LTR						DES	SCRIP	TION						D	ATE (`	rr-MC	D-DA)		A	PPR	OVED	
В	Added vendor CAGE 65786 for devices 01, 02, 03, 04, and 05LX, KX, and 3X. Added vendor CAGE 18324 for devices 01, 02, 04, and 05LX. IAW NOR 5962-R079-93.								93-01-28			M. A. Frye										
С	Added 06 device for one supplier. Added test t_{SU2} to table I. Editorial changes throughout. Redrawn.										93-	07-30)		I	M. A.	Frye					
D	Added devices 07-14, Added CAGE 0HSW3 for devices 13 and 14, added test I _{CCSB} to table I for devices 13 and 14, and updated text to newer boiler plate.									97-	-03-04	1		Ray	monc	l Mon	nin					
E		Changes in accordance with NOR 5962-R263-97									97-	04-23	3		Raymond Monni		nin					
F	Cha	nges i	n acco	ordan	ce wit	h NO	R 596	62-R3	41-97						97-	06-0	5		Ray	mond	I Mon	nin
G	5. U	ed pov Ipdate	d boil	erplat	e. ks	sr							-		98-	07-10)		Ray	mond	l Mon	nin
Н		nged r chang							1 thru	06 on	table	I. Va	lue		99-	03-19)		Ray	mond	l Mon	nin
J	Upda	ated b	oiler p	olate.	ksr										02-	-10-10)		Ray	mond	l Mon	nin
К		erplate	•												08-	-06-04	1		Rot	oert N	1. Hel	ber
L	15 a	ed dev nd 16.	Ksr			•				0					08	-08-2	5		Rob	oert N	1. Hel	ber
М	•	ate dra								•					17-	·09-2′	1		Cha	arles I	F. Sa	ffle
N	and Upda	Corrections to Table I in the limits column for I _{LX} for device types 01-06 and 13-16; I _{WO/Q} for devices 01-06,13,14; and Ios for device types 01-12. Update to Section 508 Compliance and current MIL-PRF-38535 requirements rp								James R. Eschmey												
	requ	ireme		<u>p</u>]
			<u>nts r</u>											<u> </u>								
HE ORIGIN/			<u>nts r</u>		DRAW	/ING F	HAS B			-	- of Sh			1								
			<u>nts r</u>		DRAW	/ING F	HAS B			-	s of Sh	eets										
EV			<u>nts r</u>		DRAW	/ING F	HAS B			-	s of Sh	eets										
EV HEET			<u>nts r</u>		DRAW	/ING F	HAS B			-	s of Sh	eets N	N	N	N	N	N	N	N			
REV SHEET REV	AL FIRS	T SHEI	ET OF	THIS				R	evisior	Status			N 13	N 14	N 15	<u>N</u> 16	N 17	N 18	N 19			
REV SHEET REV SHEET	AL FIRS	T SHEI	ET OF	THIS	N 5	N 6	N 7	R(N 8	evision N	Status N	N	N							-			
REV HEET HEET MIC N/A	AL FIRS	N 2 ARD	ET OF	THIS	N 5 PRI	N 6 EPAR Kenne ECKE	N 7 ED B eth Ric	R(N 8 Y	evision N	Status N	N	N 12	13 C		15 LAN	16 D Al S, Ol	17 ND M HIO	18 ARI1 4321	19 [IME 8-399			
REV SHEET REV SHEET PMIC N/A SMIC I THIS DRA FOR USE E	AL FIRS	N 2 DARD IRCU /ING IS AV. DEPA ES OF	ET OF N 3 IIT AILAE RTME THE	THIS N 4	N 5 PRI CHI	N 6 EPAR Kenne ECKE Charle PROV Micha	N 7 ED BY ED BY ES Reu 2 ED BY el A. F G APF	R N 8 Y se	N 9	N 10	N 11 MIC PR(N 12 ROC DGR	13 C https CIRC	14 DLA OLUI	15 LAN MBU: ww.dl	16 D AN S, OH a.mi	17 ND M HIO (//Lan	18 IARIT 4321 Idano	19 FIME 8-399 <u>dMar</u> AL, (itime CMO	S,	
MIC THIS DRA FOR USE E AND A	AL FIRS	N 2 DARD IRCU /ING IS AV. DEPA ES OF OF DE	ET OF N 3 IIT AILAE RTME THE	THIS N 4	N 5 PRI CHI 0 APF	N 6 EPAR Kenne ECKE Charle PROV Michae	N FED BY ED BY ED BY ED BY ED BY EI A. F G APF 89- DN LE	N 8 7 2e 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N 9	N 10	N 11 MIC PRC MO SI	N 12 ROC DGR	13 C https CIRC AMM	DLA OLUI S://WV	LAN MBU: WBU: MEN E AF ICO ODE	16 D AN S, OH a.mi	17 ND M HIO (//Lan	18 ARIT 4321 IGIT	19 FIME 8-399 <u>dMar</u> AL, (itime CMO PLD)	/S,),	

1. SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device types</u>. The device types identify the circuit function as follows:

Device type	Generic number	Circuit function	Access Time
01, 07	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	30
02, 08	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	20
03, 09, 15	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	15
04, 10	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	25
05, 11	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array (higher t _{CO,} lower f _{CLK2})	15
06, 12, 16	22V10	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	10
13	22V10L	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	25
14	22V10L	22-input, 10-output, EECMOS, architecturally generic, programmable AND-OR array	20

1.2.2 <u>Case outlines</u>. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
K	GDFP2-F24 or CDFP3-F24	24	flat pack
L	GDIP3-T24 or CDIP4-T24	24	dual-in-line
3	CQCC1-N28	28	square chip carrier

1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 2

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V dc to +7.0 V dc
Input voltage applied	-0.5 V dc to V _{CC} +1.0 V dc <u>1</u> /
Off-state output voltage applied	-0.5 V dc to V _{CC} +1.0 V dc <u>1</u> /
Storage temperature range (Tstg)	-65°C to +150°C
Maximum power dissipation (P _D) <u>2</u> /	1.5 W
Lead temperature (soldering, 10 seconds) (T _{SOL})	+260°C
Thermal resistance, junction-to-case (Θ _{JC})	See MIL-STD-1835
Junction temperature (T _J)	+175°C
Data retention	10 years (minimum)
Endurance	100 erase/write cycles (minimum)

1.4 Recommended operating conditions.

Supply voltage range (V _{CC})	4.5 V dc to 5.5 V dc
High level input voltage (V _{IH})	2.0 V dc to V_{CC} +1.0 V dc
Low level input voltage (VIL)	Vss -0.5 V dc to +0.8 V dc
High level output current (I _{OH})	-2.0 mA maximum
Low level output current (IoL)	12 mA maximum
Case operating temperature range (T _C)	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103	-	List of Standard Microcircuit Drawings.
MIL-HDBK-780	-	Standard Microcircuit Drawings.

(Copies of these documents are available online at https://quicksearch.dla.mil/.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

1/ Minimum voltage is -0.5 V which may undershoot to -2.5 V for pulses of less than 20 ns.

 $\overline{2}$ / Must withstand the added P_D due to short circuit test; e.g., I_{OS}.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 3

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity. (For QD product only.)

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outlines</u> The case outline shall be in accordance with 1.2.2 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.

3.2.2.1 <u>Unprogrammed devices</u>. The truth table for unprogrammed devices shall be as specified on figure 2.

3.2.2.2 Programmed devices. The truth table for programmed devices shall be as specified by an attached altered item drawing.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full (case or ambient) operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 4

