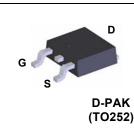
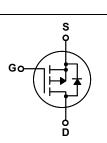


FQD3P50 P-Channel QFET[®] MOSFET - 500 V, - 2.1 A, 4.9 Ω

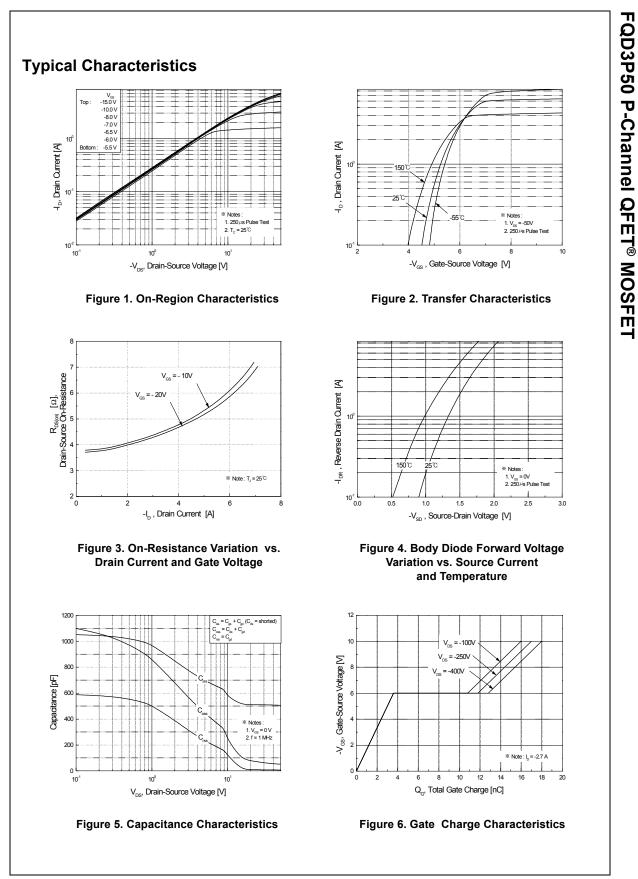

Description


This P-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

July 2013

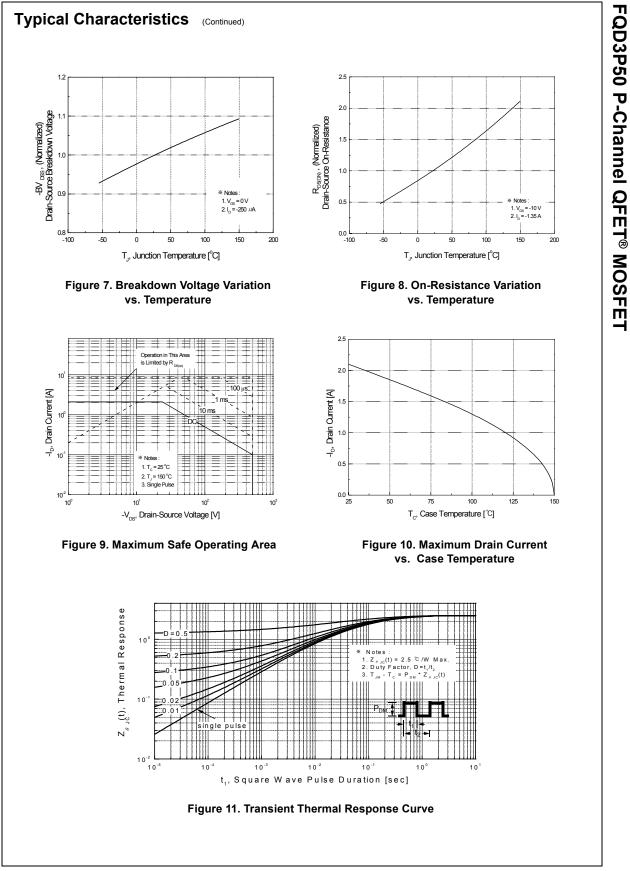
Features

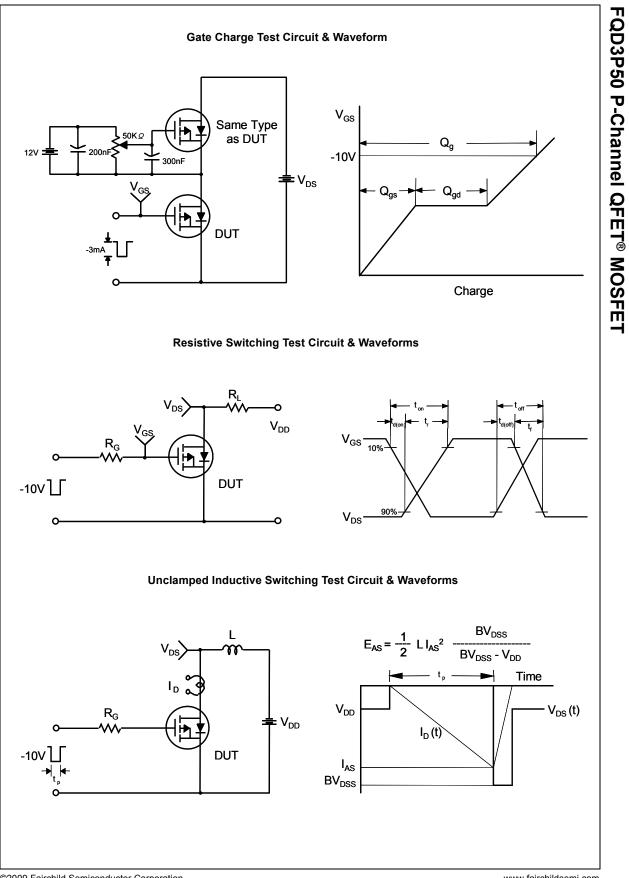
- + 2.1 A, 500 V, ${\sf R}_{\sf DS(on)}$ = 4.9 Ω (Max.) @ ${\sf V}_{\sf GS}$ = 10 V, ID = 1.05 A
- Low Gate Charge (Typ. 18 nC)
- Low Crss (Typ. 9.5 pF)
- 100% Avalanche Tested


