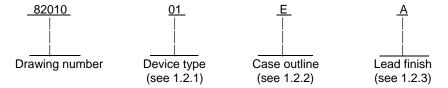
	REVISIONS		
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED
Α	Added vendor CAGE 01295 with device types 04 - 07 complete revision.	83-10-07	N. A. Hauck
В	Added vendor CAGE 34335 to device types 01, 02, 03, 06, and 07. Added device types 08, 09, 10. Device types 04 and 05 not available from an approved source. Inactivated device types 01, 02, and 03 for DIP package for new design.	86-01-20	N. A. Hauck
С	Change limits of toff and traw. Editorial changes throughout.	86-05-23	R. P. Evans
D	Added vendor CAGE 6Y440 with device types 04 and 05. Changed to military drawing format.	87-04-28	N. A. Hauck
Е	Changes in accordance with NOR 5962-R157-96.	96-06-26	M. A. Frye
F	Updated boilerplate. Added provisions for the supply of QD certified parts to the drawing. Added CAGE 3V146 to drawing glg	00-12-22	Raymond Monnin
G	Correction to marking paragraph 3.5, updated boilerplate paragraphs. ksr	05-03-02	Raymond Monnin
Н	Boilerplate update, part of 5-year review. ksr	10-11-17	Charles F. Saffle
J	Update drawing to meet current MIL-PRF-38535 requirements. – glg	17-10-26	Charles Saffle



CURRENT CAGE CODE IS 67268.

REV																							
SHEET																							
REV	J	J	J	J	J																		
SHEET	15	16	17	18	19																		
REV STATUS	3			RE\	/		J	J	J	J	J	J	J	J	J	J	J	J	J	J			
OF SHEETS				SHI	EET		1	2	3	4	5	6	7	8	9	10	11	12	13	14			
PMIC N/A					PARE					DLA LAND AND MARITIME													
STAI MICRO DRA		CUIT			CKED) BY acksor	1			COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil													
THIS DRAWING IS AVAILABLE APPROVED BY William E. Shoup				MICROCIRCUIT, MEMORY, DIGITAL,																			
FOR U DEPAF AND AGEN	RTMEN	NTS OF TH		DRA	WING	82-0	-	L DAT	Е	MONOLITHIC SILICON					• •					, ,			VI,
	TMENT OF DEFENSE AMSC N/A REVISION LEVEL A SIZE A CAGE CODE 14933 8201				010																		
							-			SHE	ET		1	OF	19								

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device types</u>. The device types shall identify the circuit functions as follows:

Device type	Generic number 1/	<u>Circuit</u>	Access time	<u>Refresh</u>
01	(65,536 X 1-bit RAM	150 ns	128 cycles (1 ms)
02	(65,536 X 1-bit RAM	150 ns	128 cycles (2 ms)
03	(65,536 X 1-bit RAM	200 ns	128 cycles (2 ms)
04	(65,536 X 1-bit RAM	150 ns	256 cycles (4 ms)
05	(65,536 X 1-bit RAM	200 ns	256 cycles (4 ms)
06	(65,536 X 1-bit RAM	150 ns	256 cycles (4 ms)
07	(65,536 X 1-bit RAM	200 ns	256 cycles (4 ms)
08	(65,536 X 1-bit RAM	120 ns	256 cycles (4 ms)
09	(65,536 X 1-bit RAM	150 ns	128 cycles (2 ms)
10	(65,536 X 1-bit RAM	200 ns	128 cycles (2 ms)

1.2.2 Case outlines. The case outlines shall be as designated in MIL-STD-1835, and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	dual-in-line package
Z	CQCC3-N18	18	rectangular chip carrier package

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage range	
Maximum power dissipation (P _D)	-03 C to +130 C
	4.0.11/
(minimum cycle time)	
Lead temperature (soldering, 5 seconds)	
Thermal resistance, junction-to-case (θ_{JC}):	See MIL-STD-1835
Junction temperature (T _J)	+150°C
Short circuit output current	

1/ Generic numbers are listed on the Standard Microcircuit Drawing Source Approval Bulletin at the end of this document and will also be listed in MIL-HDBK-103 and QML-38535, as applicable (see 6.6 herein).

