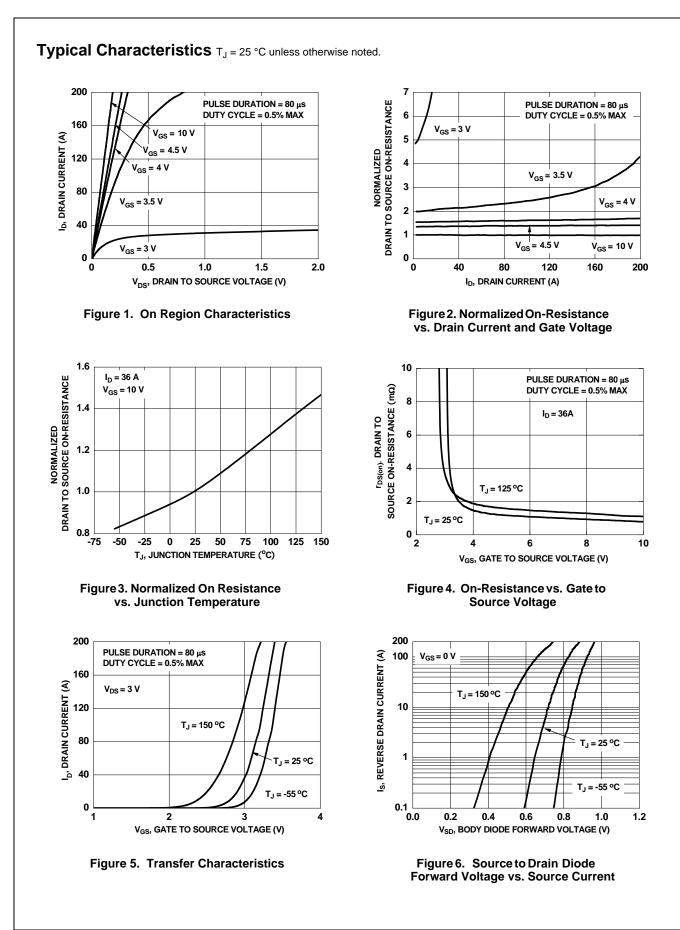


MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

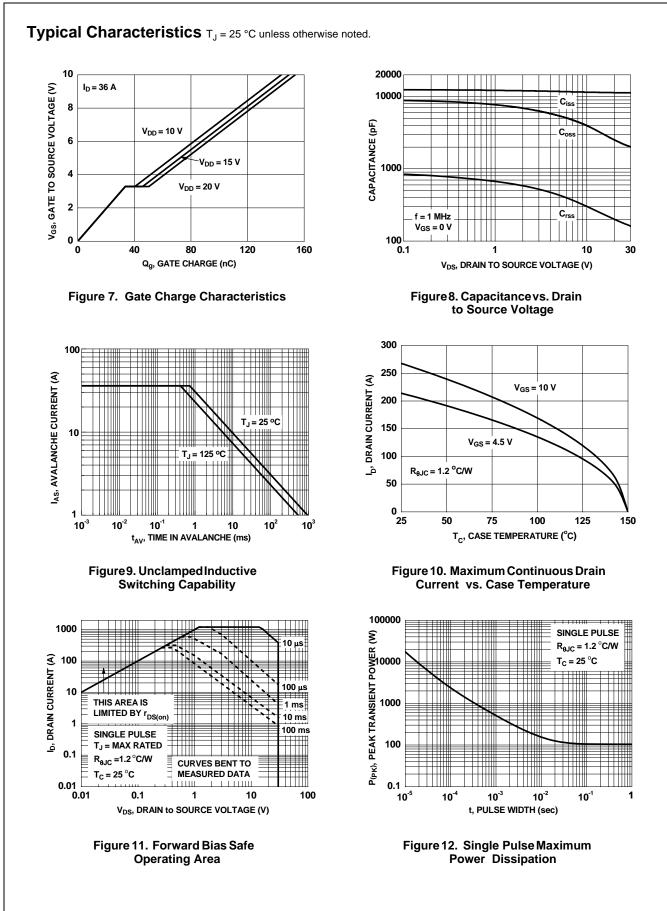
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
I _D	Drain Current -Continuous	T _C = 25 °C	(Note 5)	267	A	
	-Continuous	T _C = 100 °C	(Note 5)	169		
	-Continuous	T _A = 25 °C	(Note 1a)	36		
	-Pulsed		(Note 6)	1210		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	544	mJ	
P _D	Power Dissipation	T _C = 25 °C		104		
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5		
T _J , T _{STG}	Operating and Storage Junction Temper	ature Range		-55 to +150	°C	

