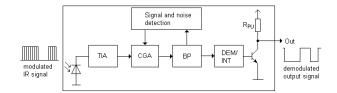


DATASHEET


Infrared Receiver Module IRM-H9XXM3/TR2 Series

Pin Configuration

- 1. GND
- 2. GND
- 3. OUT
- 4. Vcc

Block Diagram

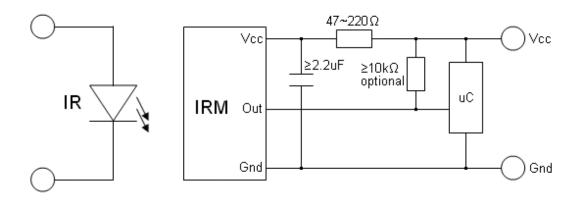
Features

- · High protection ability against EMI
- · Available for various carrier frequencies
- min burst length (36/38 kHz): 8 cycles
- · min burst length (56 kHz): 10 cycles
- min gap length (36/38 kHz): 12 cycles
- · min gap length (56 kHz): 14 cycles
- · Low operating voltage and low power consumption
- · High immunity against ambient light
- · Optimized immunity against TFT backlight interferences
- · Long reception range
- · High sensitivity
- · Pb free and RoHS compliant
- · Compliance with EU REACH

Descriptions

The device is miniature SMD type infrared receiver that has been developed and designed by utilizing the latest IC technology.

The PIN diode and preamplifier are assembled onto a lead frame and molded into a black epoxy package which operates as an IR filter.


The demodulated output signal can directly be decoded by a microprocessor

Applications

- · AV instruments such as Audio, TV, VCR, CD, MD, etc
- Toy applications
- · CATV set top boxes
- Multi-media Equipment
- · Other devices using IR remote control

Application Circuit

RC Filter should be connected closely between Vcc pin and GND pin.

Parts Table

Model No.	Carrier Frequency	
IRM-H936M3/TR2	36 kHz	
IRM-H938M3/TR2	38 kHz	

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage	V_{cc}	6	V
Operating Temperature	T_{opr}	-20 ~ +80	$^{\circ}$ C
Storage Temperature	T _{stg}	-40 ~ +85	$^{\circ}$ C
Soldering Temperature *1	T _{sol}	260	$^{\circ}$ C

^{*1} Soldering time ≤ 5 seconds

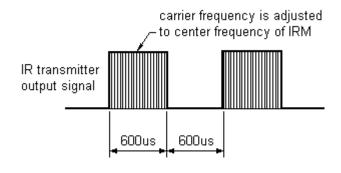
Electro-Optical Characteristics (T_a=25°C, V_{cc}=3V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition	
Current consumption	Icc		0.4	0.6	mA	No input signal	
Supply voltage	V _{CC}	2.7	-	5.5	V		
Peak wavelength	λ_{p}		940		nm		
Reception range	L ₀	8					
	L ₄₅	5			m		
Half angle(horizontal)	ϕ_{h}		±45		deg	See chapter ,Test method *2	
Half angle(vertical)	φν		±45		deg	-	
High level pulse width	T _H	450		750	μs	Test signal according to	
Low level pulse width	T _L	450		750	μs	figure 1 *3	
High level output voltage	V_{OH}	Vcc-0.4			V	I _{SOURCE} ≦1μA	
Low level output voltage	V_{OL}		0.2	0.5	V	I _{SINK} ≦2mA	

The ray receiving surface at a vertex and relation to the ray axis in the range of θ =0° and θ =45°. A range from 30cm to the arrival distance. Average value of 50 pulses.

Test Method

The specified electro-optical characteristic is satisfied under the following Conditions:


- 1. Measurement environment
 - A place without extreme light reflected
- 2. External light
 - Ordinary white fluorescent lamps (Light source temperature 2856°K, Ee ≤10Lux) without high frequency modulation
- 3. Standard transmitter

The test transmitter is calibrated by using the circuit shown in figure 2. The radiation intensity of the transmitter is adjusted until **Vo=400mVp-p.** Both, the test transmitter and the photo diode, have a peak wavelength of 940nm. The photo diode for calibration is PD438B (λp=940nm, Vr=5V).