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 2

1.4 Recommended operating conditions.

Supply voltage	4.5 V dc to 5.5 V dc
Maximum low-level input voltage (V _{IL}):	
Device types 01, 02, and 03	-1.5 V dc to 0.8 V dc
Device types 04, 05, 06, 07, and 08	-0.6 V dc to 0.8 V dc
Device types 09 and 10	-1.0 V dc to 0.8 V dc
Maximum high-level input voltage (V _{IH}):	
Device types 01, 02, and 03	2.4 V dc to 6.5 V dc
Device types 04, 05, 06, 07, and 08	
Device types 09 and 10	2.4 V dc to V _{CC} +1.0 V dc
Refresh cycle time:	
Device type 01	1.0 ms
Device types 02, 03, 09, and 10	2.0 ms
Device types 04, 05, 06, 07, and 08	4.0 ms
Case operating temperature range:	
Device types 01, 02, 03, 06, 07, 08, 09,	
and 10	-55°C to +110°C
Device types 04 and 05	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u> The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturer's approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or alternative approved by the Qualifying Activity.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 3

- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.
- 3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535 the "D" certification mark shall be used in place of the "C" certification mark.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime-VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. VERIFICATION
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition D or E. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or procuring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	-55°C ≤ T _C ≤ +110°C, <u>1</u> /		Device type	Lir	Unit	
		unless otherwise specified			Min	Min Max	
High level output voltage	Vон	V _{DD} = 5 V, V _{IN} = 0 or V _{DD} I _{OH} = -5 mA	1,2,3	All	2.4		V
Low level output voltage	VoL	$V_{DD} = 5 \text{ V}, V_{IN} = 0 \text{ or } V_{DD}$ $I_{OL} = 4.2 \text{ mA}$	1,2,3	All		0.4	V
Supply current, standby	I _{DD1}	$V_{DD} = 5 \text{ V}, \overline{\text{CAS}} = \overline{\text{RAS}} = \text{V}_{IH}$ $D_{OUT} = \text{High } Z$	1,2,3			5	mA
	I _{DD2}	V _{DD} = 5 V, RAS and CAS cycling	1,2,3	01-09		60	mA
	toyo = t _{RC} min		10		55		
Supply current, RAS only cycle	I _{DD3}	V _{DD} = 5 V, RAS = cycling,	1,2,3	01-09		45	mA
		$t_{CYC} = t_{RC} min, \overline{CAS} = V_{IH}$		10		40	
Supply current, PAGE mode	I _{DD4}	RAS V _{IL} , CAS cycling,	1,2,3	09		45	mA
				10		40	
High-level input leakage current	Іін	$V_{DD} = 5 \text{ V}, V_{IN} = 5.0 \text{ V}$	1,2,3	All		10	μА
Low-level input leakage current	I _{IL}	$V_{DD} = 5 \text{ V}, V_{IN} = 0.8 \text{ V}$	1,2,3	All		-10	μΑ
High-level output leakage current	Іон	$\frac{V_{DD} = 5 \text{ V}, V_{OUT} = 5.5 \text{ V}}{\text{RAS} = \overline{\text{CAS}} = \text{V}_{IH}}$		All		10	μΑ
Low-level output leakage current	I _{OL}	$\frac{V_{DD} = 5 \text{ V, } V_{OUT} = GND}{RAS = CAS} = V_{IH}$	1,2,3	All		-10	μА
Input capacitance (A ₀ - A ₇)	C ₁ <u>3</u> /	T _C = +25°C	4	01,02,03 09,10		5	pF
				04,05, 06,07,08		7	pF
Input capacitance (RAS, CAS, DIN,	C ₂ <u>3</u> /	$T_{C} = +25^{\circ}C$	4	01-08		10	pF
WE)				09,10		7	pF

