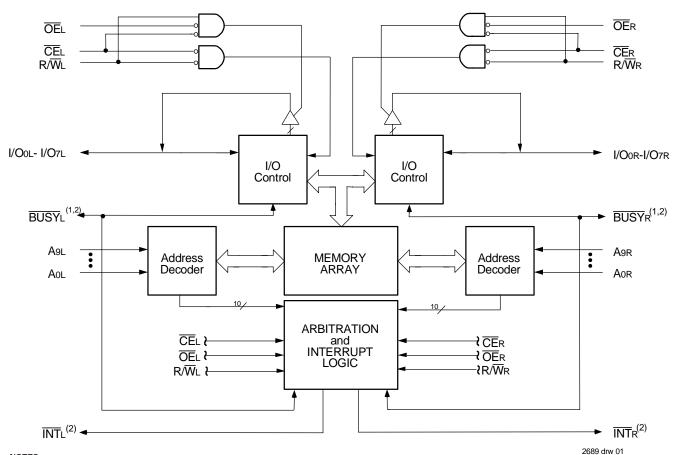


HIGH SPEED 1K X 8 DUAL-PORT STATIC SRAM

IDT7130SA/LA IDT7140SA/LA


LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

Features

- High-speed access
 - Commercial: 20/25/35/55/100ns (max.)
 - Industrial: 25/55/100ns (max.)
 - Military: 25/35/55/100ns (max.)
- Low-power operation
 - IDT7130/IDT7140SA
 - Active: 550mW (typ.)
 - Standby: 5mW (typ.)
 - IDT7130/IDT7140LA
 - Active: 550mW (typ.)
 - Standby: 1mW (typ.)
- MASTER IDT7130 easily expands data bus width to 16-ormore-bits using SLAVE IDT7140

- On-chip port arbitration logic (IDT7130 Only)
- ◆ BUSY output flag on IDT7130; BUSY input on IDT7140
- INT flag for port-to-port communication
- Fully asynchronous operation from either port
- Battery backup operation–2V data retention (LA only)
- ◆ TTL-compatible, single 5V ±10% power supply
- Military product compliant to MIL-PRF-38535 QML
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Available in 48-pin DIP, LCC and Ceramic Flatpack, 52-pin PLCC, and 64-pin STQFP and TQFP
- Green parts available, see ordering information

Functional Block Diagram

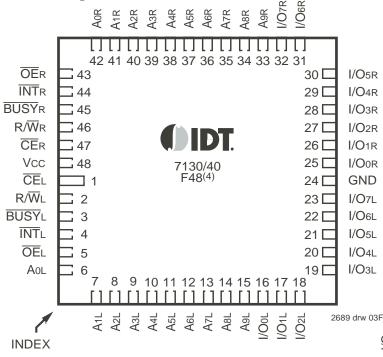
NOTES

- IDT7130 (MASTER): BUSY is open drain output and requires pullup resistor. IDT7140 (SLAVE): BUSY is input.
- 2. Open drain output: requires pullup resistor.

FEBRUARY 2018

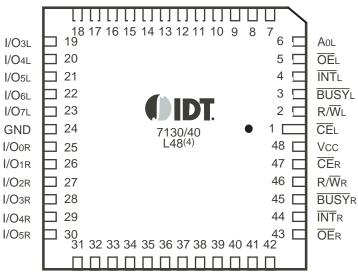
Description

The IDT7130/IDT7140 are high-speed 1K x 8 Dual-Port Static RAMs. The IDT7130 is designed to be used as a stand-alone 8-bit Dual-Port RAM or as a "MASTER" Dual-Port RAM together with the IDT7140 "SLAVE" Dual-Port in 16-bit-or-more word width systems. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 16-or-more-bit memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

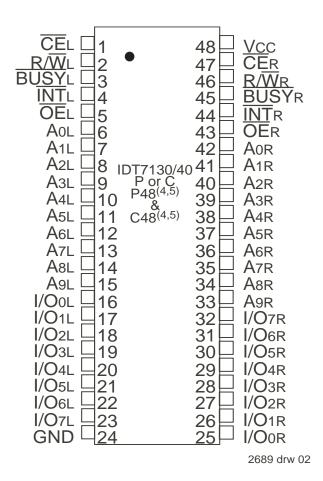

Both devices provide two independent ports with separate control, address, and I/O pins that permit independent asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by $\overline{\text{CE}}$, permits the on chip circuitry

of each port to enter a very low standby power mode.

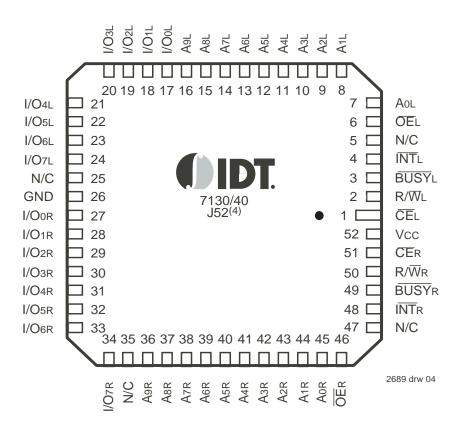
Fabricated using CMOS high-performance technology, these devices typically operate on only 550mW of power. Low-power (LA) versions offer battery backup data retention capability, with each Dual-Port typically consuming 200µW from a 2V battery.