1				1		
Symbol	$\begin{array}{c} Conditions \\ -55^\circ C \leq T_A \leq +125^\circ C \\ V_{SS} = 0 \ V, \ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \end{array}$	Group A subgroups	Device type	Lim	iits	Unit
	unless otherwise specified			Min	Max	
ILX	$0.0~V \leq V_{IN} \leq V_{CC}$	1, 2, 3	01-06, 13,14	-150	10	μA
		-	7-12	-10	10	
	<u>2</u> /		15,16	-10	10	
I1/0/Q	$0.0~V \leq V_{1/O/Q} \leq V_{CC}$	1, 2, 3	01-06, 13,14	-150	10	μA
		-	7-12	-40	40	
	<u>2</u> /		15, 16	-10	10	
Vol	$V_{CC} = 4.5 \text{ V}, \text{ I}_{OL} = 12 \text{ mA},$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	1, 2, 3	All		0.5	V
V _{OH}	V _{CC} = 4.5 V, I _{OH} = -2 mA,	1, 2, 3	All	2.4		V
VIL		1, 2, 3	All		0.8	V
VIH		1, 2, 3	All	2.0		V
lcc	V _{IL} = 0.5 V, V _{IH} = 3.0 V f _{tog} = 15 MHz	1, 2, 3	01-06		150	mA
			07-12		130	_
	V_{IL} = 0.0 V, V_{IH} = V_{CC}		13,14		70	
ļ	f _{tog} = 15 MHz		15,16		160	
I _{CCSB}	V _{IN} 0 V or V _{CC} f _{tog} = 0 MHz	1, 2, 3	13,14		15	mA
los	$V_{CC} = 5.0 \text{ V}, V_{OUT} = 0.5 \text{ V}$ $T_A = 25^{\circ}\text{C}$	1, 2, 3	01-06	-135	-30	mA
	See 4.3.1d		07-12	-90	-30	
Cin	V _{CC} = 5.0 V, V _I = 2.0 V f = 1.0 MHz, T _A = +25°C, See 4.3.1c	4	All		10	pF
C _{I/O/Q}	$V_{CC} = 5.0 V_{I/O/Q} = 2.0 V$ f = 1.0 MHz, T _A = +25°C, See 4.3.1c	4	All		10	pF
	See 4.3.1e	7, 8A, 8B	All			
	ILX II/O/Q VOL VOH VIH ICC ICCSB IOS	$\begin{array}{ c c c c } & -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ V_{SS} = 0 \ V, \ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ & unless \ otherwise \ specified \\ \hline \\ \hline \\ I_{LX} & 0.0 \ V \leq V_{IN} \leq V_{CC} \\ \hline \\ $	$\begin{array}{ c c c c } & -55^{\circ}\text{C} \leq \text{T}_{A} \leq +125^{\circ}\text{C} \\ \text{V}_{SS} = 0 \text{ V}, 4.5 \text{ V} \leq \text{V}_{CC} \leq 5.5 \text{ V} \\ & \text{unless otherwise specified} \end{array} \qquad $	$\begin{array}{ c c c c c c } \hline & -55^{\circ} C \leq T_{A} \leq +125^{\circ} C \\ V_{SS} = 0 \ V, \ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ \hline & unless otherwise specified \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline & $subgroups$ & type & ty$

		TABLE I. Electrical performa	nce characteristics – C	Continued.																				
Test	Symbol	Conditions -55°C \leq T _A \leq +125°C Vss = 0 V, 4.5 V \leq V _{CC} \leq 5.5	Group A subgroups V	Device type	Lim	its	Unit																	
		unless otherwise specified			Min																			
Input or feedback to nonregistered output	t _{PD}	$V_{CC} = 4.5 V$, see figures 3 and 4 <u>5</u> /	9, 10, 11	01		30	ns																	
		_		02		20																		
				03,05,15		15																		
				08,09,11	3	15																		
				04		25																		
				06,16		10																		
				12	3	10																		
				07,10,13	3	25																		
				14	3	20																		
Clock to output delay <u>6</u> /	tco		9, 10, 11	01,04		20	ns																	
				02		15																		
				07,10,14	2	15																		
				03,15		8																		
				08,09,11	2	8																		
				05		12																		
				06,16		7																		
				12	2	7																		
				13	2	20	_																	
Input to output enable	t _{EA}		9, 10, 11	01,04,07, 10,13		25	ns																	
						02,14		20	_															
																							03,05,08, 09,11,15	
				06,12,16		10																		
Input to output disable <u>7</u> /	t _{ER}		9, 10, 11	01,04, 07,10,13		25	ns																	
				02, 14		20	***																	
				03,05,08, 09,11,15		15	_																	
				06,16		12	***																	
				12		10																		
See footnotes at end	of table.			12			I																	
STAND MICROCIRCUI		SIZE A			59	62-89841																		
DLA LAND AND COLUMBUS, OHI		ME	REVISION	LEVEL		SHEET 6																		