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	5

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol	Conditions $-55^{\circ}C \le T_{C} \le +110^{\circ}C, \ \underline{1}/$	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise specified			Min	Max	
Output capacitance (RAS)	Соит <u>3</u> /	Tc = +25°C	4	01-08		8	pF
				09-10		6	
Access time from RAS	t _{RAC}	See figure 3	9,10,11	01,02,04 06,09		150	ns
				03,05,07 10		200	
				08		120	
Access time from	t _{CAC}		9,10,11	04,06,10		100	ns
CAS	<u>3</u> / <u>4</u> / <u>5</u> /			01,02		90	
				03		120]
				05,07 08		135 70	
				09		75	
Time between refresh	t _{REF}		9,10,11	01		1.0	ms
				02,03,09		2.0	
				04-08		4.0	
RAS precharge time	t _{RP}		9,10,11	04	160		ns
NAS precharge lime				01,02,06 09	100		
				03	135		
				05 07,10	200 120		
				08	80		
			9,10,11	09	30		ns
CAS precharge time (nonpage cycles)	tcpn		9,10,11	10	35		
CAS to RAS precharge time	tcrp		9,10,11	All	0		ns
RAS to CAS delay time	t _{RCD}		0.40.44	04	20	50	ns
o			9,10,11	01,02,06	30	60	113
				03,07	35	80	
				05 08	25 15	65 50	-
				09	30	75	1
				10	35	100	1

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	6

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol	Conditions $-55^{\circ}C \le T_C \le +110^{\circ}C, \ \underline{1}/$	Group A subgroups	Device type	Lin	nits	Unit
		unless otherwise specified			Min	Max	
				04,06,10	100		
RAS hold time	t _{RSH}	See figure 3	9,10,11	01,02	90		ns
				03	120		
				05,07	135		
				08	60		
				09	75		
CAS hold time	tcsh		9,10,11	04,06,01 02,09	150		ns
				03,05,07 10	200		
				08	120		
Row address setup time	tasr		9,10,11	01,02,03 06,07,08 09,10	0		ns
				04,05	5		
Row address hold time	t _{RAH}		9,10,11	01,02,04 06,09	20		ns
				03,07,10	25		
				08	15		
Column address setup time	tasc		9,10,11	01,02,03 04,05,09 10	0		ns
				06-08	-5		
				00-08	60		
Column address hold time	t _{CAH}		9,10,11				ns
ume				01,02,09	30		
				03,08,10	40		
				05	70		
				06	45		
				07	55		
Column address hold	t _{AR}		9,10,11	04,06	95		ns
time, to RAS				01,02	100		
				03	130		
				05,07,10	140		
				08	85		
				09	105		
Transition time	t⊤ <u>6</u> /		9,10,11	01,02,03 06,07,08 09,10	3	50	ns
				04,05	3	20	

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol	Conditions $-55^{\circ}C \le T_{C} \le +110^{\circ}C, \ \underline{1}/$	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise specified		 	Min	Max	
Output buffer turn-off delay	t _{OFF} <u>7</u> /	See figure 3	9,10,11	03,04,07 10	0	50	ns
				01,02	0	40	
				06,08,09	0	40	
				05	0	60	
Read and refresh cycles:	t _{RC}		9,10,11	04	330	1,500	ns
Random read cycle time				01,02,06	260	10,000	
				03	345	10,000	
				05	420	1,500	
				07	330	10,000	
				08	230		
				09	260		
				10	330		
			9,10,11	04	150	1,500	ns
	t _{RAS}		0,10,11	01,02,06 09	150	10,000	
RAS pulse width	IRAS			03,07,10	200	10,000	
				05	200	1,500	
				08	120	10,000	
			9,10,11	04	100	1,500	ns
				01,02	90	10,000	
	tava			03	120	10,000	
CAS pulse width	tcas			05	135	1,500	
				06,10	100	10,000	
				07	135	10,000	
				09	75	10,000	
Read command set-up time	t _{RCS}		9,10,11	All	0		ns
Read command hold time	t _{RCH}		9,10,11	All	0		ns
Write cycle: random write	twc		9,10,11	04	330	1,500	ns
cycle time				07	330	10,000	
oyolo tillio				01,02,06	260	10,000	
				03	345	10,000	
				05	420	1,500	
				08	230		
				09	260		
	1			10	330	7	