Absolute Maximum Ratings T_c = 25°C unless otherwise noted

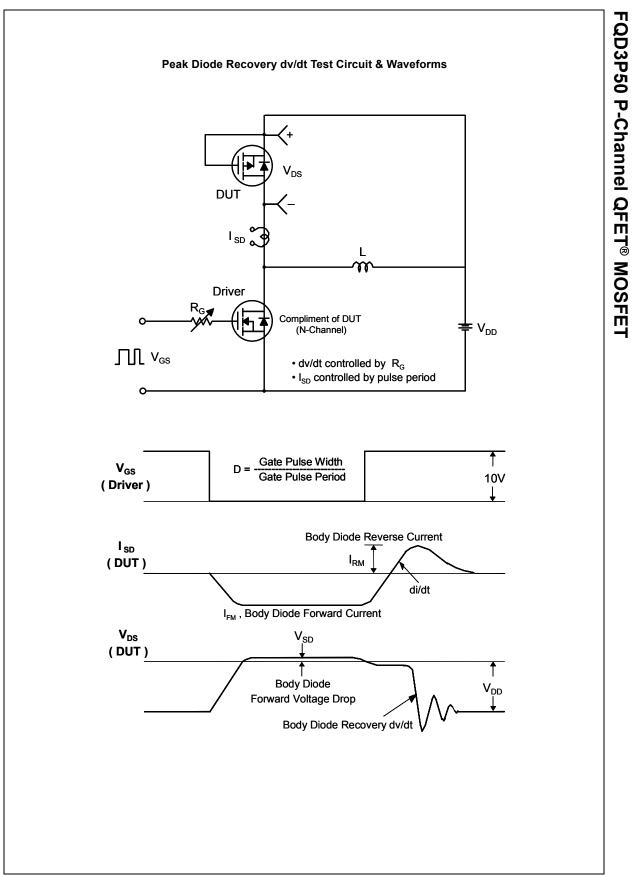
Symbol	Parameter		FQD3P50	Unit
V _{DSS}	Drain-Source Voltage		-500	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		-2.1	А
	- Continuous (T _C = 100°C)		-1.33	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.4	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	250	mJ
I _{AR}	Avalanche Current	(Note 1)	-2.1	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C)		50	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