Г

Test	Symbol			Group A	Device	Lim	its	Unit
		-55° Vss = 0 V	$C \le T_A \le +125^{\circ}C$ V, 4.5 V $\le V_{CC} \le 5.5$ V	subgroups	type			
			otherwise specified			Min	Max	
Asynchronous register reset <u>6</u> /	t _{RES}	V _{CC} = 4.5 \ see figures	/, s 3 and 4 5/	9, 10, 11	01,04,13		30	ns
<u> </u>		0	—		02,07,10,14		25	
					03,05,08,09, 11,15		20	
					06,12,16		12	
Clock frequency without feedback 1/(t _{PWH} + t _{PWL}) <u>6</u> / <u>8</u> /	fclk1			9, 10, 11	01	0	25.0	MHz
· /					02,14	0	33.3	
					07,10	0	35.7	
					03,05	0	62.5	
					08,09,11	0	83.3	_
					04,13	0	33.0	_
					15	0	100.0	_
					12	0	142.0	_
					16	0	143.0	_
					06	0	166.0	
Clock frequency with feedback 1/(t _{CO} + t _{SU1}) <u>6/</u> 8/	fclk2			9, 10, 11	01	0.0	22.0	MHz
				07,10	0.0	30.3		
					02,14	0.0	31.2	
					03,08,09,11	0.0	50.0	_
					04,13	0.0	26.3	_
					05	0.0	42.0	_
					15	0.0	62.5	_
					16	0.0	83.3	_
					06,12	0.0	76.9	
Input or feedback setup time before rising clock <u>6</u> /	ts∪1			9, 10, 11	01	25		ns
-					02,14	17		
					03,05	12		
					08,09,11	10		_
					04,07,10,13	18		_
					15	8		_
					06,12	6		_
					16	5		
See footnotes at end	d of table.							
STANE MICROCIRCU		VING	SIZE A			59)62-8984 [,]	1
DLA LAND AN COLUMBUS, OH	D MARITIN	ИE		REVISION			SHEET 7	

ſ

	:	Start TABLE	I. Electrical performanc	e characteristics -	- Continued.			
Test	Symbol	-55° Vss = 0 V	$\begin{array}{l} Conditions \\ C \leq T_A \leq +125^\circ C \\ V, \ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \end{array}$	Group A subgroups	Device type	Lim	its	Unit
		unless	otherwise specified			Min	Max	
Synchronous preset setup time	t _{SU2}	V _{CC} = 4.5 \ see figures	/, 3 and 4 <u>5</u> /	9, 10, 11	01	25		ns
					02,14	17		
					08,09,11	10		_
					03,05,15	12		
					04,07,10,1 3	18		
					06,12,16	7		
Input or feedback hold time after rising clock <u>6</u> /	th			9, 10, 11	All	0		ns
Clock pulse width, high <u>6</u> /	t _{PWH}			9, 10, 11	01	20		ns
					02,14	15		-
					03,05	8		
					04,13	15		-
					07,10	14		-
					08,09,11	6		-
					15	5		
					06,12 <u>7</u> /	3		
Clock pulse width,	tewl			9, 10, 11	16 01	3.5 20		ns
low <u>6</u> /				0, 10, 11				
					02,14	15		
					03,05	8		
					04,13	15		
					07,10	14		-
					08,09,11	6		
					15	5		
					06,12 <u>7</u> / 16	3.5		-
Asynchronous reset pulse width	t _{PWR}			9, 10, 11	01	30		ns
					02,14	20		
					03,05,08,0 9,11,15	15		
					04,07,10, 13	25		
					06,12,16	10		
See footnotes at en	d of table.							
STANI MICROCIRCU	IT DRAV		SIZE A			59	62-89841	l
DLA LAND AN COLUMBUS, OF				REVISION I	_EVEL		SHEET 8	