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	8

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol	Conditions	Group A	Device	Lim	Unit	
		-55 °C ≤ T _C ≤ +110°C, $\frac{1}{2}$ unless otherwise specified	subgroups	type	Min	Max	
Write command setup	twcs	See figure 3	9,10,11	01-07	0		ns
time		Joseph Garage		08	-5		
				09,10	-10		
Write command hold	twch		9,10,11	04.06	60		ns
time				01,02,10	45		
				03	55		
				05,07	80		
				08	40		
				09	35		
Write command hold	command hold twcR 9,10	9,10,11	04	125		ns	
time to RAS				01,02	120		
				03	150		
				05	160		
				06,09	110		
				07,10 08	145 85		
Write command pulse	twp		9,10,11	01,02,04	45		ns
width	TWP		3,10,11	06,10 03,05,07	55		. 113
				08	25		
Write command to	1			09 04,06	35 60		
	t _{RWL}		9,10,11	01,02,09	45		ns
RAS lead time				03,10	55		
				05,07	80		
				08	50		
Write command to				04,06	60		
	tcwL		9,10,11	01,02,09	45		ns
CAS lead time				03,10	55		1
				05,07	80		
				08	50		
Data-in setup time	t _{DS}		9,10,11	All	0		ns
Data-in hold time	t _{DH}		9,10,11	04,06	60		ns
			,,,,,,,	01,02,10	45		
				03	55		
				05,07	80		
				80	40		
				09	35		I

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	9

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol	-55°C ≤ T _C ≤ +110°C, <u>1</u> /	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Data-in hold time, to	t _{DHR}	See figure 3	9,10,11	04	125		ns
RAS				01,02	120		
				03	150		
				05	160		
				06,09	110		
				07,10	145		
				08	85		
				01,02	280	10.000	
Read modify write cycle time	t _{RMW}		9,10,11	04	345	1,500	ns
				05	425	1,500	
				06	285	10.000	
				08	260	10.000	
				03	370	10.000	
				07	345	10.000	
				09	280		
				10	345		
	t _{RWD}		9,10,11	04,06	110		ns
RAS to WE delay	THE STATE OF THE S		0,10,11	01,02,09	120		110
				03	165		
				05,07	130		
				08	85		
				10	155		
	t _{CWD}		9,10,11	04,06	60		ns
CAS to WE delay			1,12,11	01,02,10	55		
				03	80		
				05,07	65		
				08	40		
				09	45		

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	10

TABLE I. Electrical performance characteristics - continued.

Test	Symbol	Conditions $-55^{\circ}C \le T_{C} \le +110^{\circ}C, \ \underline{1}/$	Group A subgroups	Device type	Lim	its	Unit
		unless otherwise specified			Min	Max	
Read command hold time	t _{RRH}	See figure 3	9,10,11	01,02,04, 05	20		ns
referenced to RAS				03,	25		
				06,07,08	5		
				09,10	0		
Page mode read or write cycle	tPC		9,10,11	09	145		ns
				10	190		
CAS precharge time, page	t _{CP}		9,10,11	09	60		ns
mode				10	80		

- $\underline{1}$ / Device types 04 and 05, $T_C = -55^{\circ}C$ to +125°C.
- $2/I_{DD}$ is dependent on output loading and cycle rates. The I_{DD} measurements are made with the outputs open. Limits are for cycle rates listed in condition column and worst case data pattern (alternate "1" and "0") at a PRR = 4.0 MHz. $T_{CYC} = T_{RC}$ min.
- 3/ Capacitance measured with Boonton meter or equivalent or effective capacitance calculated from the equation $C = I\Delta t$ with ΔV equal to 3 volts and $V_{CC} = 5.0 \text{ V}$.
- 4/ Load = One Schottky TTL +100 pF or equivalent for device types 01, 02, and 03.
- 5/ Load = Two Schottky TTL +100 pF or equivalent for device types 04, 05, 06, 07, 08, 09, and 10.
- $\underline{6}$ / Devices are tested at $t_T = 5$ ns, where t_T is the rise and fall time for RAS and CAS.
- 7/ Tested only initially and after any design changes.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005,table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 9

^{*} PDA applies to subgroup 1.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	11

Device types	All		
Case outlines	Е	Z	
Terminal number	Terminal symbol		
1	NC	NC	
2	DiN	DiN	
3	WE	WE	
4	RAS	RAS	
5	A_0	NC	
6	A ₂	A_0	
7	A ₁	A ₂	
8	V_{DD}	A_1	
9	A ₇	V_{DD}	
10	A ₅	A ₇	
11	A ₄	A ₅	
12	A ₃	A ₄	
13	A ₆	A ₃	
14	D _{оит}	NC	
15	CAS	A ₆	
16	V_{SS}	D _{OUT}	
17		CAS	
18		Vss	

