November 2013

SGH40N60UF 600 V PT IGBT

General Description

Fairchild's UF series IGBTs provide low conduction and switching losses. UF series is designed for the applications such as general inverter and PFC where high speed switching is required feature.

Features

- High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 20 \text{ A}$
- High Input Impedance

Application

· General Inverter, PFC

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	$@ T_C = 25^{\circ}C$	40	А
IC	Collector Current	@ T _C = 100°C	20	А
I _{CM (1)}	Pulsed Collector Current		160	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	160	W
	Maximum Power Dissipation	@ T _C = 100°C	64	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.77	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V, } I_{C} = 250 \text{ uA}$	600			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA		0.6		V/°C
CES	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}$, $V_{CE} = 0 V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 20 \text{ mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_C = 20 \text{ A}, V_{GE} = 15 \text{ V}$		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	$I_C = 40 \text{ A}, V_{GE} = 15 \text{ V}$		2.6		V
Dynami	c Characteristics					
C _{ies}	Input Capacitance	V 99.V.V 9.V		1430		pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ $f = 1 \text{ MHz}$		170		pF
C _{res}	Reverse Transfer Capacitance			50		pF
Switchii	ng Characteristics Turn-On Delay Time			15		ns
r (OII)	Rise Time			30		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 20 \text{ A},$		65		
t _f	Fall Time				130	
•		$R_{G} = 10 \Omega$, $V_{GF} = 15 V$.			130 150	ns
Eon	Turn-On Switching Loss	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$		50 160		
E _{off}				50	150	ns ns
E _{off}	Turn-On Switching Loss			50 160	150	ns ns uJ
E _{off}	Turn-On Switching Loss Turn-Off Switching Loss			50 160 200	150	ns ns uJ uJ
E _{off} E _{ts}	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss			50 160 200 360	150 600	ns ns uJ uJ
E _{off} E _{ts} cd(on)	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time			50 160 200 360 30	150 600 	ns ns uJ uJ uJ ns
E _{off} E _{ts} t _{d(on)} t _r	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	Inductive Load, T _C = 25°C	 	50 160 200 360 30 37	150 600 	ns ns uJ uJ uJ ns
E _{off} E _{ts} d(on) cr d(off)	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	Inductive Load, $T_C = 25$ °C $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$	 	50 160 200 360 30 37 110	150 600 200	ns ns uJ uJ uJ ns ns
E _{off} E _{ts} td(on) tr td(off) tf	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	Inductive Load, $T_C = 25$ °C $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$	 	50 160 200 360 30 37 110 144	150 600 200	ns ns uJ uJ uJ ns ns ns
E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	Inductive Load, $T_C = 25$ °C $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$	 	50 160 200 360 30 37 110 144 310	150 600 200 250	ns ns uJ uJ ns ns ns us uJ uJ
E _{off} Ets td(on) tr td(off) tf Eon Eoff Ets	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$ Inductive Load, $T_C = 125^{\circ}C$	 	50 160 200 360 30 37 110 144 310 430	150 600 200 250 	ns ns uJ uJ ns ns ns ns ns uJ
Eon Eoff Ets td(on) tr td(off) tf Eon Eoff Eog Qg	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$ Inductive Load, $T_C = 125^{\circ}C$ $V_{CE} = 300 \text{ V, } I_C = 20 \text{ A,}$	 	50 160 200 360 30 37 110 144 310 430 740	150 600 200 250 1200	ns uJ uJ ns ns ns ns ns uL uJ
E _{off} Ets td(on) tr td(off) tt Eon Eoff Ets	Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge	Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V, } I_C = 20 \text{ A,}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V,}$ Inductive Load, $T_C = 125^{\circ}C$	 	50 160 200 360 30 37 110 144 310 430 740 97	150 600 200 250 1200 150	ns ns uJ uJ ns ns ns us uJ nc

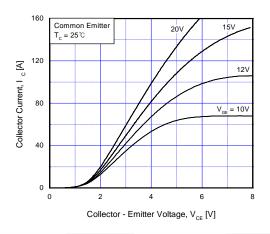
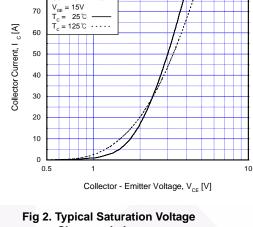