٦

ſ

		TABLE I.	Electrical performance	<u>characteristics</u> – C	ontinued.			
Test	Symbol	-55° Vss = 0 \	Conditions C \leq T _A \leq +125°C /, 4.5 V \leq V _{CC} \leq 5.5 V	Group A subgroups	Device type	Lim	its	Unit
			otherwise specified			Min	Max	
Asynchronous reset to rising clock recovery time	trec	V _{CC} = 4.5 V see figures	′, 3 and 4 <u>5</u> /	9, 10, 11	01	30		ns
					02,14	20		
					03,05	15		
					08,09,11, 15	12		
					04,07,10, 13	25		
					06,12,16	6		
Clock pulse width <u>6</u> / <u>8</u> /	tw	See figure	5	9, 10, 11	01,07	20		ns
-					04,10,13	15		
					02,08,14	15		
					03,05,09, 11,15	8		
					06,12,16	3.5		
Setup time <u>6</u> / <u>8</u> /	ts			9, 10, 11	01,07	25		ns
					04,10,13	18		
				02,08,14	17			
					03,05,09, 11,15	12		
					06,12,16	6		
Power up reset time <u>8</u> /	t _{PR}			9, 10, 11	All		1.0	μs
5/ AC tests are perform input pulse levels of	I/V curve values wi butput at a ned with i 0 V to 3.0 shoots du registered red at stea	for ppk (bus th respect to a time should nput rise and 0 V and the c e to system c d outputs. ady-state hig	friendly pin keeper). device ground and all of be shorted. Short circu- fall times (10 percent to output load of figure 3. I or tester noise are includ h level -500mV or stead	overshoots due to s uit test duration sh o 90 percent) of 3. Input pulse levels a ded. dy-state low level +	ould not exceed 0 ns, timing refe are absolute va -500 mV on the	d 1 second erence leve les with res output fror	(see 4.3.1d Is of 1.5 V, pect to dev n the 1.5 V	ice level
STAND MICROCIRCUI		VING	SIZE A			59	62-89841	l
DLA LAND AND COLUMBUS, OHI	MARITI	ИE		REVISION L	EVEL		SHEET 9	

	3
Terminal	
I/CLK	NC
I	I/CLK
I	I
I	I
	I
	I
I	I
I	NC
I	I
I	I
I	I
GND	I
I	I
I/O/Q	GND
	NC
	I
	I/O/Q
I/O/Q	I/O/Q
	NC
	I/O/Q
	I/O/Q
	1/O/Q
	1/0/Q
	1/O/Q
	Vcc
	All Dev K and L Terminal I/CLK I I I I I I I I I I I I I I I I I I I

FIGURE 1. Case outline.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 10

Inputs								
I/CLK I I I I I I I I I								
x x x x x x x x x x x x x x								

	Outputs										
I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q	I/O/Q
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z

X = don't care state Z = high impedance state

FIGURE 2. Truth table (unprogrammed).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 11

Test	R1	C
1631	IX1	(minimum)
t _{PD} , t _{CO} , t _{RES} ,	390 Ω	50 pF
fclk1, fclk2		
t _{EA}	Active high = infinity	50 pF
	Active low = 390Ω	
t _{ER}	Active high = infinity	5 pF
	Active low = 390 Ω	

NOTES:

- 1. C_L = load capacitance and includes jig and probe capacitance.
- A different output load circuit may be utilized, but table I electricals shall be guaranteed with figure 3 output load circuit.

FIGURE 3. Output load circuit.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 12

- Note: The power-up reset feature ensures that all flip-flops will be reset to low after the device has been powered up. The following conditions are required:
 - 1. The V_{CC} rise must be monotonic.
 - 2. After reset occurs, all applicable input and feedback setup times must be met before driving the clock pin high.
 - 3. The clock signal must remain stable beginning prior to the occurrence of the 10% level and continuing until the end of t_{PR}.

FIGURE 5. Power-up Reset waveform.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 14

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Devices shall be burned-in containing a pattern that assures all inputs and I/O's are dynamically switched. This pattern must have all cells programmed in a high or low state (not neutralized).
 - (4) The burn-in pattern shall be read before and after burn-in. Devices having any logic array bits not in the proper state shall constitute a device failure and shall be added as failures for PDA calculation.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- c. An endurance/retention test prior to burn-in (may be performed at wafer level), in accordance with method 1033 of MIL-STD-883, shall be included as part of the screening procedure with the following conditions:
 - (1) Cycles may be at equipment room ambient temperature and shall cycle all bit locations for a minimum of 100 cycles. After cycling, devices containing bits which fail to verify shall be considered device failures.
 - (2) The retention pattern must have a minimum of 50 percent of the logic array programmed.
 - (3) (After cycling, perform a high temperature unbiased bake for a minimum of 48 hours at +150°C. The bake time may be accelerated by using higher temperature in accordance with the Arrhenius Relationship:

$$A_{F} = e^{-\frac{E}{K}} \left[\frac{1}{T_{1}} - \frac{1}{T_{Z}}\right]$$

- A_F = Acceleration factor (unit less quantity) = t_1/t_2 .
- T = Temperature in Kelvin (i.e., $^{\circ}$ C + 273 = K).
- t_1 = Time (hrs) at temperature T_1 .
- t_2 = Time (hrs) at temperature T_2 .
- K = Boltzmann's constant = $8.62 \times 10^{-5} \text{ eV/}^{\circ}\text{K}$ using an apparent activation energy (E_A) of 0.6 eV.

