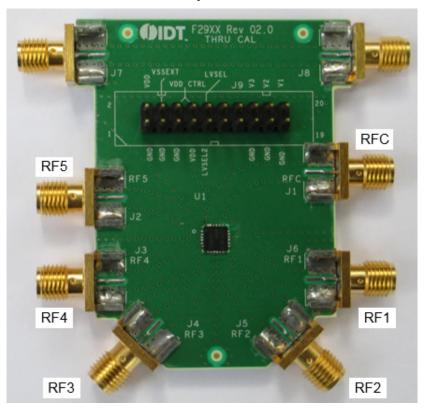
External Vss

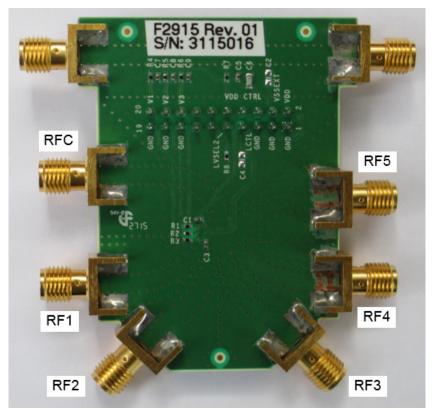

The F2915 is designed with an on-chip negative voltage generator. This on-chip generator is enabled by connecting pin 20 of the device to ground. To disable the on-chip generator apply a negative voltage to pin 20 (VSSEXT) of the device within the range stated in the Recommended Operating Conditions Table.

Power Supplies

A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1 V / 20 μ S. In addition, all control pins should remain at 0 V (+/-0.3 V) while the supply voltage ramps or while it returns to zero.

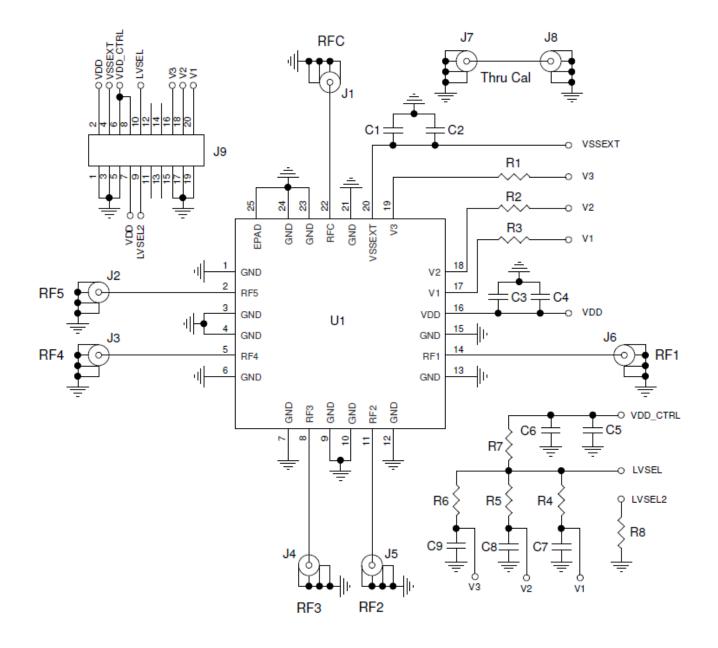
Control Pin Interface


If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 17, 18, and 19 as shown below.