Fig 1. Typical Output Characteristics

80

Common Emitter

Characteristics

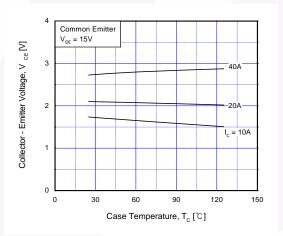


Fig 3. Saturation Voltage vs. Case **Temperature at Variant Current Level**

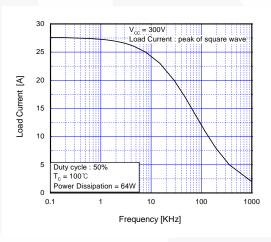


Fig 4. Load Current vs. Frequency

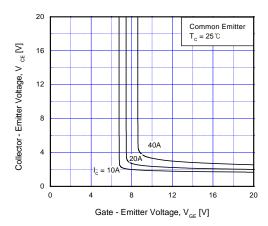


Fig 5. Saturation Voltage vs. V_{GE}

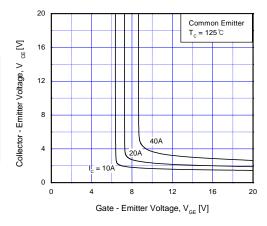


Fig 6. Saturation Voltage vs. V_{GE}

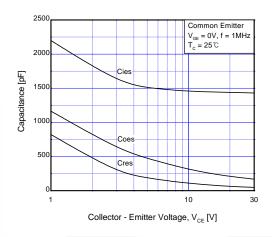


Fig 7. Capacitance Characteristics

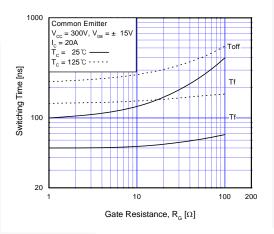


Fig 9. Turn-Off Characteristics vs.
Gate Resistance

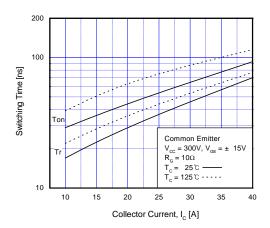


Fig 11. Turn-On Characteristics vs. Collector Current

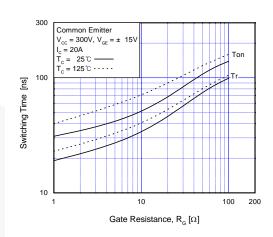


Fig 8. Turn-On Characteristics vs.
Gate Resistance

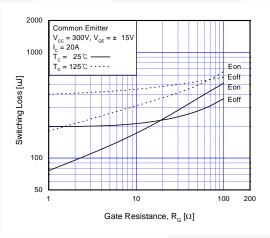


Fig 10. Switching Loss vs. Gate Resistance

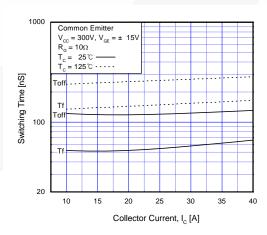


Fig 12. Turn-Off Characteristics vs. Collector Current

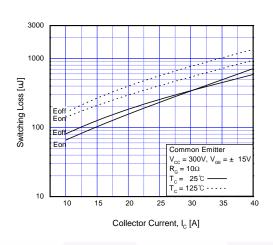


Fig 13. Switching Loss vs. Collector Current

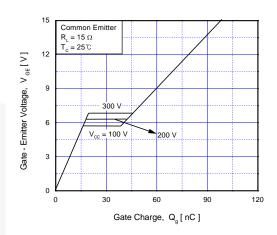


Fig 14. Gate Charge Characteristics

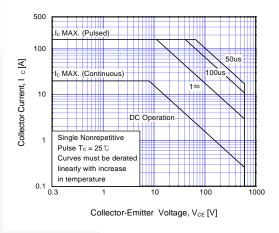


Fig 15. SOA Characteristics

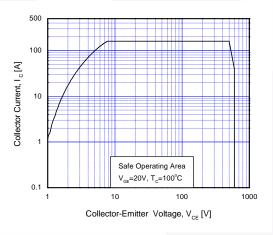


Fig 16. Turn-Off SOA Characteristics

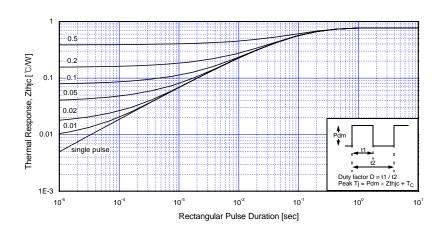


Fig 17. Transient Thermal Impedance of IGBT

Mechanical Dimensions

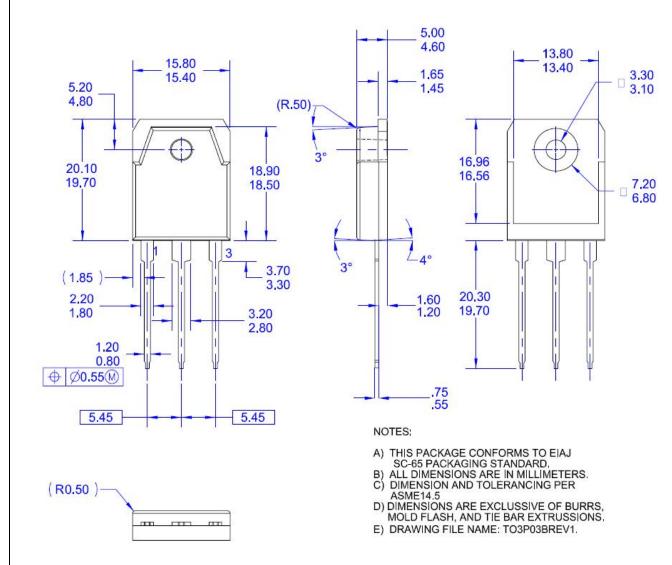


Figure 18. TO-3P 3L - 3LD, T03, PLASTIC, EIAJ SC-65

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TT3P0-003

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAF BitSiC™ Build it Now™ CorePLUS™ CorePOWER™

 $\begin{array}{c} CROSSVOLT^{\text{\tiny TM}} \\ CTL^{\text{\tiny TM}} \end{array}$ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ **ESBC™**

Fairchild[®] Fairchild Semiconductor®

FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ **FPS™**

F-PFSTM FRFET®

Global Power ResourceSM GreenBridge™

Green FPS™

Green FPS™ e-Series™

 $\mathsf{G} max^\mathsf{TM}$ $\mathsf{G} \mathsf{T} \mathsf{O}^\mathsf{TM}$ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

MegaBuck™ MICROCOUPLER™ MicroFET^T MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ OPTOLOGIC® OPTOPLANAR®

® PowerTrench® PowerXS™ Programmable Active Droop™

QFET®

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM ®' **TinyBoost** TinyBuck® TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC® Ultra FRFET™ UniFET™ **VCXTM** VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.