The maximum bake temperature shall not exceed +250°C.

- (4) After cycling and bake, and prior to burn in, read the data retention pattern. Test using subgroups 1 and 7 (at the manufacturer's option, high temperature equivalent subgroups 2 and 8A or low temperature equivalent subgroups 3 and 8B may be used in lieu of subgroups 1 and 7). Devices having any logic array bits not in the proper state after storage shall constitute device failure.
- (5) At the manufacturer's option, the testing specified in 4.2c(4) may be deleted if the devices are put into burn in with no reprogramming allowed between the start of data retention bake and the end of burn in. Exercising this option will result in data retention bake failures being caught and included in post burn in PDA calculations.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 16

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups
	(in accordance with
	MIL-STD-883, method 5005,
	table I)
Interim electrical parameters	
(method 5004)	
Final electrical test parameters	1*, 2, 3, 7*, 8A,
(method 5004)	8B, 9, 10, 11
Group A test requirements	1, 2, 3, 4**, 7, 8A,
(method 5005)	8B, 9, 10, 11
Groups C and D end-point	2, 3, 7, 8A, 8B
electrical parameters	
(method 5005)	

* PDA applies to subgroups 1 and 7.

** See 4.3.1c

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{I/O/Q} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Sample size is 15 devices with no failures, and all output terminals tested.
 - d. Ios measurements in subgroup 1 shall be measured only for the initial test and after process or design changes which may affect Ios. Sample size is 15 devices with no failures, and all output terminals tested.
 - e. Subgroups 7, 8A, and 8B shall include verification of the truth table

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 17

4.3.2 Group C inspection.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - (4) All devices shall be programmed with a pattern that assures all inputs and I/O's are dynamically switched.
- c. An extended data retention test shall be added. A new sample shall be selected, and the sample size, accept number and frequency of testing shall be the same as that required for group C inspection. Extended data retention shall also consist of the following:
 - (1) All devices shall have a minimum of 50 percent of the logic array programmed with a charge on all cells, such that the cell will not be in a neutral state.
 - (2) Unbiased bake for 1,000 hours (minimum) at +150°C (minimum). The unbiased bake time may be accelerated by using a higher temperature in accordance with the Arrhenius Relationship:

$$A_{F} = e^{-\frac{E_{A}}{K}} \left[\frac{1}{T_{1}} - \frac{1}{T_{Z}}\right]$$

 A_F = Acceleration factor (unit less quantity) = t_1/t_2 .

- T = Temperature in Kelvin (i.e., $^{\circ}C + 273 = K$).
- t_1 = Time (hrs) at temperature T₁.
- t_2 = Time (hrs) at temperature T_2 .
- K = Boltzmann's constant = 8.62 x 10⁻⁵ eV/°K using an apparent activation energy (E_A) of 0.6 eV.

The maximum bake temperature shall not exceed +250°C.

(3) Read the pattern after back and perform end-point electrical tests in accordance with table II herein for group C.

4.3.3 <u>Group D inspection</u>. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical parameters shall be as specified in the table II herein.

4.4 <u>Programming procedures</u>. The programming procedures shall be as specified by the device manufacturer and shall be made available to the user on request.

4.5 <u>Erasing procedures</u>. The erasing procedures shall be as specified by the device manufacturer and shall be made available to the user on request.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 18

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal, or email communication.

6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0591.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. (Only if QML.) The vendors listed in MIL-HDBK-103 and QML-38535 (Only if QML.) have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89841
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 19