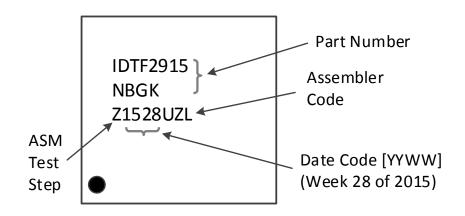
EVKIT PICTURES

Top View



Bottom View

EVKIT / APPLICATIONS CIRCUIT



EVKIT BOM

Part Reference	QTY	DESCRIPTION	Mfr. Part #	Mfr.
C1, C3, C5, C7, C8, C9	6	100 pF ±5%, 50V, C0G Ceramic Capacitor (0402)	GRM1555C1H101J	Murata
C2	0	Not Installed (0603)		
C4	0	Not Installed (0603)		
C6	1	1000 pF ±5%, 50V, C0G Ceramic Capacitor (0603)	GRM1885C1H102J	Murata
R1, R2, R3	3	0 Ω ±1%, 1/10W, Resistor (0402)	ERJ-2GE0R00X	Panasonic
R4, R5, R6	3	100 kΩ ±1%, 1/10W, Resistor (0402)	ERJ-2RKF1003X	Panasonic
R7	1	15 kΩ ±1%, 1/10W, Resistor (0402)	ERJ-2RKF1502X	Panasonic
R8	1	22 kΩ ±1%, 1/10W, Resistor (0402)	ERJ-2RKF2202X	Panasonic
J1-J8	J1-J8 8 Edge Launch SMA (0.375 inch pitch ground tabs)		142-0701-851	Emerson Johnson
39	1	CONN HEADER VERT DBL 10 X 2 POS GOLD	67997-120HLF	FCI
U1	1	SP5T Switch 4 mm x 4 mm QFN24-EP	F2915NBGK	IDT
	1	Printed Circuit Board	F29XX EVKIT Rev 02.0	IDT

TOP MARKINGS

EVKIT OPERATION

External Supply Setup

Set up a VDD power supply in the voltage range of 2.7 V to 5.5 V and disable the power supply output.

If using the on-chip negative voltage generator install a 2-pin shunt to short pins 3 and 4 of J9.

If an external negative voltage supply is to be used set its voltage within the range of -3.6 V to -3.2 V and disable it. Also, be sure there are no jumper connections on pins 3 and 4 of J9.

Logic Control Setup

Using the EVKIT to manually set the control logic:

On connector J9 connect a 2-pin shunt from pin 7 (VDD) to pin 8 (VDD_CTRL). This connection provides the VDD voltage supply to the Eval Board logic control pull up network.

On connector J9 connect a 2-pin shunt from pin 9 (LVSEL2) to pin 10 (LVSEL). This connection enables R7 (15 k Ω) and R8 (22 k Ω) to form a voltage divider to set the proper logic control levels to support the full voltage range of VDD. Note that when using the on-board R7 / R8 voltage divider the current draw from the VDD supply will be higher by approximately VDD / 37 k Ω .

Connector J9 has 3 logic input pins: V1 (pin 20), V2 (pin 18), and V3 (pin 16). See Table 1 for Logic Truth Table. With the pullup network enabled (as noted above), when these pins are left open a logic high will be provided through pull up resistors R4, R5, and R6. To set a logic low to V1, V2, and V3 connect 2-pin shunts from pin 16 to pin 15, pin 18 to pin 17 and pin 20 to pin 19 respectively.

Using external control logic:

Pins 6, 7, 8, 9, and 10 of J9 should have no connection. External logic controls can be applied to J9 pins 16 (V3), 18 (V2) and 20 (V1). See Table 1 for Logic Truth Table.

Turn-on Procedure

Setup the supplies and Eval Board as noted in the **External Supply Setup** and **Logic Control Setup** sections above.

Connect the preset disabled VDD power supply to pin 2 (VDD) and pin 1 (GND) of J9.

If the external negative voltage source is to be used, connect the disabled supply to pin 4 (VSSEXT) and pin 3 (GND) of J9. If using on-chip negative supply be sure the 2-pin shunt is installed connecting pin 3 to pin 4.

Enable the VDD supply then enable the VSSEXT supply (if used).

Set the desired logic setting using V1, V2, and V3 to achieve the desired Table 1 setting. Note that external control logic should not be applied without VDD being applied first.

Turn-off Procedure

If using external control logic V1, V2, V3 must be set to a logic low.

Disable any external VSSEXT supply.

Disable the VDD supply.

REVISION HISTORY SHEET

Rev	Date	Page	Description of Change
0	2015-Dec-11		Initial Release
1	2016-Feb-22	1, 2, 3, 4	Added min/max limits. Increased frequency range. Updated ESD values.
2	2016-May-05	2, 4, 5	Added new Guaranteed by Design parameters to specification table.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support