

DATASHEET

SMD • B EAST0808RGBA0

Features

- Package in 8mm tape on 7" diameter reel
- Compatible with automatic placement equipment
- Compatible with infrared and vapor phase reflow
- Solder process
- Full-color type
- Pb-free
- Component solderable surface finish is Gold
- Component weight is 1.0 mg
- RoHS compliant

Description

- The SMD LED is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
- Moreover, with its black PCB, the possess an ideal solution for high-contract and high-resolution indoor signage display.

Applications

- Indoor signage display applications
- Indoor decorating and entertainment design
- Flat backlight for LCD, switch and symbol
- Indicator and backlighting for all consumer electronics

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
AlGaInP	Brilliant Red	
InGaN	Brilliant Green	Water Clear
InGaN	Brilliant Blue	

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Reverse Voltage	V _R	5	V
Forward Current	l _F	R6:10 GA:10 BD:10	mA
Peak Forward Current (Duty 1/10 @1KHz)	I _{FP}	R6:20 GA:20 BD:20	mA
Power Dissipation	Pd	R6:24 GA:35 BD:35	mW
Junction Temperature	T_j	100	$^{\circ}$
Operating Temperature	T_{opr}	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-40 ~ +90	$^{\circ}\mathbb{C}$
ESD (Classification acc. AEC Q101)	ESD _{HBM}	R:150 G:150 B:150	V
Soldering Temperature	T _{sol}		ng : 260 $^{\circ}\mathbb{C}$ for 10 sec. g : 350 $^{\circ}\mathbb{C}$ for 3 sec.

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbo	ol	Min.	Тур.	Max.	Unit	Condition
		R6	40		150		
Luminous Intensity	lv	GA	91		336	mcd	I _F =10mA
		BD	24		100		
Viewing Angle	$2\theta_{1/2}$			120		deg	I _F =10mA
		R6		632			
Peak Wavelength	Λр	GA		520		nm	$I_F=10mA$
		BD		461			
		R6	617		629		
Dominant Wavelength	Λd	GA	512		533	nm	I _F =10mA
		BD	459		477		
Spectrum Rediction		R6		20			
Spectrum Radiation Bandwidth	Δλ	GA		25		nm	$I_F=10mA$
Bandwidth		BD		25			
		R6	1.7	2.0	2.4		
Forward Voltage	V_{F}	GA	2.6	3.3	3.7	V	I _F =10mA
_	•	BD	2.6	3.3	3.7		
Reverse Current	I _R				10	μA	V _R =5V

Note:

1. Tolerance of Luminous Intensity: ±10%

2. Tolerance of Dominant Wavelength: ±1nm

3. Tolerance of Forward Voltage: ±0.1V

Floating Bin(R6) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
R0	40	55		I _F =10mA
RA	55	80	- 	
RB	80	110	mcd	
RC	110	150	_	

Bin Range of Dominant Wavelength

Bin Code	Min.	Max.	Unit	Condition
R1	617	620		I _F =10mA
R2	620	623	-	
R3	623	626	nm	
R4	626	629	_	

Bin Range of Dominant Voltage

Bin Code	Min.	Max.	Unit	Condition
R1	1.7	2.4	V	I _F =10mA

Note:

1.Tolerance of Luminous Intensity: ±10%

2. Tolerance of Dominant Wavelength: ±1nm

3. Tolerance of Forward Voltage: ±0.01V

Floating Bin(GA) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
GA	91	133		I _F =10mA
GB	133	194	_ 	
GC	194	280	mcd	
GD	280	336		

Bin Range of Dominant Wavelength

Bin Code	Min.	Max.	Unit	Condition
G1	512	515		
G2	515	518	_	
G3	518	521	_	
G4	521	524	nm	$I_F = 10mA$
G5	524	527	_	
G6	527	530	_	
G7	530	533	-	

Bin Range of Dominant Voltage

Bin Code	Min.	Max.	Unit	Condition
G1	2.6	3.7	V	$I_F = 10 \text{mA}$

Note:

1. Tolerance of Luminous Intensity: ±10%

2. Tolerance of Dominant Wavelength: ±1nm

3. Tolerance of Forward Voltage: ±0.01V

Floating Bin(BD) Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
B0	24	34		
BA	34	48	_ 	I _F =10mA
BB	48	70	mcd	
BC	70	100	_	

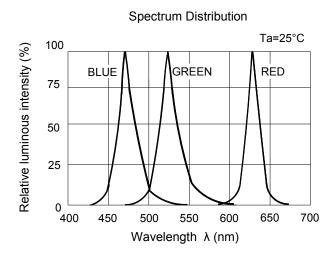
Bin Range of Dominant Wavelength

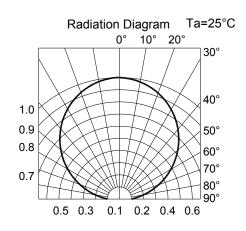
Bin Code	Min.	Max.	Unit	Condition
B0	459	462		I _F =10mA
B1	462	465	_	
B2	465	468	-	
B3	468	471	- nm	
B4	471	474	_	
B5	474	477	_	

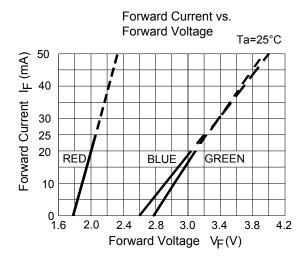
Bin Range of Dominant Voltage

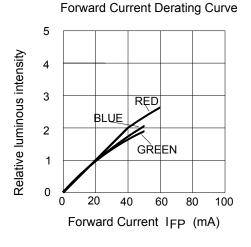
Bin Code	Min.	Max.	Unit	Condition
B1	2.6	3.7	٧	I _F =10mA