The IDT7130/IDT7140 devices are packaged in 48-pin sidebraze or plastic DIPs, LCCs, flatpacks, 52-pin PLCC, and 64-pin TQFP and STQFP. Military grade products are manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

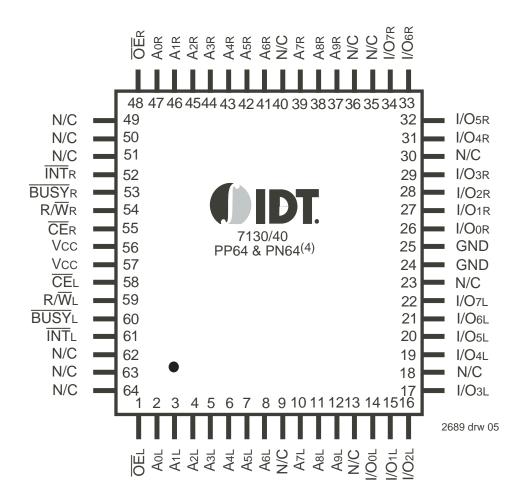
Pin Configurations (1,2,3)


NOTES

- 1. All Vcc pins must be connected to power supply.
- All GND pins must be connected to ground supply.
- 3. L48 package body is approximately .57 in x .57 in x .68 in. F48 package body is approximately .75 in x .75 in x .11 in.
- 4. This package code is used to reference the package diagram.


2689 drw 03L

Pin Configurations (1,2,3) (con't.)


- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. P48 package body is approximately .55 in x .61 in x .19 in. C48 package body is approximately .62 in x 2.43 in x .15 in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Configurations^(1,2,3) (con't.)

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. J52-1 package body is approximately .75 in \times .75 in \times .17 in.
- 4. This package code is used to reference the package diagram.

Pin Configurations (1,2,3) (con't.)

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. PP64 package body is approximately 10 mm x 10 mm x 1.4mm. PN64 package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Military	Unit				
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	٧				
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C				
Tstg	Storage Temperature	-65 to +150	-65 to +150	°C				
ЮИТ	DC Output Current	50	50	mA				

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may
 cause permanent damage to the device. This is a stress rating only and functional
 operation of the device at these or any other conditions above those indicated in
 the operational sections of the specification is not implied. Exposure to absolute
 maximum rating conditions for extended periods may affect reliability.
- VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 10%.

Capacitance (TA = +25°C, f = 1.0MHz)

STQFP and TQFP Packages Only

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	9	pF
Соит	Output Capacitance	Vout = 3dV	10	pF

NOTES:

- This parameter is determined by device characterization but is not production tested.
- 3dV references the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	_	6.0(2)	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V

NOTES:

2689 tbl 01

- 1. VIL (min.) \geq -1.5V for pulse width less than 10ns.
- 2. VTERM must not exceed Vcc + 10%.

Recommended Operating Temperature and Supply Voltage⁽¹⁾

		11 2	
Grade	Ambient Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

NOTES:

1. This is the parameter Ta. This is the "instant on" case temperature.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

			7130SA 7140SA		7130LA 7140LA		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, $VIN = 0V$ to Vcc	_	10	_	5	μΑ
ILO	Output Leakage Current ⁽¹⁾	$\frac{\text{Vcc}}{\text{CE}}$ - 5.5V, $\frac{\text{CE}}{\text{CE}}$ = VH, Vout = 0V to Vcc	_	10	_	5	μΑ
Vol	Output Low Voltage (I/Oo-I/O7)	IoL = 4mA	_	0.4	_	0.4	V
Vol	Open Drain Output Low Voltage (BUSY, INT)	IoL = 16mA	_	0.5	_	0.5	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	V

NOTE:

1. At Vcc ≤ 2.0V leakages are undefined.

2689 tbl 04

2689 tbl 02

2689 thl 03

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(1,5)}$ (Vcc = 5.0V \pm 10%)

					7140	X20 ⁽²⁾ X20 ⁽²⁾ I Only	7140 Com	0X25 0X25 1, Ind litary	7140 Co	0X35 0X35 m'l litary	
Symbol	Parameter	Test Condition	Versi	on	Тур.	Max.	Тур.	Max.	Тур.	Max.	Unit
lcc	Current	Outputs Disabled	COM'L	SA LA	110 110	250 200	110 110	220 170	110 110	165 120	mA
(Both Ports Active)	T = TMAX ^e ^y	MIL & IND	SA LA			110 110	280 220	110 110	230 170		
ISB1	(Both Ports - TTL	th Ports - TTL $f = f_{MAX}^{(3)}$	COM'L	SA LA	30 30	65 45	30 30	65 45	25 25	65 45	mA
Level Inputs)		MIL & IND	SA LA			30 30	80 60	25 25	80 60		
ISB2	Standby Current (One Port - TTL	CEA" = V _{IL} and CE'B" = V _{IH} (6) Active Port OutputsDisabled, f=fMax(6)	COM'L	SA LA	65 65	165 125	65 65	150 115	50 50	125 90	mA
	Level Inputs)		MIL & IND	SA LA			65 65	160 125	50 50	150 115	
ISB3	Full Standby Current (Both Ports -	CEL and CER ≥ Vcc - 0.2V,	COM'L	SA LA	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	30 10	mA
CMOS Level Inputs)	$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$, $f = 0^{(4)}$	MIL & IND	SA LA		_	1.0 0.2	30 10				
ISB4	(One Port -	One Port - $\overline{\mathbb{CE}}^* \ge Vcc \cdot 0.2V^{(6)}$ CMOS Level Inputs) $V_{\mathbb{N}} \ge Vcc \cdot 0.2V$ or $V_{\mathbb{N}} \le 0.2V$ Active Port Outputs Disabled.	COM'L	SA LA	60 60	155 115	60 60	145 105	45 45	110 85	mA
	Covios Level inpuis)		MIL & IND	SA LA	_	_	60 60	155 115	45 45	145 105	