FIGURE 1. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	12

Truth Table						
INPUTS						OUTPUT
Operation <u>7</u> /	RAS	CAS	D _{IN}	Address	Write	Douт <u>1</u> /
Chip not selected	Н	Н	X <u>2</u> /	Х	Х	High Z
Write "L" in cell Axy 3/	L	L	L	Аху	L	High Z <u>4</u> /
Write "H" in cell Axy	L	L	Н	Axy	L	High Z <u>4</u> /
Read data in cell Axy	L	L	Х	Axy	Н	Data (Axy)
RAS only refresh	L	Н	Х	A _x <u>5</u> /	Х	High Z
Hidden RAS only refresh	L	L	Н	Ax	Н	Data (Ax-N,y-N) <u>6</u> /

NOTES:

- $\underline{1}/D_{OUT}$ is not inverted from D_{IN}.
- $\overline{2}$ / "X" = Don't care.
- 3/ Axy denotes proper address logic to address cell Axy.
- 4/ For "EARLY WRITE" timing, data out remains at high impedance. For "LATE WRITE" timing, data out is valid from access time to the beginning of a subsequent cycle, or until CAS goes to a high level.
- 5/ Ax depends only on A0-A6; A7 is a don't care.
- 6/ When CAS = VIL, the data output will contain data from the last valid read cycle (i.e., N cycles before).
- $\underline{7}$ / A 500 μ s pause and eight initialization cycles required before truth table applies. All timing requirements shall be applied.

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	13

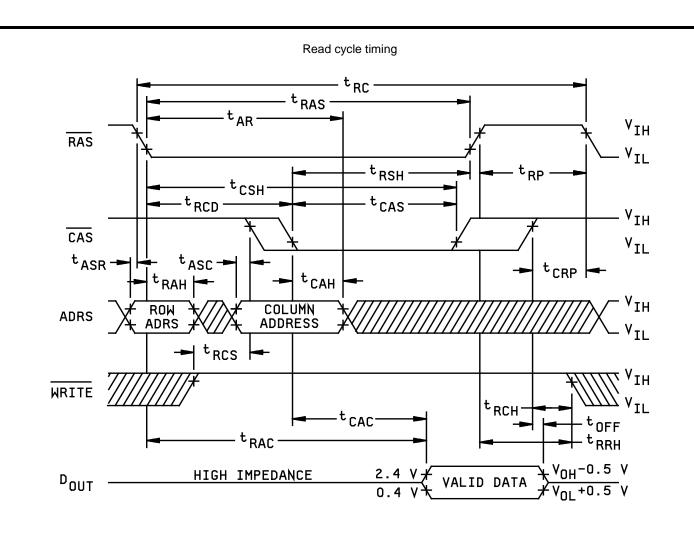


FIGURE 3. Switching waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	14

FIGURE 3. Switching waveforms - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	15

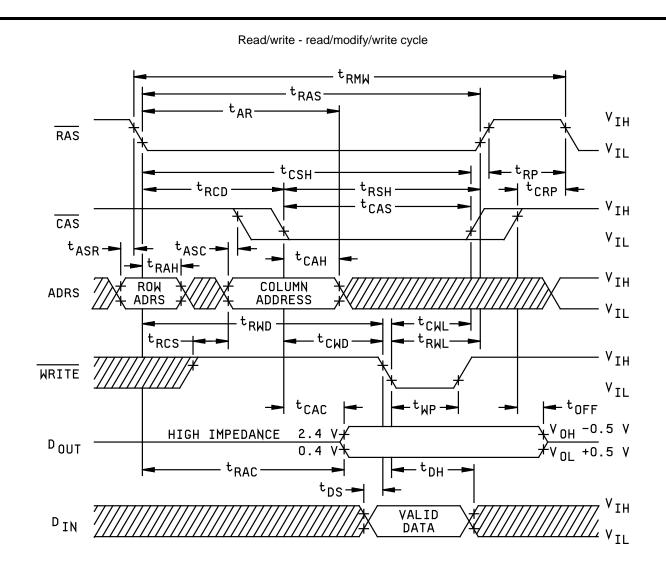
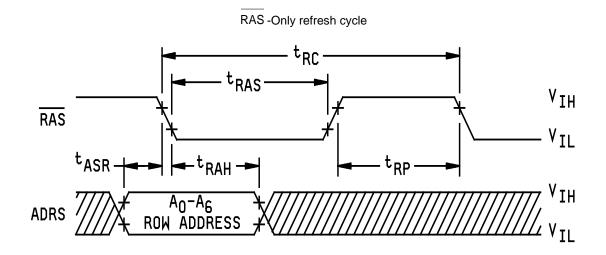