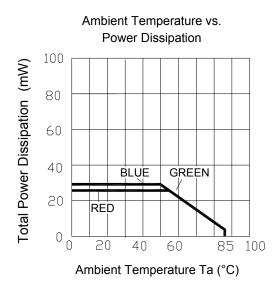
Note:

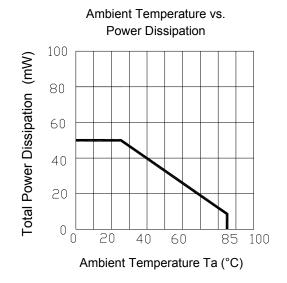

1.Tolerance of Luminous Intensity: ±10%

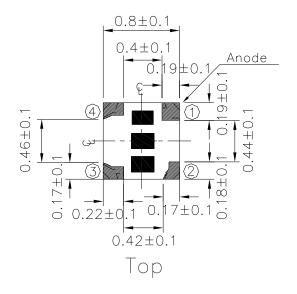

2. Tolerance of Dominant Wavelength: ±1nm

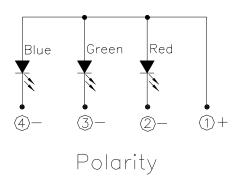

3. Tolerance of Forward Voltage: ±0.01V

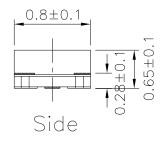


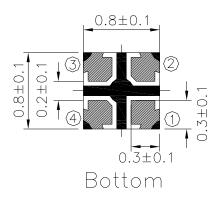

Typical Electro-Optical Characteristics Curves



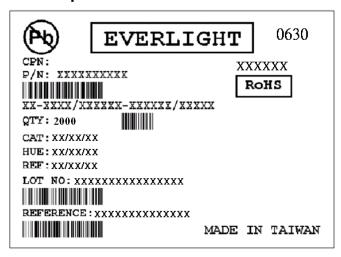




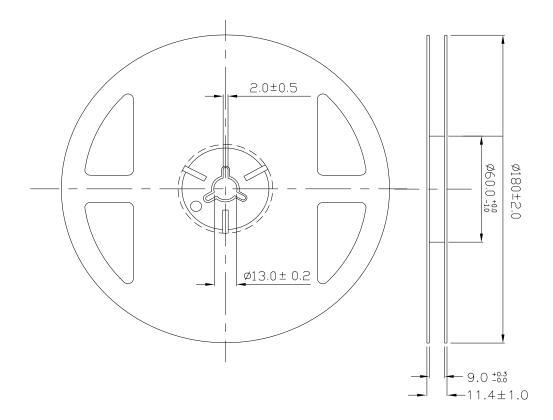




Package Dimension


Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

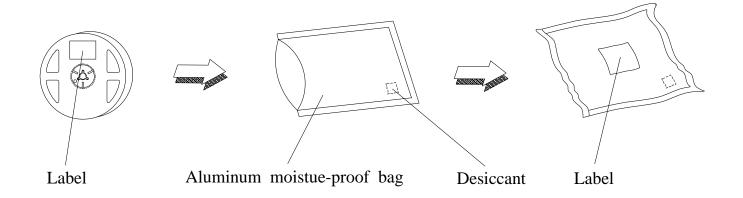
Note: Tolerances unless mentioned ±0.1mm. Unit = mm


Moisture Resistant Packing Materials

Label Explanation

- · CPN: Customer's Product Number
- P/N: Product NumberQTY: Packing Quantity
- CAT: Luminous Intensity RankHUE: Dom. Wavelength RankREF: Forward Voltage Rank
- · LOT No: Lot Number

Reel Dimensions


Carrier Tape Dimensions:

Minimum packing amount is 2000 pcs per reel

Note: Tolerances unless mentioned ±0.1mm. Unit = mm

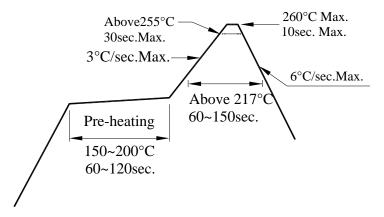
Moisture Resistant Packing Process

Note: Tolerances unless mentioned ±0.1mm. Unit = mm

Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).


2. Storage

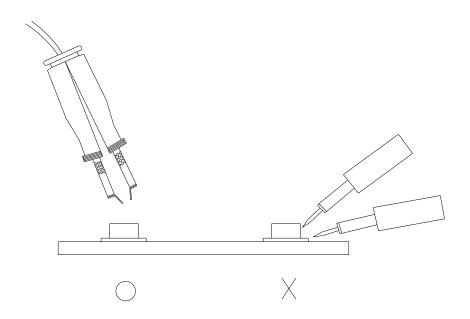
- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package: The LEDs should be kept at 30℃ or less and 90%RH or less.
- 2.3 After opening the package: The LED's floor life is 168Hrs under 30℃ or less and 60% RH or less.If unused LEDs remain, it should be stored in moisture proof packages.
- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

 Baking treatment: 60±5℃ for 24 hours.
- 2.5 Before using LEDs, baking treatment should be implemented based on the following conditions: pre-curing at $60\pm5^{\circ}$ C for 24 hours or $125\pm5^{\circ}$ C for 3 hours.

3. Soldering Condition

3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.


4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350° C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5.Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

Directions for use

The LEDs should be operated with forward bias. The driving circuit must be designed so that the LEDs are not subjected to forward or reverse voltage while it is off. If reverse voltage is continuously applied to the LEDs, It may cause migration resulting in LED damage.

Application Restrictions

High reliability applications such as military/aerospace, automotive safety/security systems, and medical equipment may require different product. If you have any concerns, please contact Everlight Americas before using this product in your application. This specification guarantees the quality and performance of the product as an individual component. Do not use this product beyond the specification described in this document.