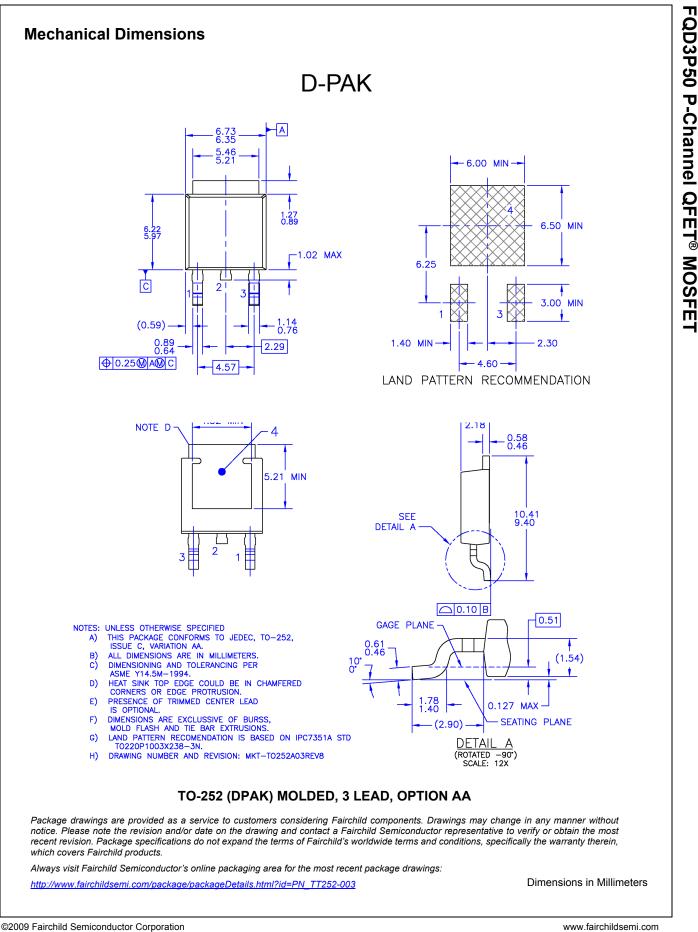
Thermal Characteristics


Symbol	Parameter	FQD3P50	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	2.5	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max. *	50	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	110	°C/W	