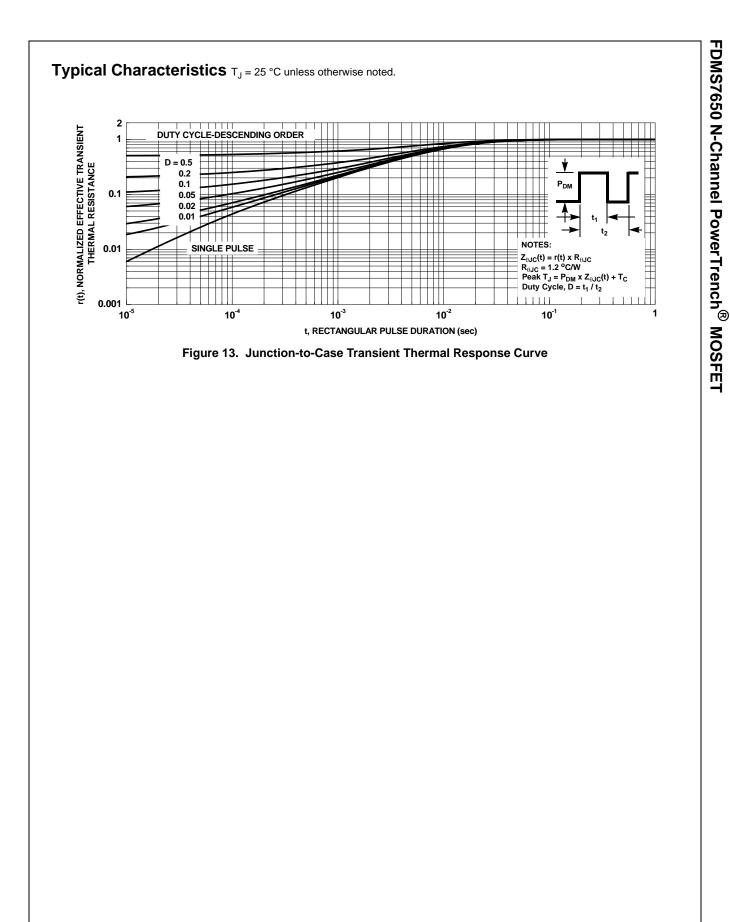
Thermal Characteristics

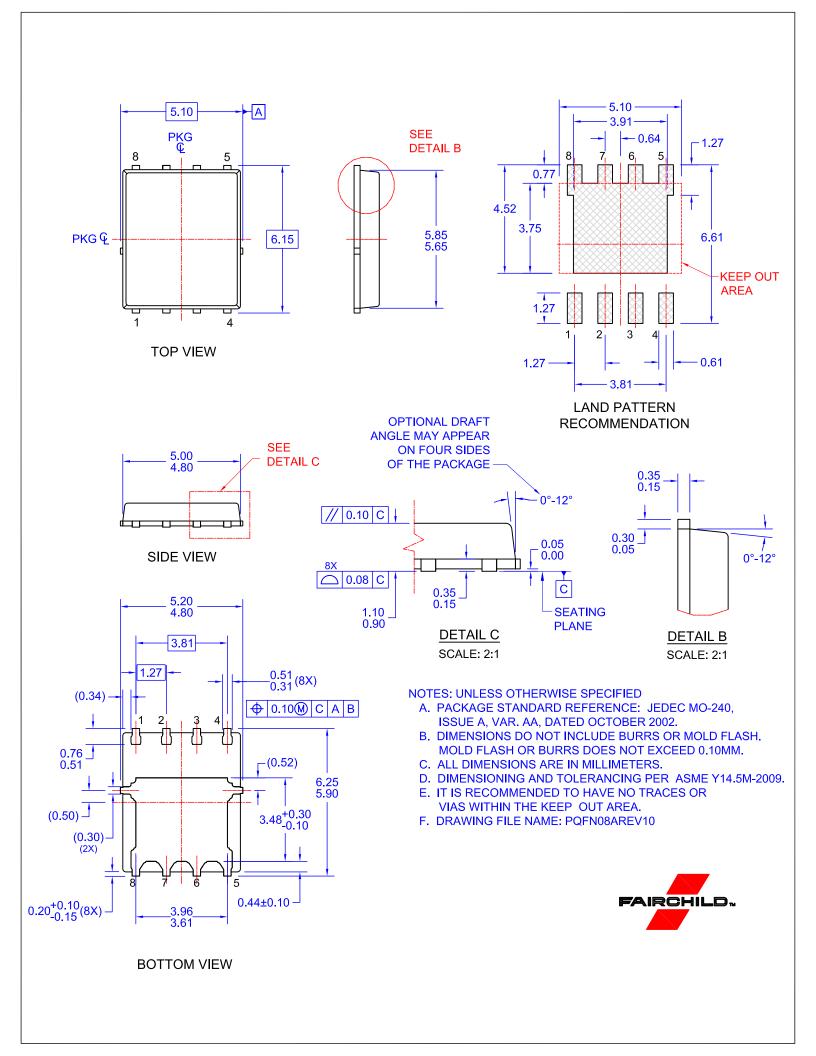
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.2	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	C/W

