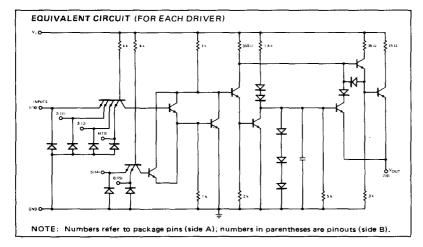
8T13

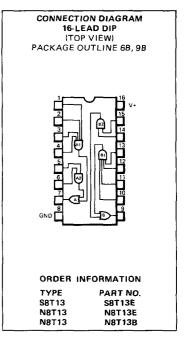
DUAL SINGLE-ENDED LINE DRIVER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The 8T13 Dual Line Driver is designed for driving 50Ω to 500Ω coaxial cable, strip line, or twisted pair transmission lines. All inputs are TTL or DTL compatible and the emitter-follower outputs enable two or more drivers to operate on the same line in party line applications.

For a dual line driver to meet the IBM System/360 I/O Interface Specification, see 8T23 data sheet.


- . HIGH OUTPUT DRIVE CAPABILITY
- HIGH SPEED
- . INPUT CLAMP DIODES
- SINGLE 5 V SUPPLY OPERATION
- SHORT CIRCUIT PROTECTED


ABSOLUTE MAXIMUM RATINGS

Input Voltage (Note 1)
Output Voltage (Note 1)
Supply Voltage (Note 1)
Storage Temperature Range
Hermetic DIP (S8T13E, N8T13E)
Molded DIP (N8T13B)
Operating Temperature Range
Military (S8T13)
Commercial (N8T13)
Lead Temperatures
Hermetic DIP (Soldering, 60 seconds)
Molded DIP (Soldering, 10 seconds)
Internal Power Dissipation (Note 2)

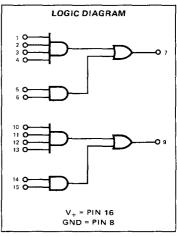
NOTES:

- 1. Voltages are with respect to the ground pin (pin 8).
- 2. Rating applies to ambient temperatures up to 75° C. Above 75° C derate linearly at 8.3 mW/° C.

+5.5 V +7.0 V

+7.0 V

~65°C to +150°C ~55°C to +125°C


~55°C to +125°C

0°C to +75°C

300° C

260° C

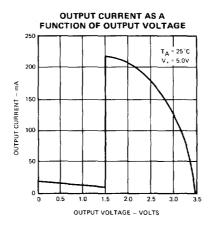
730 mW

FAIRCHILD LINEAR INTEGRATED CIRCUIT • 8T13

ELECTRICAL CHARACTERISTICS FOR S8T13 ($V_{+} = 5.0 \text{ V } \pm 5\%$, $T_{A} = -55^{\circ}\text{C}$ to +125°C (Note 3))

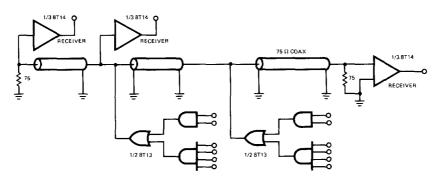
PARAMETER	TEST CONDITIONS]]
	AND GATE NO. 1		INPUTS		1	LIMITS			
	INPUT UNDER TEST	OTHER INPUTS	OF NO. 2 AND GATE	OUTPUTS	NOTES	MIN.	TYP.	MAX.	UNITS
Output HIGH Voltage	2.0 V	2.0 V	0.8 V	-75 mA	9	2.4			V
Output HIGH Leakage Current	0 V	0 V	0 V	3.0 V	10			500	μΑ
Output LOW Leakage Current	0.8 V	4.5 V	0 V	0.4 V				-800	μΑ
Input LOW Current	0.4 V	4.5 V				-0.1		-1.6	mA
Input HIGH Current	4.5 V	0 V		T				40	μА

ELECTRICAL CHARACTERISTICS FOR S8T13 AND N8T13 (V+ = 5.0 V, TA = 25°C.)

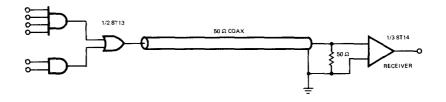

PARAMETER	TEST CONDITIONS								
	AND GATE NO. 1		INPUTS		1	LIMITS			
	INPUT UNDER TEST	OTHER INPUTS	OF NO. 2 AND GATE	OUTPUTS	NOTES	MIN.	TYP.	MAX.	UNITS
Turn On Delay, tpHH					11, 15			20	ns
		Ì			12, 15		32		ns
Turn Off Delay, tpLL				<u></u>	11, 15			20	ns
	l				12, 15		22		пs
Power/Current Consumption:									
Output LOW	0.8 V	0.8 V	0.8 V	ĺ	14, 17		-	315/60	mW/mA
Output HIGH	2.0 V	2.0 V	2.0 V		14, 17			150/28	mW/mA
Input Latch Voltage	10 mA	0 V	0 V		13	5.5			V
Output HIGH Current	4.5 V	4.5 V	0 V	2.0 V	16	-100		-250	mA
Output Short Circuit	4.5 V	4.5 V	0 V	0 V	16			-30	mA
Input Clamp Diode Voltage	-12 mA							-1.5	V

NOTES:

- 3. Specifications apply $V_{+} = 5.0 \text{ V } \pm 5\%$ and 0°C to 75°C for N8T13.
- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- 5. All measurements are taken with ground pin tied to zero volts.
- 6. Positive current is defined as into the terminal referenced.
- 7. Positive logic definition: "UP" Level = HIGH, "DOWN" Level = LOW.
- 8. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- 9. Output source current is supplied through a resistor to ground.
- 10. With forced output voltage of 3 V no more than 500 μ A will enter the driver when output is in LOW state. $V_{+}=0$ V.
- 11. R_L = 37Ω to ground.
- 12. Load is 37 Ω in parallel with 1000 pF.
- This test guarantees operation free of input latch-up over the specified operating supply voltage range.
- 14. I_{CC} is dependent upon loading. I_{CC} limit specified is for no-load test condition. 15. Reference ac Test Figure and Pulse Requirements.
- 16. Reference "Typical Output Current as a function of Output Voltage Curve."
 17. V₊ = 5.25 V. Power Consumption specified for both drivers in package.


AC TEST CIRCUIT VOLTAGE WAVEFORMS OUTPUT O 30 V PULSE GENERATOR INPUT PULSE: OUTPUT . Amplitude = 3.0 V tpW = 40 ns (50% Duty Cycle) $t_r = t_f \le 5 \text{ ns} (10\% \text{ and } 90\% \text{ measurement points})$

TYPICAL PERFORMANCE CURVE FOR S8T13 AND N8T13


TYPICAL APPLICATIONS

75 Ω PARTY LINE (2 DRIVERS, 3 RECEIVERS)

Note: For party line operation, termination of each physical end of the line is recommended.

SIMPLEX OPERATION (1 DRIVER)

Note: For simplex operation, the line should be terminated only at the distant receiver site.