4. Measuring system According to the measuring system shown in Fig.-3

Fig.-1 Transmitter Wave Form

D.U.T output Pulse

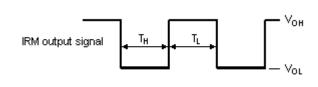


Fig.-2 Measuring Method

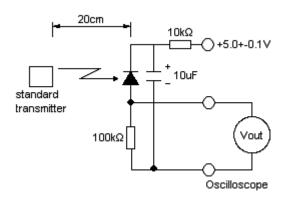
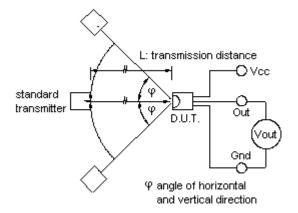



Fig.-3 Measuring System

Typical Performance Curves

Fig.4 Relative Responsibility vs. Wavelength

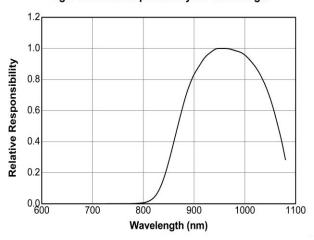
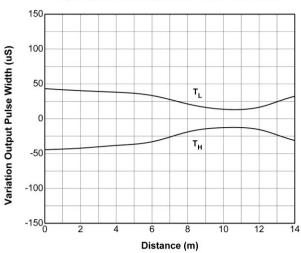



Fig.6 Variation Output Pulse Width vs. Distance

0

Angle θ (deg)

20

40

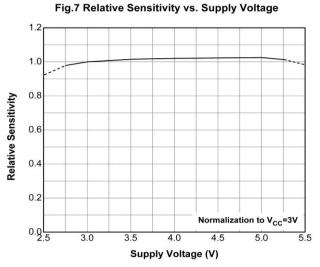
-20

Fig.-5 Relative Transmission Distance vs. Direction

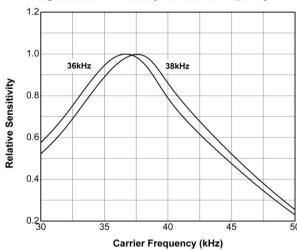
100

90

80

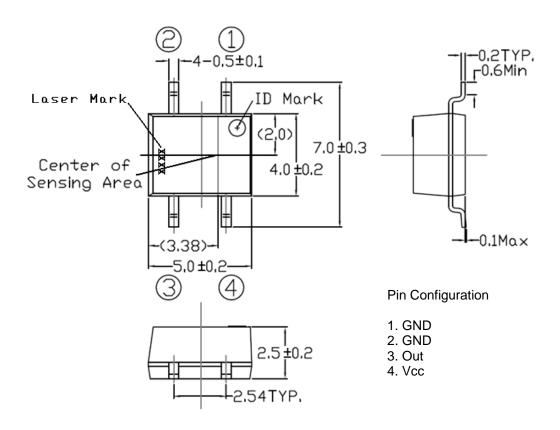

70

60

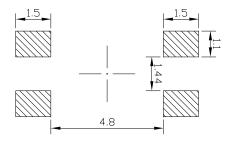

50 L -60

-40

Relative Transmission Distance (%)



Package Dimenstions


(Dimensions in mm)

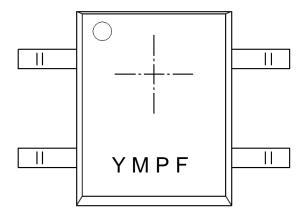
Note: Tolerances unless otherwise mentioned ±0.5mm.

Recommend soldering patterns

The following soldering patterns are recommended for reflow-soldering

Notice: Suggested pad dimension is just for reference only.

Please modify the pad dimension based on individual need.