2689 tbl 06a

					7140 Com	0X55 0X55 'I, Ind litary	7140 Com'	X100 X100 I, Ind litary	
Symbol	Parameter	Test Condition	Versio	n	Тур.	Max.	Тур.	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	CEL and CER = VIL, Outputs Disabled $f = fMAX^{(3)}$	COM'L	SA LA	110 110	155 110	110 110	155 110	mA
	(BUILL POILS ACTIVE)	I = IMAX**	MIL & IND	SA LA	110 110	190 140	110 110	190 140	
ISB1	ISB1 Standby Current (Both Ports - TTL Level Inputs) CEL and CER = V _I H f = f _{MAX} (S)	COM'L	SA LA	20 20	65 35	20 20	55 35	mA	
			MIL & IND	SA LA	20 20	65 45	20 20	65 45	
ISB2	(One Port - TTL Active Port Outputs Disabled,	COM'L	SA LA	40 40	110 75	40 40	110 75	mA	
	Level Inputs)	f=fMaX ⁽³⁾	MIL & IND	SA LA	40 40	125 90	40 40	125 90	
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	CEL and CER ≥ Vcc - 0.2V,	COM'L	SA LA	1.0 0.2	15 4	1.0 0.2	15 4	mA
	Civios Level Inpuis)		MIL & IND	SA LA	1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port - CMOS Level Inputs)	\overline{CE} 'A" $\leq 0.2V$ and \overline{CE} 'B" $\geq VCC - 0.2V^{(6)}$	COM'L	SA LA	40 40	100 70	40 40	95 70	mA
	Civios Level Iripuis)	$V_{IN} \ge \overline{V}_{CC}$ - 0.2V or $V_{IN} \le 0.2V$ Active Port Outputs Disabled, $f = f_{MAX}^{(6)}$	MIL & IND	SA LA	40 40	110 85	40 40	110 80	

NOTES

2689 tbl 06b

- 1. 'X' in part numbers indicates power rating (SA or LA).
- 2. PLCC , TQFP and STQFP packages only.
- 3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tcvc, and using "AC TEST CONDITIONS" of input levels of GND to 3V.
- 4. f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby.
- 5. Vcc = 5V, Ta=+25°C for Typ and is not production tested. Vcc DC = 100 mA (Typ)
- 6. Port "A" may be either left or right port. Port "B" is opposite from port "A".

2692 drw 06

2689 tbl 07

Data Retention Characteristics (LA Version Only)

		7130LA/7140LA					
Symbol	Parameter	Test Condition	Min.	Typ. ⁽¹⁾	Max.	Unit	
VDR	Vcc for Data Retention			2.0	_	_	V
ICCDR	Data Retention Current		MIL. & IND.	_	100	4000	μΑ
		$Vcc = 2.0V, \overline{CE} \ge Vcc -0.2V$	COM'L.	_	100	1500	
tcdr ⁽³⁾	Chip Deselect to Data Retention Time	$Vin \ge Vcc$ -0.2V or $Vin \le 0.2V$	•	0	-	-	ns
tR ⁽³⁾	Operation Recovery Time			trc ⁽²⁾	_	_	ns

NOTES:

- 1. Vcc = 2V, TA = +25°C, and is not production tested.
- 2. trc = Read Cycle Time
- 3. This parameter is guaranteed but not production tested.

Data Retention Waveform

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

2689 tbl 08

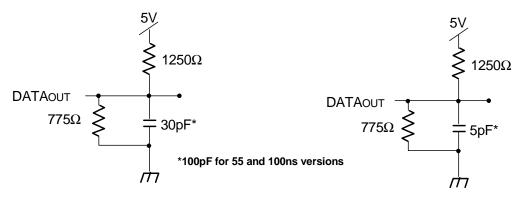
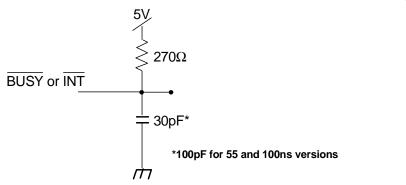



Figure 1. Output Test Load

Figure 2. Output Test Load (for tHz, tLz, twz, and tow) * including scope and jig