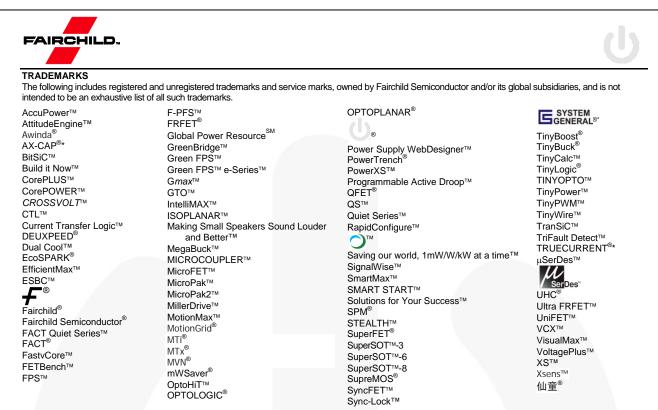

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7650	FDMS7650	Power 56	13 "	12 mm	3000 units


ics o Source Breakdown Voltage own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current cs Source Threshold Voltage Source Threshold Voltage ature Coefficient orain to Source On Resistance d Transconductance	$\begin{split} & I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} \\ & I_D = 250 \; \mu \text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ & V_{DS} = 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ & V_{GS} = 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ & V_{GS} = V_{DS}, \; I_D = 250 \; \mu \text{A} \\ & I_D = 250 \; \mu \text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ & V_{GS} = 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ & V_{GS} = 4.5 \; \text{V}, \; I_D = 32 \; \text{A} \\ & V_{GS} = 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ & V_{DS} = 5 \; \text{V}, \; I_D = 36 \; \text{A} \\ \end{split}$	30	15 1.9 -6 0.8 1.1 1.1	1 100 3 0.99 1.55	V mV/°C μA nA V mV/°C
b Source Breakdown Voltage own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Drain to Source On Resistance d Transconductance	$\begin{split} I_D &= 250 \; \mu\text{A}, \text{ referenced to } 25 \; ^\circ\text{C} \\ V_{DS} &= 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ V_{GS} &= 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ \end{split} \\ \hline \\ V_{GS} &= V_{DS}, \; I_D = 250 \; \mu\text{A} \\ I_D &= 250 \; \mu\text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 32 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ \end{split}$		1.9 -6 0.8 1.1	100 3 0.99	mV/°C μA nA V
own Voltage Temperature ent ate Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage ature Coefficient Drain to Source On Resistance d Transconductance	$\begin{split} I_D &= 250 \; \mu\text{A}, \text{ referenced to } 25 \; ^\circ\text{C} \\ V_{DS} &= 24 \; \text{V}, \; V_{GS} = 0 \; \text{V} \\ V_{GS} &= 20 \; \text{V}, \; V_{DS} = 0 \; \text{V} \\ \end{split} \\ \hline \\ V_{GS} &= V_{DS}, \; I_D = 250 \; \mu\text{A} \\ I_D &= 250 \; \mu\text{A}, \; \text{referenced to } 25 \; ^\circ\text{C} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 32 \; \text{A} \\ \hline \\ V_{GS} &= 10 \; \text{V}, \; I_D = 36 \; \text{A}, \; T_J = 125 \; ^\circ\text{C} \\ \end{split}$	1	1.9 -6 0.8 1.1	100 3 0.99	μA nA V
Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 36 \text{A}$ $V_{GS} = 4.5 V, I_D = 32 \text{A}$ $V_{GS} = 10 V, I_D = 36 \text{A}, T_J = 125 ^\circ\text{C}$	1	-6 0.8 1.1	100 3 0.99	nA V
Source Leakage Current CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}, \text{ referenced to } 25 ^\circ\text{C}$ $V_{GS} = 10 V, I_D = 36 \text{A}$ $V_{GS} = 4.5 V, I_D = 32 \text{A}$ $V_{GS} = 10 V, I_D = 36 \text{A}, T_J = 125 ^\circ\text{C}$	1	-6 0.8 1.1	3	V
CS Source Threshold Voltage Source Threshold Voltage rature Coefficient Drain to Source On Resistance	$V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A}$ $I_D = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_D = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_D = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_D = 36 \ \text{A}, T_J = 125 \ ^{\circ}\text{C}$	1	-6 0.8 1.1	0.99	