cteristics rain-Source Breakdown Voltage reakdown Voltage Temperature oefficient ero Gate Voltage Drain Current ate-Body Leakage Current, Forward ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source n-Resistance	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$ $I_{D} = -250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -500 \text{V}, \text{V}_{GS} = 0 \text{V}$ $V_{DS} = -400 \text{V}, \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{DS} = V_{GS}, \text{I}_{D} = -250 \mu\text{A}$	-500 	 0.42 	 -1 -10 -100 100	V V/°C μA μA nA
rain-Source Breakdown Voltage reakdown Voltage Temperature oefficient ero Gate Voltage Drain Current ate-Body Leakage Current, Forward ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -500 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -400 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$	 	0.42 	 -1 -10 -100	V/°C μA μA nA
oefficient ero Gate Voltage Drain Current ate-Body Leakage Current, Forward ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source	$V_{DS} = -500 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -400 \text{ V}, T_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			-10 -100	μA μA nA
ate-Body Leakage Current, Forward ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source	$V_{DS} = -400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$ $V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-10 -100	μA nA
ate-Body Leakage Current, Forward ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ate-Body Leakage Current, Reverse cteristics ate Threshold Voltage tatic Drain-Source	V _{GS} = 30 V, V _{DS} = 0 V				
cteristics ate Threshold Voltage tatic Drain-Source				100	nA
ate Threshold Voltage tatic Drain-Source	V _{DS} = V _{GS} , I _D = -250 μA				101
tatic Drain-Source	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$				
		-3.0		-5.0	V
	V _{GS} = -10 V, I _D = -1.05 A		3.9	4.9	Ω
orward Transconductance	V _{DS} = -50 V, I _D = -1.05 A		2.1		S
Characteristics					
			510	660	pF
			70	90	pF
• •			-		pF
urn-On Delay Time urn-On Rise Time	$V_{DD} = -250 \text{ V}, \text{ I}_{D} = -2.7 \text{ A},$		12 56	35 120	ns ns
urn-On Rise Time			56	120	ns
urn-Off Delay Time			35	80	ns
urn-Off Fall Time	(Note 4)		45	100	ns
otal Gate Charge	V _{DS} = -400 V, I _D = -2.7 A,		18	23	nC
ate-Source Charge	V _{GS} = -10 V		3.6		nC
ate-Drain Charge	(Note 4)		9.2		nC
urca Diada Charactoristics ar	nd Maximum Patings				
	•			-2.1	Α
aximum Pulsed Drain-Source Diode F	orward Current			-8.4	Α
rain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -2.1 A			-5.0	V
everse Recovery Time	V _{GS} = 0 V, I _S = -2.7 A,		270		ns
	urn-On Rise Time urn-Off Delay Time urn-Off Fall Time otal Gate Charge ate-Source Charge ate-Drain Charge rce Diode Characteristics ar aximum Continuous Drain-Source Dio	put Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ utput Capacitancef = 1.0 MHzeverse Transfer Capacitancef = 1.0 MHzCharacteristicsurn-On Delay Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ urn-On Rise Time $R_G = 25 \Omega$ urn-Off Delay Time $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ urn-Off Fall Time $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ utal Gate Charge $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ utal Gate Charge $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ utal Gate Charge $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ utal David Observe $V_{DS} = -10 \text{ V}$	put Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHzutput Capacitancef = 1.0 MHzcharacteristicsurn-On Delay Timeurn-On Rise Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ urn-Off Delay Time $V_{DS} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ urn-Off Fall Time $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ urn-Off Fall Time $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ tal Gate Charge $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ $V_{GS} = -10 \text{ V}$ trace Diode Characteristics and Maximum Ratingsaximum Continuous Drain-Source Diode Forward Current	put Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz510utput Capacitancef = 1.0 MHz70everse Transfer Capacitance9.5Characteristicsurn-On Delay Time $V_{DD} = -250 \text{ V}, I_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ 12urn-Off Delay Time $V_{DS} = -250 \text{ V}, I_D = -2.7 \text{ A},$ $R_G = 25 \Omega$ 12urn-Off Fall Time $(Note 4)$ 45utal Gate Charge $V_{DS} = -400 \text{ V}, I_D = -2.7 \text{ A},$ $M_{GS} = -10 \text{ V}$ 18ute-Drain Charge $V_{GS} = -10 \text{ V}$ 3.6ate-Drain Charge $(Note 4)$ 9.2rce Diode Characteristics and Maximum Ratingsaximum Continuous Drain-Source Diode Forward Current	put Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 510 660 utput Capacitance f = 1.0 MHz 70 90 everse Transfer Capacitance f = 1.0 MHz 9.5 12 Characteristics urn-On Delay Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 12 35 urn-On Rise Time $V_{DD} = -250 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 56 120 urn-Off Delay Time $V_{CS} = 25 \Omega$ (Note 4) 45 100 urn-Off Fall Time $V_{DS} = -400 \text{ V}, \text{ I}_D = -2.7 \text{ A},$ 18 23 ate-Source Charge $V_{GS} = -10 \text{ V}$ 18 23 ate-Source Charge $V_{GS} = -10 \text{ V}$ 9.2 rce Diode Characteristics and Maximum Ratings -2.1

©2009 Fairchild Semiconductor Corporation FQD3P50 Rev. C1


www.fairchildsemi.com



©2009 Fairchild Semiconductor Corporation FQD3P50 Rev. C1

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED**® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2[™] MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC**®

FPS™

()_® PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SupreMOS[®] SyncFET™

SYSTEM^{®'} TinyBoost[⊤] TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	