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 23-01-04

Approved sources of supply for SMD 5962-89841 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-89841013A	0C7V7 0C7V7 0C7V7 <u>3</u> / <u>3</u> /	PALC22V10D-30LMB PALCE22V10-30LMB 22V10D-30LR/883 PALCE22V10H-30E4/B3A QPC22V10-30/B3A
5962-8984101KA	0C7V7 0C7V7 <u>3/</u> <u>3</u> /	PALC22V10D-30KMB PALCE22V10-30KMB PALCE22V10H-30E4/BKA QPC22V10-30/BKA
5962-8984101LA	0C7V7 0C7V7 0C7V7 <u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> /	PALC22V10D-30DMB PALCE22V10-30DMB 22V10D-30LD/883 PALCE22V10H-30E4/BLA GAL22V10C-30LD/883C GAL22V10D-30LD/883C QPC22V10-30/BLA
5962-89841023A	<u>3/</u> 0C7V7 0C7V7 0C7V7 3/ 3/	GAL22V10C-20LR/883C GAL22V10D-20LR/883C PALC22V10D-20LMB PALCE22V10-20LMB 22V10D-20LR/883 PALCE22V10H-20E4/B3A QPC22V10-20/B3A
5962-8984102KA	0C7V7 0C7V7 <u>3/</u> <u>3</u> /	PALC22V10D-20KMB PALCE22V10-20KMB QPC22V10-20/BKA PALCE22V10H-20E4/BKA
5962-8984102LA	0C7V7 0C7V7 0C7V7 3/ 3/ 3/ 3/ 3/	PALC22V10D-20DMB PALCE22V10-20DMB 22V10D-20LR/883 PALCE22V10H-20E4/BLA GAL22V10C-20LD/883C GAL22V10D-20LD/883C QPC22V10-20/BLA
5962-89841033A	3/ <u>3/</u> 0C7V7 0C7V7 0C7V7 0C7V7 0HSW3	GAL22V10C-15LR/883C GAL22V10D-15LR/883C 22V10D-15LR/883 PALC22V10D-15LMB PALC22V10D-15LMB ATF22V10B-15NM/883
5962-8984103KA	0C7V7 0C7V7 <u>3</u> /	PALC22V10D-15KMB PALCE22V10-15KMB QPC22V10-15/BKA

See footnote at end of table.

DATE:	23-01-04

	r	
Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8984103LA	<u>3/</u> 0C7V7 0C7V7 0C7V7 0C7V7 0HSW3	GAL22V10C-15LD/883C GAL22V10D-15LD/883C 22V10D-15LD/883 PALC22V10D-15DMB PALCE22V10-15DMB ATF22V10B-15GM/883
5962-8984103LC	6S055	DPA22V10-15LC
5962-89841043A	0C7V7 0C7V7 0C7V7 <u>3/</u> <u>3</u> /	PALC22V10D-25LMB PALCE22V10-25LMB 22V10D-25LR/883 ATF22V10B-25NM/883 PALCE22V10H-25E4/B3A
5962-8984104KA	0C7V7 0C7V7 <u>3/</u> <u>3</u> /	PALC22V10D-25KMB PALCE22V10-25KMB PALCE22V10H-25E4/BKA QPC22V10-25/BKA
5962-8984104LA	0C7V7 0C7V7 0C7V7 <u>3/</u> <u>3/</u> <u>3/</u> <u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-25DMB PALCE22V10-25DMB 22V10D-25LD/883 ATF22V10B-25GM/883 GAL22V10C-25LD/883C GAL22V10D-25LD/883C PALCE22V10H-25E4/BLA QPC22V10-25/BLA
5962-89841053A	0C7V7 3/ <u>3</u> /	PALCE22V10-15LMB ATF22V10B-15NM/883 PALCE22V10H-15E4/B3A
5962-8984105KA	0C7V7 0C7V7 <u>3/</u> <u>3</u> /	PALC22V10D-15KMB PALCE22V10-15KMB PALCE22V10H-15E4/BKA QPC22V10-15/BKA
5962-8984105LA	0C7V7 0C7V7 3/ <u>3/</u> <u>3</u> /	PALC22V10D-15DMB PALCE22V10-15DMB ATF22V10B-15GM/883 PALCE22V10H-15E4/BLA QPC22V10-15/BLA
5962-89841063A	0C7V7 0C7V7 0C7V7 <u>3/</u> 3/ 0HSW3	PALC22V10D-10LMB PALCE22V10-10LMB 22V10D-10LR/883 GAL22V10C-10LR/883C GAL22V10D-10LR/883C ATF22V10B-10NM/883
5962-8984106KA	0C7V7 0C7V7 <u>3</u> /	PALC22V10D-10KMB PALCE22V10-10KMB QPC22V10-10/BKA
5962-8984106LA	0C7V7 0C7V7 0C7V7 3/ 3/ 0HSW3	PALC22V10D-10DMB PALCE22V10-10DMB 22V10D-10LD/883 GAL22V10C-10LD/883C GAL22V10D-10LD/883C ATF22V10B-10GM/883
5962-89841073A	<u>3</u> / <u>3/</u> <u>3</u> /	PALC22V10D-30LMB PALCE22V10-30LMB QPC22V10-30/B3A
5962-8984107KA	<u>3</u> / <u>3/</u> <u>3</u> /	PALC22V10D-30KMB PALCE22V10-30KMB QPC22V10-30/BKA

See footnote at end of table.