2689 drw 07

AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range⁽³⁾

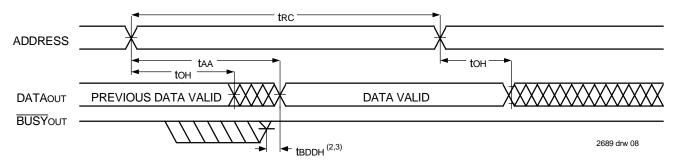
		7140	7140X20 ⁽²⁾ 7140X Com'l Only Com'l,		7140X25 7140X Com'l, Ind Con		30X35 40X35 om'l filitary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	20	_	25	_	35	_	ns
taa	Address Access Time	_	20	_	25	_	35	ns
tace	Chip Enable Access Time	_	20	_	25	_	35	ns
taoe	Output Enable Access Time	_	11		12	_	20	ns
tон	Output Hold from Address Change	3	_	3	_	3	_	ns
tLZ	Output Low-Z Time ^(1,4)	0	_	0	_	0	_	ns
thz	Output High-Z Time ^(1,4)	_	10	_	10	_	15	ns
tpu	Chip Enable to Power Up Time (4)	0	_	0	_	0	_	ns
tpD	Chip Disable to Power Down Time ⁽⁴⁾	_	20		25		35	ns

2689 tbl 09a

		7130X55 7140X55 Com'l, Ind & Military		7130X100 7140X100 Com'l, Ind & Military					
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit			
READ CYCLE									
trc	Read Cycle Time	55		100	1	ns			
taa	Address Access Time		55		100	ns			
tace	Chip Enable Access Time		55		100	ns			
taoe	Output Enable Access Time		25	-	40	ns			
tон	Output Hold from Address Change	3	_	10	_	ns			
tLZ	Output Low-Z Time ^(1,4)	5		5	1	ns			
tHZ	Output High-Z Time ^(1,4)		25		40	ns			
tpu	Chip Enable to Power Up Time (4)	0		0	Ī	ns			
tpD	Chip Disable to Power Down Time ⁽⁴⁾	_	50	_	50	ns			

NOTES

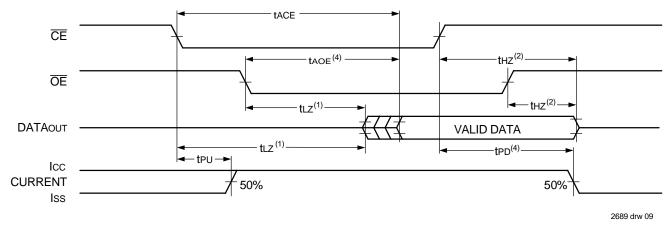
1. Transition is measured 0mV from Low or High-impedance voltage Output Test Load (Figure 2).


2. $\ \ PLCC$, TQFP and STQFP packages only.

3. 'X' in part numbers indicates power rating (SA or LA).

4. This parameter is guaranteed by device characterization, but is not production tested.

2689 tbl 09b


Timing Waveform of Read Cycle No. 1, Either Side⁽¹⁾

NOTES:

- 1. $R/\overline{W} = V_{IH}$, $\overline{CE} = V_{IL}$, and is $\overline{OE} = V_{IL}$. Address is valid prior to the coincidental with \overline{CE} transition LOW.
- 2. tbbb delay is required only in the case where the opposite port is completing a write operation to the same the address location. For simultaneous read operations, BUSY has no relationship to valid output data.
- 3. Start of valid data depends on which timing becomes effective last taoe, tace, taa, and tBDD.

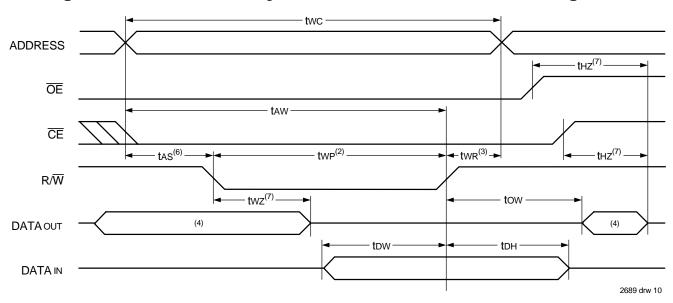
Timing Waveform of Read Cycle No. 2, Either Side⁽³⁾

- 1. Timing depends on which signal is asserted last, $\overline{\text{OE}}$ or $\overline{\text{CE}}$.
- 2. Timing depends on which signal is deaserted first, \overline{OE} or \overline{CE} .
- 3. $R/\overline{W} = VIH$ and $\overline{OE} = VIL$, and the address is valid prior to or coincidental with \overline{CE} transition LOW.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD.

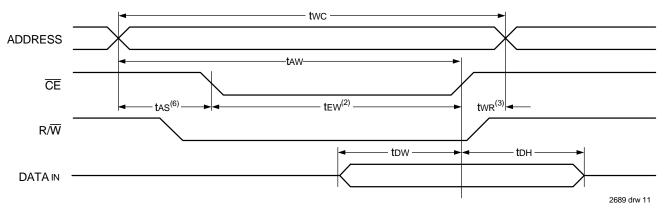
AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range⁽⁵⁾

	rig romporataro ouppry vortag	7130X20 ⁽²⁾ 71303 7140X20 ⁽²⁾ 71403 Com'l Only Com'l, & Mili)X25 I, Ind	d Com'l			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCLE								
twc	Write Cycle Time ⁽³⁾	20	-	25		35	-	ns
tew	Chip Enable to End-of-Write	15	-	20	_	30		ns
taw	Address Valid to End-of-Write	15		20	_	30		ns
tas	Address Set-up Time	0	-	0		0	I	ns
twp	Write Pulse Width ⁽⁴⁾	15		15	_	25	1	ns
twr	Write Recovery Time	0		0	_	0		ns
tow	Data Valid to End-of-Write	10		12		15	1	ns
tHZ	Output High-Z Time ⁽¹⁾	_	10		10		15	ns
tон	Data Hold Time	0	_	0	_	0		ns
twz	Write Enable to Output in High-Z ⁽¹⁾		10	_	10	_	15	ns
tow	Output Active from End-of-Write(1)	0	_	0		0	_	ns