FIGURE 3. Switching waveforms - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	16

Notes:

- 1. CAS = VIH; WRITE, DIN, A7 don't care.
- 2. DOUT high impedance.

FIGURE 3. Switching waveforms - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	17

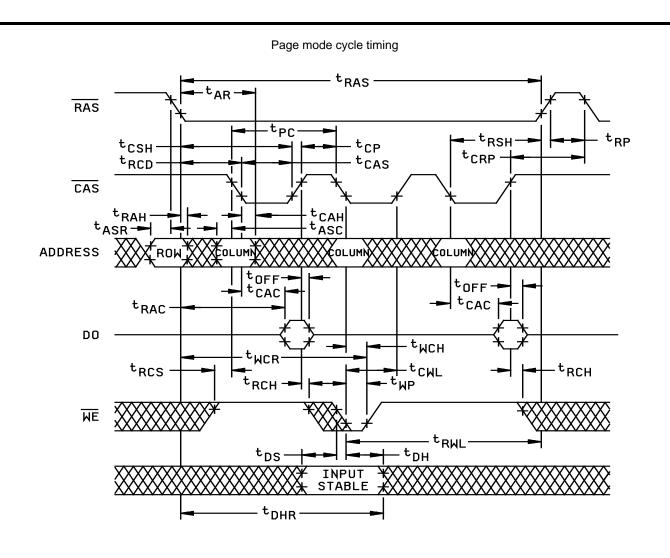


FIGURE 3. <u>Switching waveforms</u> - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	18

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5, 6, 7, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C₁, C₂ and C_{OUT} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Sample size is 5 devices with no failures, and all input and output terminals tested.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition D or E. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or procuring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.6 <u>Approved source of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		82010
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	19

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 17-10-26

Approved sources of supply for SMD 82010 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/Programs/Smcr/.

Microcircuit drawing part number <u>1</u> /	Vendor CAGE number	Vendor similar part number <u>2</u> /
8201001EA	<u>3</u> /	AM9064-15L/BEA MKB4564P-82
8201001ZA	<u>3</u> /	MKB4564E-82
8201002EA	<u>3</u> /	AM9064-15L/BEA MKB4564P-82
8201002ZA	<u>3</u> /	MKB4564E-82
8201003EA	<u>3</u> /	AM9064-20L/BEA MKB4564P-83
8201003ZA	<u>3</u> /	MKB4564E-83
8201004EA	<u>3</u> /	MT4564C-15
8201004ZA	<u>3</u> /	MT4564EC-15
8201005EA	<u>3</u> /	MT4564C-20
8201005ZA	<u>3</u> /	MT4564EC-20
8201006EA	3V146	4164-15JDS/BEA
	<u>3</u> /	AM9064-15L/BEA
	<u>3</u> /	SMJ4164-15JDS
8201006ZA	3V146	4164-15FGS/BZA
	<u>3</u> /	SMJ4164-15FGS
8201007EA	3V146	4164-20JDS/BEA
	<u>3</u> /	AM9064-20L/BEA
	<u>3</u> /	SMJ4164-20JDS
8201007ZA	3V146	4164-20FGS/BZA
	<u>3</u> /	SMJ4164-20FGS
8201008EA	3V146	4164-12JDS/BEA
	<u>3</u> /	SMJ4164-12JDS
8201008ZA	3V146	4164-12FGS/BZA
	<u>3</u> /	SMJ4164-12FGS
8201009EA	<u>3</u> /	AM9064-15L/BEA
8201010EA	<u>3</u> /	AM9064-20L/BEA

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this
- 3/ No longer available from an approved source.

Vendor CAGE number

and address Rochester Electronics Inc.

Vendor name

3V146

16 Malcolm Hovt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.