DATE: 23-01-04

	1	1
Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8984107LA	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-30DMB PALCE22V10-30DMB QPC22V10-30/BLA
5962-89841083A	<u>3/</u> <u>3/</u> <u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-20LMB PALCE22V10-20LMB PALCE22V10-20LMB PALC22V10D-20LMB QPC22V10-20/B3A
5962-8984108KA	<u>3/</u> <u>3/</u> <u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-20KMB PALCE22V10-20KMB PALCE22V10-20KMB PALC22V10D-20KMB QPC22V10-20/BKA
5962-8984108LA	<u>3</u> / <u>3</u> / <u>3/</u> <u>3</u> / <u>3</u> /	PALC22V10D-20DMB PALCE22V10-20DMB QPC22V10-20/BLA PALCE22V10-20DMB PALC22V10D-20DMB
5962-89841093A	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-15LMB PALCE22V10-15LMB QPC22V10-15/B3A
5962-8984109KA	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-15KMB PALCE22V10-15KMB QPC22V10-15/BKA+
5962-8984109LA	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-15DMB PALCE22V10-15DMB QPC22V10-15/BLA
5962-89841103A	3/ <u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> /	PALC22V10D-25LMB PALCE22V10-25LMB PALCE22V10-25LMB PALC22V10D-25LMB QPC22V10-25/B3A
5962-8984110KA	<u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> /	PALC22V10D-25KMB PALCE22V10-25KMB PALC22V10D-25KMB QPC22V10-25/BKA
5962-8984110LA	<u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> / <u>3</u> /	PALC22V10D-25DMB PALCE22V10-25DMB PALCE22V10-25DMB PALC22V10D-25DMB QPC22V10-25/BLA
5962-89841113A	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-15LMB PALCE22V10-15LMB QPC22V10-15/B3A

See footnote at end of table.

r		
Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8984111KA	<u>3</u> / <u>3</u> / <u>3</u> /	PALC22V10D-15KMB PALCE22V10-15KMB QPC22V10-15/BKA
5962-8984111LA	<u>3/</u> <u>3/</u> <u>3</u> /	PALC22V10D-15DMB PALCE22V10-15DMB QPC22V10-15/BLA
5962-89841123A	<u>3/</u> <u>3/</u> 3/	PALC22V10D-10LMB PALCE22V10-10LMB QPC22V10-10/B3A
5962-8984112KA	<u>3/</u> <u>3/</u> 3/	PALC22V10D-10KMB PALCE22V10-10KMB QPC22V10-10/BKA
5962-8984112LA	<u>3/</u> <u>3/</u> 3/	PALC22V10D-10DMB PALCE22V10-10DMB QPC22V10-10/BLA
5962-89841133A	3/	ATF22V10BQL-25NM/883
5962-8984113LA	3/	ATF22V10BQL-25GM/883
5962-89841143A	<u>3</u> /	ATF22V10BQL-20NM/883
5962-8984114LA	<u>3</u> /	ATF22V10BQL-20GM/883
5962-89841153A	0HSW3	ATF22V10C-15NM/883
5962-8984115LA	0HSW3	ATF22V10C-15GM/883
5962-89841163A	0HSW3	ATF22V10C-10NM/883
5962-8984116LA	0HSW3	ATF22V10C-10GM/883

DATE: 23-01-04

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- Vendor to determine its availability.
 <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ No longer available from an approved source of supply.

DATE: 23-01-04

Vendor CAGE <u>number</u>	Vendor name and address
0HSW3	Microchip Technology, Inc. 1150 East Cheyenne Mountain Blvd. Colorado Springs, CO 80906
6S055	DPA Labs Inc. dba DPA Components International 2251 Ward Ave. Simi Valley, CA 93065
0C7V7	Teledyne e2v, Inc. dba QP Semiconductor, Inc. 765 Sycamore Drive Milpitas, CA 95035

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.