2689 tbl 10a


	7130X55 7140X55 Com'l, Ind & Military				7130X100 7140X100 Com'l, Ind & Military		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
WRITE CYCLE	<u> </u>						
twc	Write Cycle Time ⁽³⁾	55	_	100	_	ns	
tew	Chip Enable to End-of-Write	40	_	90	_	ns	
taw	Address Valid to End-of-Write	40		90	_	ns	
tas	Address Set-up Time	0	_	0	_	ns	
twp	Write Pulse Width ⁽⁴⁾	30	_	55	_	ns	
twr	Write Recovery Time	0		0	1	ns	
tow	Data Valid to End-of-Write	20	_	40	_	ns	
tHZ	Output High-Z Time ⁽¹⁾	_	25	_	40	ns	
tон	Data Hold Time	0	_	0	_	ns	
twz	Write Enable to Output in High-Z ⁽¹⁾	_	25	_	40	ns	
tow	Output Active from End-of-Write ⁽¹⁾	0		0	_	ns	

NOTES:


689 thl 10h

- 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). This parameter is guaranteed by device characterization but is not production tested.
- 2. PLCC, TQFP and STQFP packages only.
- 3. For MASTER/SLAVE combination, two = tbaa + twp, since R/\overline{W} = VIL must occur after tbaa.
- 4. If \overline{OE} is LOW during a R/ \overline{W} controlled write cycle, the write pulse width must be the larger of twp or (twz + tbw) to allow the I/O drivers to turn off data to be placed on the bus for the required tbw. If \overline{OE} is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 5. 'X' in part numbers indicates power rating (SA or LA).

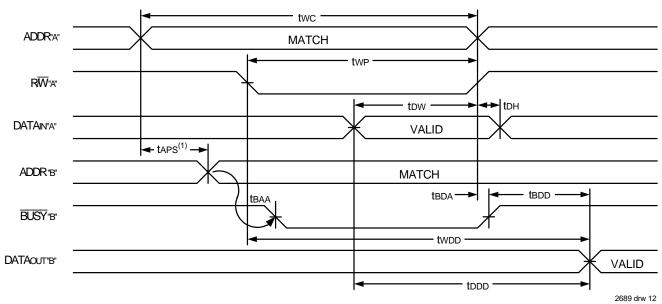
Timing Waveform of Write Cycle No. 1, (R/W Controlled Timing)(1,5,8)

Timing Waveform of Write Cycle No. 2, (**CE** Controlled Timing)^(1,5)

- 1. R/\overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of \overline{CE} = VIL and R/ \overline{W} = VIL.
- 3. two is measured from the earlier of $\overline{\text{CE}}$ or R/\overline{W} going HIGH to the end of the write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the $\overline{\text{CE}}$ LOW transition occurs simultaneously with or after the $\overline{\text{RW}}$ LOW transition, the outputs remain in the HIGH impedance state.
- 6. Timing depends on which enable signal ($\overline{\text{CE}}$ or R/\overline{W}) is asserted last.
- 7. This parameter is determined by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If \overrightarrow{OE} is LOW during a \overrightarrow{RNW} controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overrightarrow{OE} is HIGH during a \overrightarrow{RNW} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁷⁾

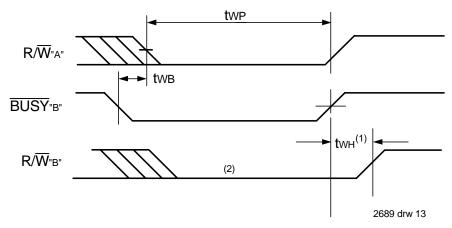
		7140)X20 ⁽¹⁾)X20 ⁽¹⁾ I Only	7140 Com	0X25 0X25 I, Ind litary	7140 Co	0X35 0X35 m'l litary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
BUSY TIMING	(For MASTER IDT 7130)							
t BAA	BUSY Access Time from Address		20		20		20	ns
t BDA	BUSY Disable Time from Address	_	20	-	20	_	20	ns
t BAC	BUSY Access Time from Chip Enable	_	20	-	20	_	20	ns
tBDC	BUSY Disable Time from Chip Enable	_	20	_	20	_	20	ns
twн	Write Hold After BUSY ⁽⁶⁾	12		15	_	20	_	ns
twdd	Write Pulse to Data Delay ⁽²⁾	_	40	_	50	_	60	ns
todd	Write Data Valid to Read Data Delay ⁽²⁾	_	30	_	35	_	35	ns
taps	Arbitration Priority Set-up Time ⁽³⁾	5	_	5	_	5	_	ns
tBDD	BUSY Disable to Valid Data ⁽⁴⁾		25	_	35		35	ns
BUSY INPUT	TIMING (For SLAVE IDT 7140)							
twB	Write to BUSY Input ⁽⁵⁾	0		0	_	0	-	ns
twn	Write Hold After BUSY ⁽⁶⁾	12		15	_	20	_	ns
twdd	Write Pulse to Data Delay ⁽²⁾		40		50		60	ns
todd	Write Data Valid to Read Data Delay ⁽²⁾		30		35		35	ns