Source Threshold Voltage Source Threshold Voltage rature Coefficient Orain to Source On Resistance d Transconductance	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_{D} = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$	1	-6 0.8 1.1	0.99	
Source Threshold Voltage ature Coefficient Drain to Source On Resistance	$I_{D} = 250 \ \mu\text{A}, \text{ referenced to } 25 \ ^{\circ}\text{C}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}$ $V_{GS} = 4.5 \ V, I_{D} = 32 \ \text{A}$ $V_{GS} = 10 \ V, I_{D} = 36 \ \text{A}, T_{J} = 125 \ ^{\circ}\text{C}$		-6 0.8 1.1	0.99	
ature Coefficient	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 36 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 32 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 36 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$		0.8 1.1		mV/°C
Prain to Source On Resistance	V_{GS} = 4.5 V, I _D = 32 A V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C		1.1		
d Transconductance	V_{GS} = 4.5 V, I _D = 32 A V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C			1.55	
	V_{GS} = 10 V, I _D = 36 A, T _J = 125 °C		1.1		mΩ
				1.7	
teristics			267		S
lensucs			4		
apacitance			11250	14965	pF
	V _{DS} = 15 V, V _{GS} = 0 V,		3050	4055	
Capacitance	f = 1 MHz				pF
•			-		pF Ω
			1.4	5	32
			· · · · · · · · · · · · · · · · · · ·		
n Delay Time	_		28	45	ns
	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 36 \text{ A},$		24		ns
ff Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		83		ns
			21	34	ns
ate Charge			149	209	nC
•	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		63	88	nC
-	I _D = 36 A		34		nC
Drain "Miller" Charge			13		nC
ode Characteristics					
	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	
to Drain Diode Forward Voltage	$\label{eq:VGS} \begin{array}{ c c c c c } \hline V_{GS} = 0 \ V, \ I_S = 2.1 \ A & (Note \ 2) \\ \hline V_{GS} = 0 \ V, \ I_S = 36 \ A & (Note \ 2) \\ \hline \end{array}$		0.7	1.2 1.3	V
					V
	e Transfer Capacitance esistance acteristics n Delay Time me ff Delay Time ne ate Charge ate Charge o Source Charge o Drain "Miller" Charge	termVacteristicsmeVMathematical display TimeVMathematical display Time	Transfer Capacitance Vertice esistance acteristics acteristics $V_{DD} = 15 \text{ V}, I_D = 36 \text{ A},$ me $V_{DD} = 15 \text{ V}, I_D = 36 \text{ A},$ ff Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ ne ate Charge ate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ o Source Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$	the Transfer Capacitance240desistance1.4acteristicsn Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 36 \text{ A},$ me $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 28ff Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 83ne2121ate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 149ate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ 63o Source Charge $I_D = 36 \text{ A}$ 34	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


00000


- Pulse Test: Pulse Width < 300 ms, Duty cycle < 2.0%.
 Starting T_J = 25 °C, L = 1 mH, I_{AS} = 33 A, V_{DD} = 27 V, V_{GS} = 10 V.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.
 Pulsed Id please refer to Fig 11 SOA graph for more details.



* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177