Code information

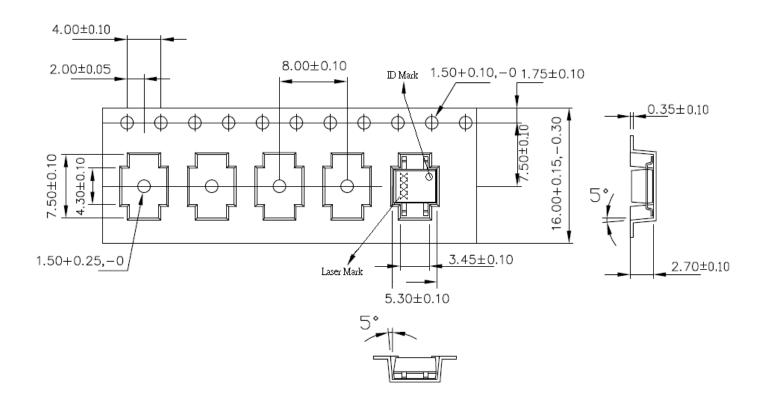
Protocol	Suitable	Protocol	Suitable
JVC	Yes	Sharp	Yes
Matsushita	Yes	Sony 12 bit ²⁾	Yes
Mitsubishi	No	Sony 15 bit	No
NEC	Yes	Sony 20 bit	No
RC5	Yes	Toshiba	Yes
RC6 ¹⁾	Yes	Continuous Code	No
RCA	No		

¹⁾ Best choice depends on RC6 mode. If data low time is below 22ms, M2 is the best choice, otherwise M3.

Device Marking

Notes

Y denotes Years code

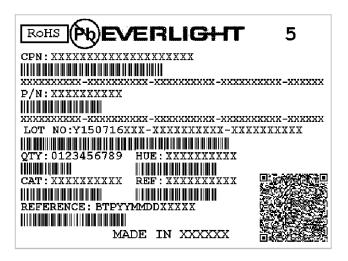

M denotes Month code

P denotes Device number

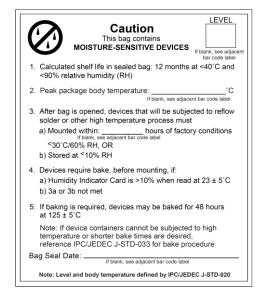
F denotes Carrier frequency

²⁾ If only Sony 12 bit version is used, M3 is recommended otherwise M2 is the best choice.

Tape & Reel Packing Specifications


Packing Quantity

2000 pcs / Reel


5 Reels / Carton

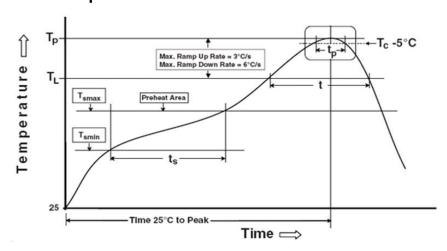
Label format

Moisture Classification-storage and used condition label

Notes: These labels are only the examples and please be according to the actual shipping labels.

Recommended method of storage

The following are general recommendations for moisture sensitive level (MSL) 4 storage and use:


- Shelf life in sealed bag from the bag seal date: 12 months at < 40 °C and < 90% relative humidity (RH)
- 2. After bag is opened, devices that will be subjected to reflow solder or other high temperature process must mounted within 72 hours of factory conditions < 30 °C/60%RH.
- If the moisture absorbent material (silica gel) has faded away or the IRM has exceeded the storage time. Baking treatment is required, refer to IPC/JEDEC J-STD-033 for bake procedure or recommend the conditions: 60±5°C for 96 hours.

ESD Precaution

Proper storage and hand procedures should be followed to prevent ESD damage to the devices especially when they are removed from the Anti-static bag. Electro-Static Sensitive Devices warning labels are on the packing.

Solder Reflow Temperature Profile

Note: Reference: IPC/JEDEC J-STD-020D

3 °C/second max

Preheat

Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time (T_{smin} to T_{smax}) (t_s)	60-120 seconds

Other

Average ramp-up rate (T_{smax} to T_p)

Liquidus Temperature (T _L)	217°C
Time above Liquidus Temperature (t $_{\rm L}$)	60-100sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T _P - 5°C	30 s

Ramp- Down Rate from Peak Temperature 6°C /second max.

Time 25°C to peak temperature 8 minutes max.

Reflow times 2 times

Note:

- 1. Suggest that reflow soldering should not be done more than two times.
- 2. When soldering, do not put stress on the IRM device during heating.
- 3. After soldering, do not warp the circuit board.

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.