2689 tbl 11a

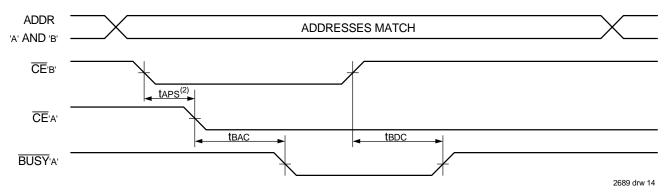
		7140 Com)X55)X55 I, Ind litary	7140 Com	7130X100 7140X100 Com'l, Ind & Military	
Symbol	Parameter	Min.	Max.	Min.	Мах.	Unit
BUSY TIMING	(For MASTER IDT 7130)					
tbaa	BUSY Access Time from Address]	_	30	_	50	ns
tBDA	BUSY Disable Time from Address		30		50	ns
t BAC	BUSY Access Time from Chip Enable	_	30	_	50	ns
tBDC	BUSY Disable Time from Chip Enable	_	30	_	50	ns
twн	Write Hold After BUSY ⁽⁶⁾	20	_	20	_	ns
twdd	Write Pulse to Data Delay ⁽²⁾	_	80	_	120	ns
todd	Write Data Valid to Read Data Delay ⁽²⁾	_	55	_	100	ns
taps	Arbitration Priority Set-up Time ⁽³⁾	5	_	5		ns
tBDD	BUSY Disable to Valid Data ⁽⁴⁾	_	55	_	65	ns
BUSY INPUT	IMING (For SLAVE IDT 7140)					
twB	Write to BUSY Input ⁽⁵⁾	0		0		ns
twн	Write Hold After BUSY ⁽⁶⁾	20		20		ns
twdd	Write Pulse to Data Delay ⁽²⁾	_	80	_	120	ns
todd	Write Data Valid to Read Data Delay ⁽²⁾	_	55		100	ns

NOTES: 2689 tol 11b

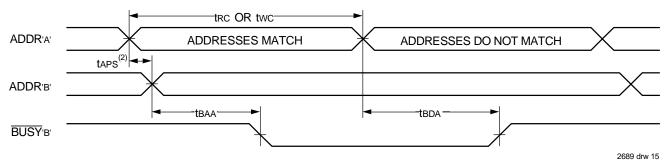
- 1. PLCC, TQFP and STQFP packages only.
- 2. Port-to-port delay through RAM cells from the writing port to the reading port, refer to "Timing Waveform of Write with Port -to-Port Read and BUSY."
- 3. To ensure that the earlier of the two ports wins.
- 4. tbdd is a calculated parameter and is the greater of 0, twdd twp (actual) or tddd tdw (actual).
- 5. To ensure that a write cycle is inhibited on port 'B' during contention on port 'A'.
- 6. To ensure that a write cycle is completed on port 'B' after contention on port 'A'.
- 7. 'X' in part numbers indicates power rating (S or L).


Timing Waveform of Write with Port-to-Port Read and **BUSY**(2,3,4)

NOTES


- 1. To ensure that the earlier of the two ports wins. tBDD is ignored for slave (IDT7140).
- 2. $\overline{CE}L = \overline{CE}R = VIL$
- 3. $\overline{OE} = V_{IL}$ for the reading port.
- 4. All timing is the same for the left and right ports. Port 'A' may be either the left or right port. Port "B" is opposite from port "A".

Timing Waveform of Write with **BUSY**(3)



- 1. twn must be met for both BUSY Input (IDT7140, slave) or Output (IDT7130 master).
- 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.
- 3. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is oppsite from port "A".

Timing Waveform of **BUSY** Arbitration Controlled by **CE** Timing⁽¹⁾

Timing Waveform by $\overline{\textbf{BUSY}}$ Arbitration Controlled by Address Match Timing⁽¹⁾

NOTES:

- 1. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 2. If taps is not satisified, the BUSY will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted (7130 only).

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽²⁾

		7140	X20 ⁽¹⁾ X20 ⁽¹⁾ I Only	7140 Com'	0X25 0X25 'I, Ind litary	7130 7140 Co & Mi		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRUPT T	IMING							
tas	Address Set-up Time	0	_	0	_	0	_	ns
twr	Write Recovery Time	0	_	0	-	0	_	ns
tins	Interrupt Set Time	_	20	_	25	_	25	ns
tinr	Interrupt Reset Time		20	_	25	_	25	ns

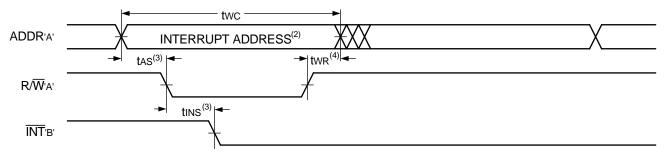
NOTES:

- 1. PLCC, TQFP and STQFP package only.
- 2. 'X' in part numbers indicates power rating (SA or LA).

2689 tbl 12a

AC Electrical characteristics Over the

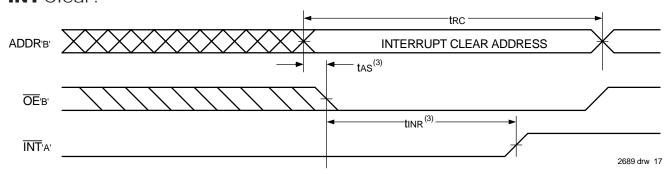
Operating Temperature and Supply Voltage Range⁽¹⁾


		7140 Com	OX55 OX55 I, Ind Iitary	7130X100 7140X100 Com'l, Ind & Military			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
INTERRUPT 1	TIMING						
tas	Address Set-up Time	0	_	0	_	ns	
twr	Write Recovery Time	0	_	0	_	ns	
tins	Interrupt Set Time	_	45	_	60	ns	
tinr	Interrupt Reset Time		45	_	60	ns	

NOTES:

1. 'X' in part numbers indicates power rating (SA or LA).

Timing Waveform of Interrupt Mode⁽¹⁾


INT Set:

2689 drw 16

2689 tbl 12b

INT Clear:

- 1. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 2. See Interrupt Truth Table II.
- 3. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 4. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is de-asserted first.

Truth Tables

Truth Table I — Non-Contention Read/Write Control⁽⁴⁾

	ln	puts ⁽¹⁾		
R/W	ΖĒ	Œ	D0-7	Function
X	Н	Х	Z	Port Disabled and in Power-Down Mode, ISB2 or ISB4
Х	Н	Х	Z	CER = CEL = VH, Power-Down Mode, Isb1 or Isb3
L	L	Х	DATAIN	Data on Port Written into Memory ⁽²⁾
Н	L	L	DATAout	Data in Memory Output on Port ⁽³⁾
Н	L	Н	Z	High Impedance Outputs

NOTES:

- 1. $A0L A10L \neq A0R A10R$.
- 2. If $\overline{\text{BUSY}} = L$, data is not written.
- 3. If BUSY = L, data may not be valid, see two and tood timing.
- 4. 'H' = VIH, 'L' = VIL, 'X' = DON'T CARE, 'Z' = HIGH IMPEDANCE

Truth Table II — Interrupt Flag^(1,4)

		Left Port			Right Port					
R/₩L	CEL	ŌE L	A9L-A0L	ĪNT∟	R/ W R	CE R	ŌĒ R	A9R-A0R	Ī NT R	Function
L	L	Х	3FF	Х	Х	Х	Х	Х	L ⁽²⁾	Set Right INTR Flag
Х	Χ	Х	Х	Х	Х	L	L	3FF	H ⁽³⁾	Reset Right INTR Flag
X	Х	Х	Х	L ⁽³⁾	L	L	Х	3FE	Х	Set Left INTL Flag
X	L	L	3FE	H ⁽²⁾	Х	Х	Х	Х	Х	Reset Left INTL Flag

NOTES:

2689 tbl 14

2689 tbl 13

- 1. Assumes $\overline{BUSY}L = \overline{BUSY}R = VIH$
- 2. If $\overline{BUSY}L = VIL$, then No Change.
- 3. If BUSYR = VIL, then No Change.
- 4. 'H' = HIGH,' L' = LOW,' X' = DON'T CARE

Truth Table III — Address **BUSY** Arbitration

	lnį	puts	Out	puts	
CEL	CE _R	Aol-A9l Aor-A9r	BUS YL(1)	BUSY _R (1)	Function
Х	Χ	NO MATCH	Н	Н	Normal
Н	Χ	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

- 2689 tbl 15
- Pins BUSYL and BUSYR are both outputs for IDT7130 (master). Both are inputs for IDT7140 (slave). BUSYx outputs on the IDT7130 are open drain, not push-pull outputs. On slaves the BUSYx input internally inhibits writes.
- 'L' if the inputs to the opposite port were stable prior to the address and enable inputs
 of this port. 'H' if the inputs to the opposite port became stable after the address and
 enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will
 result. BUSYL and BUSYR outputs can not be LOW simultaneously.
- Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.

Functional Description

The IDT7130/IDT7140 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7130/IDT7140 has an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls onchip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{\text{CE}}$ = ViH). When a port is enabled, access to the entire memory array is permitted.

Interrupts

If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag ($\overline{\text{INTL}}$) is asserted when the right port writes to memory location 3FE (HEX), where a write is defined as the $\overline{\text{CE}}_R = R/\overline{W}_R = \text{VIL}$ per Truth Table II. The left port clears the interrupt by accessing address location 3FE when $\overline{\text{CE}}_L = \overline{\text{OE}}_L = \text{VIL}$, R/\overline{W} is a "don't care". Likewise, the right port interrupt flag ($\overline{\text{INTR}}$) is asserted when the left port writes to memory location 3FF (HEX) and to clear the interrupt flag ($\overline{\text{INTR}}$), the right port must access the memory location 3FF. The message (8 bits) at 3FE or 3FF is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 3FE and 3FF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table II for the interrupt operation.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a BUSY indication, the write signal is gated internally to prevent the write from proceeding.

The use of \overline{BUSY} logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation. In slave mode the \overline{BUSY} pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the \overline{BUSY} pins HIGH. If desired, unintended write operations can be prevented to a port by tying the \overline{BUSY} pin for that port LOW.

The BUSY outputs on the IDT7130 RAM (Master) are open drain type outputs and require open drain resistors to operate. If these

RAMs are being expanded in depth, then the BUSY indication for the resulting array does not require the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an RAM array in width while using busy logic, one master part is used to decide which side of the RAM array will receive a busy indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the busy signal as a write inhibit signal. Thus on the IDT7130/IDT7140 RAMs the $\overline{\text{BUSY}}$ pin is an output if the part is Master (IDT7130), and the $\overline{\text{BUSY}}$ pin is an input if the part is a Slave (IDT7140) as shown in Figure 3.

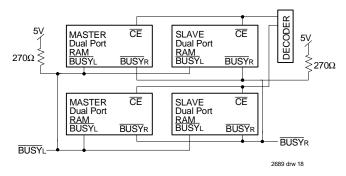
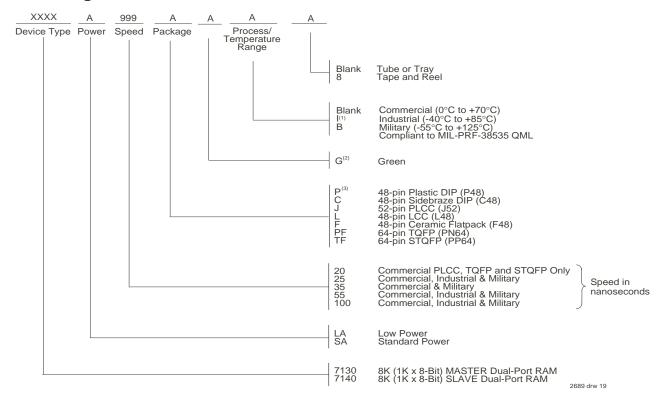



Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7130 (Master) and IDT7140 (Slave)RAMs.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating busy on one side of the array and another master indicating busy on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The $\overline{\text{BUSY}}$ arbitration, on a Master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a $\overline{\text{BUSY}}$ flag to be output from the master before the actual write pulse can be initiated with either the R/\overline{W} signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Ordering Information

NOTES

- 1. Contact your local sales office for industrial temp range for other speeds, packages and powers.
- Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02
- 3. For "P", plastic DIP, when ordering green package the suffix is "PDG".

Datasheet Document History

03/15/99:		Initiated datasheet document history
		Converted to new format
		Cosmetic and typographical corrections
	Pages 2 and 3	Added additional notes to pin configurations
06/08/99:		Changed drawing format
08/02/99:	Page 2	Corrected package number in note 3
09/29/99:	Page 2	Fixed pin 1 in DIP pin configuration
11/10/99:	Page 1 & 18	Replaced IDT logo
06/23/00:	Page 4	Increased storage temperature parameters
	-	Clarified TA parameter
	Page 5	DC Electrical parameters–changed wording from "open" to "disabled"
	Page 10	Changed ±500mV to 0mV in notes
01/08/02:	Page 1	Added Ceramic Flatpack to 48-pin package offerings
	Page 2 & 3	Added date revision to pin configurations
	Page 4, 5, 8, 10,	Removed industrial temp option footnote from all tables
	12,14 & 15	• •

Datasheet Document History (cont'd)

01/08/02:	Page 5, 8, 10, 12, & 14	Added industrial temp for 25ns to DC & AC Electrical Characteristics
	Page 5, 8, 10, 12, & 14	Removed industrial temp for 35ns to DC & AC Electrical Characteristics
	Page 18	Added industrial temp for 25ns and removed industrial temp for 35ns in ordering information
	-	Updated industrial temp option footnote
	Page 1 & 19	Replaced IDT тм logo with IDT ® logo
01/11/06:	Page 1	Added green availability to features
	Page 18	Added green indicator to ordering information
	Page 1 & 19	Replaced old IDT тм with new IDT тм logo
04/14/06:	Page 18	Added "PDG" footnote to the ordering information
10/21/08:	Page 18	Removed "IDT" from orderable part number
01/21/13:	Page 2	Added L48-1 package and F48-1 package pin configurations
	_	with corresponding foot notes
	Page 13, 18, 19 & 20	Typo/corrections
	Page 20	Added T & Reel indicator to ordering information
05/20/16:	Page 2	Split the F48 and L48 pin configuration, creating two separate pin configurations:
		F48 pin ceramic flat pack rotated 90 degrees counterclockwise, removed footnote 5 reference
		and L48 LCC rotated 90 degrees clockwise to reflect pin 1 orientation and added dot at pin 1,
		removed footnote 5 reference
	Page 3	P48 plastic DIP and C48 sidebrazed DIP, removed half moon and to reflect pin 1 orientation
		added dot at pin 1
	Page 4	J52 PLCC rotated 90 degrees clockwise to reflect pin 1 orientation added dot at pin 1, removed
		footnote 5 reference
	Page 5	PN64 TQFP and PP64 STQFP, chamfer removed, rotated 90 degrees counterclockwise to
		reflect pin 1 orientation and added dot at pin 1, removed footnote 5 reference
	Page 20	All incidences of -1, -2 have been removed from the datasheet
02/13/18:		Product Discontinuation Notice - PDN# SP-17-02
		Last time buy expires June 15, 2018

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/